林业科学 ›› 2024, Vol. 60 ›› Issue (9): 59-68.doi: 10.11707/j.1001-7488.LYKX20230360
收稿日期:
2023-08-13
出版日期:
2024-09-25
发布日期:
2024-10-08
通讯作者:
刘美华
E-mail:mhliu@zafu.edu.cn
基金资助:
Shuya Yang,Jingru Wang,Yingying Zhu,Lita Yi,Meihua Liu*()
Received:
2023-08-13
Online:
2024-09-25
Published:
2024-10-08
Contact:
Meihua Liu
E-mail:mhliu@zafu.edu.cn
摘要:
目的: 研究杉木与浙江楠混交对根系分泌物和土壤中丛枝菌根真菌(AMF)群落结构的影响,为杉木人工纯林“针改阔”的树种选择提供参考,为提高杉-阔混交林生产力提供理论依据和思路。方法: 在杉木纯林、浙江楠纯林、杉木与浙江楠混交林中,采集0~20 cm土层样品,分析纯林和混交林土壤中根系分泌物和AMF群落结构差异,阐明混交林根系分泌物对AMF群落结构变化的影响。结果: 纯林与混交林土层样品中共检出含量高且具有化感活性的主要分泌物5种:2,4-二叔丁基苯酚、邻苯二甲酸二丁酯、油酸甲酯、棕榈酸、硬脂酸,其中油酸甲酯、棕榈酸、硬脂酸含量在不同林分间差异显著。浙江楠纯林根际土壤中含AMF属的OTU数量最多、多样性和相对丰度最高,混交林次之,杉木纯林最低;3种林分土壤AMF优势属均为Glomus属,混交显著降低Glomus占比、提高Gigaspora占比。相关分析表明,邻苯二甲酸二丁酯对杉木纯林土壤AMF群落结构影响较大,油酸甲酯对混交林土壤AMF群落结构影响较大。结论: 杉木与浙江楠混交使土壤化感物质含量发生改变,影响土壤微生物结构组成,AMF群落多样性和丰富度显著高于杉木纯林。
中图分类号:
杨淑雅,王镜如,朱滢滢,伊力塔,刘美华. 杉木与浙江楠混交对根系分泌物和丛枝菌根真菌群落结构的影响[J]. 林业科学, 2024, 60(9): 59-68.
Shuya Yang,Jingru Wang,Yingying Zhu,Lita Yi,Meihua Liu. Effects of Mixed Plantation of Cunninghamia lanceolata and Phoebe chekiangensis on Root Exudates and Community Structure of Arbuscular Mycorrhizal Fungi[J]. Scientia Silvae Sinicae, 2024, 60(9): 59-68.
表1
杉木纯林林下土壤GC-MS鉴定结果①"
类别 Types | 化合物名称 Compound name | 保留时间 Retention time/min | 含量 Content/ (μg·kg?1) |
内标物Internal standard substance | 香叶醇Geraniol | 11.99 | 200.00 |
烃类 Hydrocarbon | 3-乙基己烷3-Ethylhexane | 4.33 | 5.36±0.59 |
4-乙基己烷4-Ethylhexane | 5.15 | 4.46±0.19 | |
2,2,5,5-四甲基-3-己炔 2,2,5, 5-Tetramethyl-3-hexyne | 6.29 | 102.95±11.35 | |
2-溴-2-甲基丁烷 2-Bromo-2-methylbutane | 6.79 | 75.95±7.25 | |
3,6-二甲基辛烷 3,6-Dimethyl octane | 7.32 | 4.18±0.42 | |
十一烷Hendecane | 8.77 | 17.97±3.11 | |
十二烷Dodecane | 11.06 | 18.49±2.68 | |
十三烯Tridecylene | 11.63 | 9.07±1.27 | |
十四烷Tetradecane | 12.34 | 7.22±1.48 | |
十五烷Pentadecane | 13.85 | 17.56±2.49 | |
十八烷Octodecane | 17.00 | 9.52±1.01 | |
二十烷Eicosane | 18.54 | 4.92±0.27 | |
二十一烷Heneicosane | 19.49 | 25.91±4.56 | |
二十四烷Tetracosane | 19.82 | 24.85±4.04 | |
酚类Phenols | 4-乙基间苯二酚 4-Ethylresorcinol | 5.85 | 14.78±2.61 |
2-烯丙基-6-甲基苯酚 2-Allyl-6-methylphenol | 10.81 | 6.88±0.77 | |
2,4-二叔丁基苯酚 2, 4-Di-tert-butylphenol | 15.46 | 168.98±3.53 | |
酸类Acids | 棕榈酸Palmitic acid | 20.29 | 15.50±1.62 |
硬脂酸Stearic acid | 22.15 | 15.57±1.69 | |
酯类Esters | N-己酸(反-2-己烯基)酯Trans-2-hexenyl hexanoate | 17.75 | 43.61±5.46 |
邻苯二甲酸二丁酯 Dibutyl phthalate | 20.50 | 672.64±4.24 | |
油酸甲酯Methyl oleate | 24.04 | 242.90±31.94 | |
邻苯二甲酸二辛酯 Dioctyl phthalate | 25.47 | 7.40±1.07 | |
其他Others | 蒽Anthracene | 20.08 | 17.72±3.55 |
十八胺Octadecylamine | 22.41 | 27.61±4.13 | |
番木鳖碱Strychninum | 26.83 | 8.80±1.14 |
表2
浙江楠纯林林下土壤GC-MS鉴定结果①"
类别 Types | 化合物名称 Compound name | 保留时间 Retention time/min | 含量 Content/ (μg·kg?1) |
内标物 Internal standard substance | 香叶醇Geraniol | 12.00 | 200.00 |
烃类 Hydrocarbon | 2,4-二甲基己烷 2, 4-Dimethylhexane | 4.33 | 7.02±0.46 |
2,2,5,5-四甲基-3-己炔 2,2,5, 5-Tetramethyl-3-hexyne | 5.85 | 18.15±1.31 | |
2,2,5,5-四甲基-4-己炔2,2,5, 5-Tetramethyl-4-hexyne | 6.29 | 85.07±7.53 | |
2-溴-2-甲基丁烷 2-Bromo-2-methylbutane | 6.80 | 82.45±7.27 | |
十一烷Hendecane | 9.53 | 11.44±2.84 | |
十二烷Dodecane | 10.68 | 5.45±0.85 | |
十三烷Tridecane | 11.07 | 11.91±3.01 | |
十五烷Pentadecane | 12.23 | 29.44±2.92 | |
十四烷Tetradecane | 13.86 | 16.51±2.39 | |
十七烷Heptadecane | 15.63 | 19.12±3.27 | |
二十烷Eicosane | 19.49 | 20.38±1.29 | |
二十四烷Tetracosane | 19.83 | 27.46±4.66 | |
二十八烷Octacosane | 25.34 | 7.76±0.94 | |
醇类 Alcohols | 2-丙基-1-戊醇 2-Propyl-1-amyl alcohol | 4.14 | 1.75±0.33 |
正戊醇N-Pentanol | 4.25 | 1.06±0.04 | |
酚类 Phenols | 2-烯丙基-6-甲基苯酚 2-Allyl-6-methylphenol | 10.81 | 7.46±0.79 |
2,4-二叔丁基苯酚 2, 4-Di-tert-butylphenol | 15.46 | 171.36±5.56 | |
酸类 Acids | 棕榈酸Palmitic acid | 20.30 | 34.49±5.81 |
硬脂酸Stearic acid | 22.15 | 9.46±0.66 | |
酯类 Esters | 羟基十一烷酸内酯 11-Hydroxyundecanoic acid lactone | 5.99 | 2.06±0.69 |
异氰酸十八酯 Octadecyl isocyanate | 9.94 | 2.83±0.53 | |
N-己酸(反-2-己烯基)酯Trans-2-hexenyl hexanoate | 17.76 | 43.18±4.36 | |
邻苯二甲酸二丁酯 Dibutyl phthalate | 20.51 | 552.17±8.31 | |
油酸甲酯Methyl oleate | 24.01 | 176.02±36.78 | |
邻苯二甲酸二辛酯 Dioctyl phthalate | 25.47 | 2.69±0.25 | |
其他 Others | 蒽Anthracene | 20.09 | 18.32±1.47 |
十四胺1-Tetradecanamine | 22.42 | 25.08±4.82 | |
番木鳖碱Strychninum | 26.84 | 7.33±1.93 | |
派利文碱Perivine | 27.20 | 59.60±5.26 |
表3
杉-楠混交林林下土壤GC-MS鉴定结果①"
类别 Types | 化合物名称 Compound name | 保留时间Retention time/min | 含量 Content/ (μg·kg?1) |
内标物 Internal Standard Substance | 香叶醇Geraniol | 12.00 | 200.00 |
烃类 Hydrocarbon | 2,4-二甲基己烷 2, 4-Dimethylhexane | 4.38 | 11.53±2.03 |
对二甲苯P-Xylene | 5.43 | 19.87±4.11 | |
苯乙烯Styrene | 5.87 | 27.16±3.47 | |
癸烷decane | 8.18 | 19.17±3.90 | |
十一烷Hendecane | 8.78 | 7.83±0.49 | |
十二烷Dodecane | 9.53 | 11.05±1.58 | |
十四烷Tetradecane | 11.06 | 12.98±1.37 | |
十五烷Pentadecane | 12.23 | 41.33±5.47 | |
十六烷Hexadecane | 12.87 | 19.97±3.22 | |
十七烷Heptadecane | 14.00 | 13.50±1.76 | |
十五烷Pentadecane | 14.14 | 10.63±0.92 | |
正二十烷Eicosane | 15.63 | 15.54±2.21 | |
2-甲基十五烷 2-Methylpentadecane | 15.89 | 7.39±0.88 | |
正二十一烷Heneicosane | 17.58 | 33.10±4.73 | |
正二十四烷Tetracosane | 21.50 | 52.50±6.45 | |
二十八烷Octacosane | 23.40 | 14.80±2.35 | |
正二十六烷Hexacosane | 25.66 | 25.44±4.04 | |
3-甲基-3-羟甲基氧杂环丁烷3-Methyl-3-oxetanemethanol | 40.37 | 14.73±1.92 | |
卤代烃 Haloalkane | 氯苯Chlorobenzene | 4.97 | 14.56±1.55 |
邻二氯苯 O-dichlorobenzene | 8.61 | 122.12±9.11 | |
酚类 Phenols | 2,4-二叔丁基苯酚 2, 4-Di-tert-butylphenol | 15.46 | 176.49±4.01 |
酸类 Acids | 棕榈酸Palmitic acid | 20.30 | 55.62±7.99 |
硬脂酸Stearic acid | 22.16 | 19.31±2.09 | |
酯类 Esters | N-己酸(反-2-己烯基)酯Trans-2-hexenyl hexanoate | 17.75 | 49.70±7.39 |
邻苯二甲酸二丁酯 Dibutyl phthalate | 20.50 | 535.10±32.22 | |
油酸甲酯Methyl oleate | 24.06 | 393.81±47.38 | |
单棕榈酸甘油Monopalmitin | 25.16 | 13.66±2.42 | |
其他 Others | 蒽Anthracene | 20.09 | 18.11±2.38 |
十四胺 1-Tetradecanamine | 22.43 | 51.31±6.41 | |
十八胺Octadecylamine | 24.20 | 16.62±2.77 | |
番木鳖碱Strychninum | 26.84 | 9.61±1.87 | |
派利文碱Perivine | 27.21 | 123.19±7.33 |
表4
3种林型下5种主要分泌物含量及占比①"
邻苯二甲酸二丁酯 Dibutyl phthalate | 油酸甲酯 Methyl oleate | 2,4-二叔丁基苯酚 2, 4-Di-tert-butylphenol | 棕榈酸 Palmitic acid | 硬脂酸 Stearic acid | |
杉木 Cunninghamia lanceolata | 672.64±4.24a (37.76%) | 242.9±31.94b (13.64%) | 168.98±3.53a (9.49%) | 15.5±1.62c (1.00%) | 15.57±1.69b (1.00%) |
浙江楠 Phoebe chekiangensis | 552.17±8.31b (32.12%) | 176.02±36.78c (10.24%) | 171.36±5.56a (9.97%) | 34.49±5.81b (2.00%) | 9.46±0.66b (1.00%) |
混交林 Mixed forest | 535.1±32.22b (24.80%) | 393.81±47.38a (18.25%) | 176.49±4.01a (8.18%) | 55.62±7.99a (3.00%) | 19.31±2.09a (1.00%) |
陈龙池, 汪思龙. 杉木根系分泌物化感作用研究. 生态学报, 2003, 23 (2): 393- 398.
doi: 10.3321/j.issn:1000-0933.2003.02.025 |
|
Chen L C, Wang S L. Preliminary study of allelopathy of root exudates of Chinese fir. Acta Ecologica Sinica, 2003, 23 (2): 393- 398.
doi: 10.3321/j.issn:1000-0933.2003.02.025 |
|
陈 虹, 唐昊冶, 郭家欢, 等. 根系分泌物主要作用及解析技术进展. 土壤, 2023, 55 (2): 225- 233. | |
Chen H, Tang H Y, Guo J H, et al. Root exudates’ roles and analytical techniques progress. Soils, 2023, 55 (2): 225- 233. | |
董 强. 2010. 有毒植物黄花棘豆化感物质释放途径及主要化感物质分离鉴定. 兰州: 甘肃农业大学. | |
Dong Q. 2010. Release pathways of chemical substances from the toxic plant Oxytropis ochrocephala L. and identification of the main chemical substances in the plant. Lanzhou: Gansu Agricultural University. [in Chinese] | |
胡靓达. 2022. 杉木纯林及其混交林土壤团聚体微生物群落特征研究. 南宁: 广西大学. | |
Hu L D. 2022. Characteristics of microbial communities at aggregate scale in pure and mixed stands of Cunninghamia lanceolata. Nanning: Guangxi University. [in Chinese] | |
胡延杰, 翟明普, 武觐文, 等. 杨树刺槐混交林及纯林根际微生物数量及其生化强度的季节性动态研究. 土壤通报, 2002, 33 (3): 219- 222.
doi: 10.3321/j.issn:0564-3945.2002.03.015 |
|
Hu Y J, Zhai M P, Wu J W, et al. Dynamics of amount and bio-chemical activity of microorganism in the soil rhizosphere of the pure and mixed stands of poplar and black locust. Chinese Journal of Soil Science, 2002, 33 (3): 219- 222.
doi: 10.3321/j.issn:0564-3945.2002.03.015 |
|
黄 龙, 包维楷, 李芳兰, 等. 土壤结构和植被对土壤微生物群落的影响. 应用与环境生物学报, 2021, 27 (6): 1725- 1731. | |
Huang L, Bao W K, Li F L, et al. Effects of soil structure and vegetation on microbial communities. Chinese Journal of Applied and Environmental Biology, 2021, 27 (6): 1725- 1731. | |
黄玉茜, 韩晓日, 杨劲峰, 等. 花生根系分泌物对土壤微生物学特性及群落功能多样性的影响. 沈阳农业大学学报, 2015, 46 (1): 48- 54.
doi: 10.3969/j.issn.1000-1700.2015.01.009 |
|
Huang Y Q, Han X R, Yang J F, et al. Effect of peanut root exudates on soil microbial characteristics and community functional diversity. Journal of Shenyang Agricultural University, 2015, 46 (1): 48- 54.
doi: 10.3969/j.issn.1000-1700.2015.01.009 |
|
惠亚梅, 巨天珍, 贾 丽, 等. 秦岭西段北坡森林土壤微生物群落及生境特征. 江苏农业科学, 2015, 43 (1): 322- 326. | |
Hui Y M, Ju T Z, Jia L, et al. Forest soil microbial communities and habitat characteristics on the north slope of the western section of Qinling Mountains. Jiangsu Agricultural Sciences, 2015, 43 (1): 322- 326. | |
吉艳芝, 冯万忠, 陈立新, 等. 落叶松混交林根际与非根际土壤养分、微生物和酶活性特征. 生态环境, 2008, 17 (1): 339- 343. | |
Ji Y Z, Feng W Z, Chen L X, et al. Characteristics of soil nutrients, microorganisms and enzyme activities in rhizosphere and non-rhizosphere of Larix gmelinii mixed forest. Ecology and Environment, 2008, 17 (1): 339- 343. | |
李冬林, 金雅琴, 向其柏. 珍稀树种浙江楠的栽培利用研究. 江苏林业科技, 2004, 31 (1): 23- 25.
doi: 10.3969/j.issn.1001-7380.2004.01.007 |
|
Li D L, Jin Y Q, Xiang Q B. Study on cultivation and utilization of rare species of Phoebe chekiangensis. Journal of Jiangsu Forestry Science and Technology, 2004, 31 (1): 23- 25.
doi: 10.3969/j.issn.1001-7380.2004.01.007 |
|
李佳佳, 樊妙春. 植物根系分泌物主要生态功能研究进展. 植物学报, 2020, 55 (6): 788- 796.
doi: 10.11983/CBB20036 |
|
Li J J, Fan M C. Research progress on main ecological functions of plant root exudates. Chinese Bulletin of Botany, 2020, 55 (6): 788- 796.
doi: 10.11983/CBB20036 |
|
李雪静, 徐天乐, 陈保冬, 等. 荒漠和草原生态系统丛枝菌根真菌多样性和群落结构. 生态学杂志, 2017, 36 (10): 2734- 2743. | |
Li X J, Xu T L, Chen B D, et al. Diversity and community structure of arbuscular mycorrhizal fungi in desert and steppe ecosystems. Chinese Journal of Ecology, 2017, 36 (10): 2734- 2743. | |
李轶修, 周宝利, 刘 娜, 等. 邻苯二甲酸二丁酯对3种蔬菜作物种子萌发及幼苗生长的影响. 西北农业学报, 2009, 18 (2): 217- 220, 224.
doi: 10.3969/j.issn.1004-1389.2009.02.048 |
|
Li Y X, Zhou B L, Liu N, et al. Effect of different concentration dibutyl phthalate (DBP) on the germination and seedlings growth of three vegetable seeds. Acta Agriculturae Boreali-Occidentalis Sinica, 2009, 18 (2): 217- 220, 224.
doi: 10.3969/j.issn.1004-1389.2009.02.048 |
|
刘 苹, 赵海军, 仲子文, 等. 三种根系分泌脂肪酸对花生生长和土壤酶活性的影响. 生态学报, 2013, 33 (11): 3332- 3339.
doi: 10.5846/stxb201203210382 |
|
Liu P, Zhao H J, Zhong Z W, et al. The effects of three root exudated fatty acids on peanut (Arachis hypogaea L.) growth and soil enzymes activities. Acta Ecologica Sinica, 2013, 33 (11): 3332- 3339.
doi: 10.5846/stxb201203210382 |
|
罗永清, 赵学勇, 李美霞. 植物根系分泌物生态效应及其影响因素研究综述. 应用生态学报, 2012, 23 (12): 3496- 3504. | |
Luo Y Q, Zhao X Y, Li M X. Ecological effect of plant root exudates and related affecting factors: a review. Chinese Journal of Applied Ecology, 2012, 23 (12): 3496- 3504. | |
罗云建, 张小全. 杉木(Cunninghamia lanceolata)连栽地力退化和杉阔混交林的土壤改良作用. 生态学报, 2007, 27 (2): 715- 724.
doi: 10.3321/j.issn:1000-0933.2007.02.036 |
|
Luo Y J, Zhang X Q. The assessment of soil degradation in successive rotations of Chinese fir plantation and the soil amelioration of mixed plantation of Chinese fir and broad-leaved. Acta Ecologica Sinica, 2007, 27 (2): 715- 724.
doi: 10.3321/j.issn:1000-0933.2007.02.036 |
|
潘勇军, 王 兵, 陈步峰, 等. 江西大冈山杉木人工林生态系统碳汇功能研究. 中南林业科技大学学报, 2013, 33 (10): 120- 125.
doi: 10.3969/j.issn.1673-923X.2013.10.025 |
|
Pan Y J, Wang B, Chen B F, et al. Study on carbon sink function of Chinese fir plantation ecosystem in Dagang mountain, Jiangxi Province. Journal of Central South University of Forestry and Technology, 2013, 33 (10): 120- 125.
doi: 10.3969/j.issn.1673-923X.2013.10.025 |
|
庞学勇. 2010. 根系分泌物: 植物-微生物-土壤的调节媒介. https://www.cas.cn/kxcb/kpwz/201001/t20100105_2721943.shtml. | |
Pang X Y. 2010, Root exduates: plant-microbe-soil regulating agents. https://www.cas.cn/kxcb/kpwz/201001/t20100105_2721943.shtml. [in Chinese] | |
秦永燕, 刘瑞祥, 杨亚男. 邻苯二甲酸二丁酯对玉米种子萌发和生长的影响. 河南农业科学, 2019, 48 (3): 33- 38. | |
Qin Y Y, Liu X R, Yang Y N. Effect of dibutyl phthalate on the germination and growth of maize seeds. Journal of Henan Agricultural Sciences, 2019, 48 (3): 33- 38. | |
尚 赏, 王 平, 陈彩艳. 丛枝菌根形成过程及其信号转导途径. 植物生理学报, 2011, 47 (4): 331- 338. | |
Shang S, Wang P, Chen C Y. Signal recognition and transduction in the arbuscular mycorrhizal symbiosis. Plant Physiology Journal, 2011, 47 (4): 331- 338. | |
孙敬国, 王昌军, 孙光伟, 等. 连作年限对植烟根际土壤化感物质积累的影响——以湖北黄棕壤烟田为例. 土壤, 2021, 53 (1): 148- 153. | |
Sun J G, Wang C J, Sun G W, et al. Effects of tobacco continuous cropping on allelochemicals accumulation in rhizosphere soil: a case study of yellow brown soil of Hubei. Soils, 2021, 53 (1): 148- 153. | |
唐浩琪, 张 娜, 孙 波, 等. 典型农田土壤中丛枝菌根真菌-根际细菌互作及与氮磷利用的关系. 微生物学报, 2020, 60 (6): 1117- 1129. | |
Tang H Q, Zhang N, Sun B, et al. Effect of interaction between arbuscular mycorrhizal fungi and rhizosphere bacteria in farmland soils on nutrients utilization. Acta Microbiologica Sinica, 2020, 60 (6): 1117- 1129. | |
吴彩霞, 傅 华. 根系分泌物的作用及影响因素. 草业科学, 2009, 26 (9): 24- 29.
doi: 10.3969/j.issn.1001-0629.2009.09.005 |
|
Wu C X, Fu H. Effects and influencing factors of root exudates. Pratacultural Science, 2009, 26 (9): 24- 29.
doi: 10.3969/j.issn.1001-0629.2009.09.005 |
|
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38 (3): 298- 310.
doi: 10.3724/SP.J.1258.2014.00027 |
|
Wu L K, Lin X M, Lin W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 2014, 38 (3): 298- 310.
doi: 10.3724/SP.J.1258.2014.00027 |
|
杨高文, 刘 楠, 杨 鑫, 等. 丛枝菌根真菌与个体植物的关系及其对群落生产力和物种多样性的影响. 草业学报, 2015, 24 (6): 188- 203.
doi: 10.11686/cyxb2014316 |
|
Yang G W, Liu N, Yang X, et al. Relationship between arbuscular mycorrhizal fungi and individual plant and their effects on plant productivity and species diversity of plant community. Acta Pratacultural Sinica, 2015, 24 (6): 188- 203.
doi: 10.11686/cyxb2014316 |
|
杨海水, 熊艳琴, 王 琪, 等. AM真菌物种多样性: 生态功能、影响因素及维持机制. 生态学报, 2016, 36 (10): 2826- 2832. | |
Yang H S, Xiong Y Q, Wang Q, et al. Arbuscular mycorrhizal fungal species diversity: ecological functioning, determinants and assembling mechanisms. Acta Ecologica Sinica, 2016, 36 (10): 2826- 2832. | |
叶少萍, 曾秀华, 辛国荣, 等. 不同磷水平下丛枝菌根真菌(AMF)对狗牙根生长与再生的影响. 草业学报, 2013, 22 (1): 46- 52.
doi: 10.11686/cyxb20130106 |
|
Ye S P, Zeng X H, Xin G R. Effects of arbuscular mycorrhizal fungi (AMF) on growth and regrowth of bermudagrass under different P supply levels. Acta Prataculturae Sinica, 2013, 22 (1): 46- 52.
doi: 10.11686/cyxb20130106 |
|
张俊英. 2007. 不同抗性大豆品种根系分泌物的化感作用及其组分分析. 北京: 中国农业大学. | |
Zhang J Y. 2007. Chemosensitization of root secretions of different resistant soybean varieties and analysis of their components. Beijing: China Agricultural University. [in Chinese] | |
周宝利, 陈 丰, 刘 娜, 等. 邻苯二甲酸二异丁酯对茄子黄萎病及其幼苗生长的化感作用. 西北农业学报, 2010, 19 (4): 179- 183.
doi: 10.3969/j.issn.1004-1389.2010.04.040 |
|
Zhou B L, Chen F, Liu N, et al. Allelopathy of diisobutyl phthalate to Verticillium wilt and seedling growth of eggplant. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19 (4): 179- 183.
doi: 10.3969/j.issn.1004-1389.2010.04.040 |
|
Barea J M, Toro M, Orozco M O, et al. The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutrient Cycling in Agroecosystems, 2002, 63, 35- 42.
doi: 10.1023/A:1020589732436 |
|
Chai Y N, Schachtman D P. Root exudates impact plant performance under abiotic stress. Trends in Plant Science, 2022, 27 (1): 80- 91.
doi: 10.1016/j.tplants.2021.08.003 |
|
Cheynier V, Comte G, Davies K M, et al. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry, 2013, 72, 1- 20.
doi: 10.1016/j.plaphy.2013.05.009 |
|
De Albuquerque M B, Dos Santos R C, Lima L M, et al. Allelopathy, an alternative tool to improve cropping systems. a review. Agronomy for Sustainable Development, 2011, 31 (2): 379- 395.
doi: 10.1051/agro/2010031 |
|
Huang Y X, Wu Z J, Zong Y Y, et al. Mixing with coniferous tree species alleviates rhizosphere soil phosphorus limitation of broad-leaved trees in subtropical plantations. Soil Biology and Biochemistry, 2022, 175, 108853.
doi: 10.1016/j.soilbio.2022.108853 |
|
Ji L, Zhang Y, Yang Y C, et al. Long-term effects of mixed planting on arbuscular mycorrhizal fungal communities in the roots and soils of Juglans mandshurica plantations. BMC Microbiology, 2020, 20 (1): 304.
doi: 10.1186/s12866-020-01987-1 |
|
Latif S, Chiapusio G, Weston L A. Allelopathy and the role of allelochemicals in plant defence. Advances in Botanical Research, 2017, 82, 19- 54. | |
Lei J, Wu H B, Li X Y, et al. Response of rhizosphere bacterial communities to near-natural forest management and tree species within Chinese fir plantations. Microbiology Spectrum, 2023, 11 (1): e0232822.
doi: 10.1128/spectrum.02328-22 |
|
Liu M H, Chen S X, Korpelainen H, et al. Nitrogen addition affects eco-physiological interactions between two tree species dominating in subtropical forests. Plant Physiology and Biochemistry, 2021, 162 (11): 150- 160. | |
Liu R J, Wang F Y. Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi. Mycorrhiza, 2003, 13 (3): 123- 127.
doi: 10.1007/s00572-002-0207-4 |
|
Maherali H, Klironomos J N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science, 2007, 316 (5832): 1746- 1748.
doi: 10.1126/science.1143082 |
|
Morgan J A W, Bending G D, White P J. Biological costs and benefits to plant-microbe interactions in the rhizosphere. Journal of Experimental Botany, 2005, 56 (417): 1729- 1739.
doi: 10.1093/jxb/eri205 |
|
Murata Y, Iyama J, Honma T. Studies on the photosynthesis of rice plants: XIII. on the interrelationships between photosynthetic activity of the leaf and physiological activity of the root. Japanese Journal of Crop Science, 1965, 34 (2): 148- 153.
doi: 10.1626/jcs.34.148 |
|
Pellicer J, Hidalg O, Dodsworth S, et al. Genome size diversity and its impact on the evolution of land plants. Genes, 2018, 9 (2): 88.
doi: 10.3390/genes9020088 |
|
Smith S E, Smith F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 2011, 62, 227- 250.
doi: 10.1146/annurev-arplant-042110-103846 |
|
van der Heijden M G A, Klironomos J N, Ursic M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 1998, 396 (6706): 69- 72.
doi: 10.1038/23932 |
|
van Geel M, Busschaert P, Honnay O, et al. Evaluation of six primer pairs targeting the nuclear rRNA operon for characterization of arbuscular mycorrhizal fungal (AMF) communities using 454 pyrosequencing. Journal of Microbiological Method, 2014, 106, 93- 100. | |
Venice F, Ghignon S, Salviol, et al. At the nexus of three kingdoms: the genome of the mycorrhizal fungus Gigaspora margarita provides insights into plant, endobacterial and fungal interactions. Environmental Microbiology, 2020, 22 (1): 122- 141.
doi: 10.1111/1462-2920.14827 |
|
Vive-Peris V, De Ollas C, Gómez-Cadenas A, et al. Root exudates: from plant to rhizosphere and beyond. Plant Cell Reports, 2020, 39 (1): 3- 17.
doi: 10.1007/s00299-019-02447-5 |
|
Wang S G, Lin X G, Yin R, et al. Effects of di-n-butyl phthalate on mycorrhizal and non-mycorrhizal cowpea plants. Biologia Plantarum, 2003, 47 (4): 637- 639. | |
Wu Q S, Huang Y M, Li Y, et al. Contribution of arbuscular mycorrhizas to glomalin-related soil protein, soil organic carbon and aggregate stability in Citrus rhizosphere. International Journal of Agriculture and Biology, 2014, 16 (1): 207- 212. | |
Zhalnina K, Louie K B, Hao Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 2018, 3 (4): 470- 480.
doi: 10.1038/s41564-018-0129-3 |
[1] | 都亚敏, 李珠, 蒋佳荔, 殷方宇, 吕建雄. 吸湿解吸循环过程中木材水分吸附特性[J]. 林业科学, 2024, 60(9): 150-158. |
[2] | 李林鑫,杨贵云,郭昊澜,董强,李明,马祥庆,吴鹏飞. 繁殖方式对杉木幼苗根系不同序级生物量、形态性状和碳氮含量的影响[J]. 林业科学, 2024, 60(7): 47-55. |
[3] | 阮颖超,苏比·热西塔洪,林熙,李明,范少辉,冯随起,陈志云,马祥庆,何宗明. 修枝强度对杉木人工林无节材形成及质量的影响[J]. 林业科学, 2024, 60(6): 50-59. |
[4] | 郑梦杰,谢炜,马行聪,黄坚钦,彭丽媛,秦华. 山核桃根系分泌物对溶磷菌生长及活化土壤磷的影响[J]. 林业科学, 2024, 60(6): 60-70. |
[5] | 刘澳,王嘉铮,卢思航,雷菲娅,宁宏涛,腾渝,李守中. 长汀生态恢复区不同混交比例针阔混交林内马尾松种群动态及其驱动机制[J]. 林业科学, 2024, 60(5): 89-97. |
[6] | 吕梓晴, 段爱国. 不同产区杉木生物量与碳储量模型[J]. 林业科学, 2024, 60(2): 1-11. |
[7] | 贾辉,朱敏,余再鹏,万晓华,傅彦榕,王思荣,邹秉章,黄志群. 亚热带树种在未成林造林地的凋落物量和周转与叶片性状的关系[J]. 林业科学, 2024, 60(1): 12-18. |
[8] | 夏成康,林勇,兰勇,吴高洋,王晟楠,陈伏生. 初植和补植阔叶树对红壤丘陵区湿地松养分获取和转运的影响[J]. 林业科学, 2024, 60(1): 47-57. |
[9] | 李晓燕,段爱国,张建国. 不同产区杉木人工林初植密度对优势高生长的影响[J]. 林业科学, 2023, 59(8): 22-29. |
[10] | 屈彦成,江怡航,姜彦妍,张建国,罗安利,张雄清. 基于胸高处边材面积、胸径和冠基部直径的杉木单木叶生物量预测模型[J]. 林业科学, 2023, 59(7): 106-114. |
[11] | 陈睿,汤孟平. 天目山针阔混交林与常绿阔叶林的空间结构比较[J]. 林业科学, 2023, 59(5): 21-31. |
[12] | 程鑫,吴纯泽,韦庆钰,李伟,卫星. 水曲柳丛枝菌根真菌接菌苗对干旱胁迫的生长和生理响应[J]. 林业科学, 2023, 59(2): 58-66. |
[13] | 管凝,程金花,侯芳,曾合州,沈子雅,赵梦圆,秦建淼. 西南喀斯特地区2种森林的土壤优先流特征[J]. 林业科学, 2023, 59(12): 61-70. |
[14] | 黄迪,陈园,钟泺龙,梁家俊,王正木,陈祖静. 桉树生长和防御相关酶对摩西管柄囊霉和青枯菌的响应[J]. 林业科学, 2023, 59(11): 68-75. |
[15] | 王晓,毕银丽,王义,田野,李强,杜昕鹏,郭芸. 沙棘林密度和丛枝菌根真菌接种对林下植物和土壤性状的影响[J]. 林业科学, 2023, 59(10): 138-149. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||