林业科学 ›› 2023, Vol. 59 ›› Issue (10): 138-149.doi: 10.11707/j.1001-7488.LYKX20220146
王晓1(),毕银丽1,2,*(
),王义3,田野1,李强3,杜昕鹏1,郭芸1
收稿日期:
2022-03-17
出版日期:
2023-10-25
发布日期:
2023-11-01
通讯作者:
毕银丽
E-mail:dalianxiao222@163.com;ylbi88@126.com
基金资助:
Xiao Wang1(),Yinli Bi1,2,*(
),Yi Wang3,Ye Tian1,Qiang Li3,Xinpeng Du1,Yun Guo1
Received:
2022-03-17
Online:
2023-10-25
Published:
2023-11-01
Contact:
Yinli Bi
E-mail:dalianxiao222@163.com;ylbi88@126.com
摘要:
目的: 在我国干旱半干旱地区采煤沉陷区的生态修复区,分析不同沙棘种植密度和接种丛枝菌根真菌(AMF)及其交互作用对林下植物和土壤性状的影响,探究最佳人工生态修复方式。方法: 本研究以陕西省神木市大柳塔镇微生物复垦区种植的不同密度沙棘林(L:835 tree ? hm?2; M:1 111 tree ? hm?2; H:1 667 tree ? hm?2)为研究对象,布设接菌区和对照区处理,以无人工干预的自然恢复区为完全对照,总样地大小为8 400 m2。人工林于2012年4月种植,2012年7月以穴施的方式在接菌区接种AMF。2020年10月,对人工林和林下植物进行调查,并采集表层土壤(0~20 cm)测定土壤性状,每个处理设置3个重复。选取林下植物指标、土壤指标进行主成分分析,筛选出特征值大于1的5个主成分,通过因子载荷矩阵确定权重,计算各处理综合得分。结果: 1)增大种植密度和接种AMF显著提高了沙棘林盖度和现有密度。2)增大种植密度显著提高了林下植物的Pielou均匀度指数,降低了Simpson优势度指数,接种AMF显著提高了林下植物的Pielou均匀度指数,降低了Simpson优势度指数;种植密度显著影响林下植物群落组成、生物量和盖度,中等种植密度下林下植物生物量最大。接种AMF显著影响林下植被群落组成并提高了生物量。3)种植密度和接种AMF显著影响AMF生物量、土壤性状,在中等种植密度下AMF的生物量、微生物生物量、土壤理化性质处于较高水平。4)人工林种植密度和接种AMF对林下植被群落和土壤的理化性质具有显著的交互作用。相较于对照区,在接菌区人工林种植密度对林下植被与土壤性状的影响较小。5)综合得分结果表明,中等种植密度且接种AMF的处理得分最高,自然恢复区的综合得分最低,所以,中等密度且接种AMF的处理对植物和土壤的修复效果最佳。结论: 中等种植密度的沙棘人工林生态修复效果最佳,接种AMF促进了土壤养分的活化,为沙棘人工林提供了更多的生态位,打破了种植密度过高对林下植被生长和正向演替的限制。
中图分类号:
王晓,毕银丽,王义,田野,李强,杜昕鹏,郭芸. 沙棘林密度和丛枝菌根真菌接种对林下植物和土壤性状的影响[J]. 林业科学, 2023, 59(10): 138-149.
Xiao Wang,Yinli Bi,Yi Wang,Ye Tian,Qiang Li,Xinpeng Du,Yun Guo. Effects of Planting Density of Hippophae rhamnoides and Inoculation of AMF on Understory Vegetation Growth and Soil Improvement[J]. Scientia Silvae Sinicae, 2023, 59(10): 138-149.
表1
双因素结果分析表"
差异来源 Difference source | df | Shannon-Wiener指数 Shannon-Wiener index | Pielou均匀度指数 Pielou evenness index | Simpson优势度 Simpson dominance index | Margalef丰富度指数 Margalef richness index | |||||||
F | P | F | P | F | P | F | P | |||||
接菌处理 Inoculum treatment (A) | 1 | 0.626 | 0.444 | 8.597 | 0.013 | 6.333 | 0.027 | 0.196 | 0.666 | |||
密度处理 Density treatment (B) | 2 | 1.232 | 0.326 | 15.507 | 0.000 | 5.265 | 0.023 | 0.909 | 0.429 | |||
A、B互作 Interaction of A、B | 2 | 1.067 | 0.375 | 5.776 | 0.017 | 2.006 | 0.177 | 1.082 | 1.082 |
表2
不同接菌处理和种植密度的表层土壤理化性质(均值±标准差)①"
指标 Indexes | 对照区Control area | 接菌区Inoculated area | 自然恢 复区 Natural recovery area | |||||
低密度 Low density | 中等密度 Intermediate density | 高密度 High density | 低密度 Low density | 中等密度 Intermediate density | 高密度 High density | |||
pH | 7.61±0.07Bb | 7.81±0.02Ba | 7.86±0.09Ba | 7.97±0.18Ab | 8.04±0.14Aab | 8.20±0.06Aa | 7.03±0.06* | |
电导率 Conductivity/(μs ? cm?1) | 43.20±19.24Ab | 57.4±3.37Aa | 40.0±1.21Ab | 53.51±3.06Aa | 58.33±0.92Aa | 47.86±1.06Ab | 24.91±4.80* | |
土壤含水率 Soil water content (%) | 3.21±0.29A | 3.29±1.12A | 2.99±0.31A | 3.82±0.82A | 3.59±0.14A | 2.07±0.29A | 4.16±1.74 | |
黏粒含量 Clay content (%) | 0.02±0.02Ab | 0.17±0.02Aa | 0.17±0.11Aa | 0.10±0.01Ab | 0.22±0.08Aa | 0.17±0.05Aa | 0.00±0.00 | |
粉粒含量 Silt content (%) | 2.92±0.97Ab | 5.41±1.08Aa | 6.24±1.76Aa | 4.68±0.25Ab | 6.29±0.95Aa | 5.30±0.49Aa | 0.00±0.00* | |
砂粒含量 Sand content (%) | 97.06±0.99Aa | 94.46±1.10Ab | 93.59±1.87Ab | 95.22±0.24Aa | 93.4±1.03Ab | 94.54±0.51Aab | 100.00±0.00* | |
有机质 Soil organic carbon/(g ? kg?1) | 6.67±0.69Aa | 7.89±1.54Aa | 8.82±0.31Aa | 8.67±0.33Aa | 8.26±0.92Aa | 8.42±0.34Aa | 2.75±0.51* | |
全氮 Total nitrogen/ (g ? kg?1) | 0.76±0.03Aa | 0.86±0.21Aa | 0.48±0.05Bb | 0.54±0.04Bb | 0.72±0.02Aa | 0.39±0.06Bc | 0.12±0.05* | |
全磷 Total phosphorus/(g ? kg?1) | 0.28±0.02Bc | 0.30±0.02Ab | 0.40±0.02Ba | 0.39±0.01Ab | 0.36±0.01Ab | 0.46±0.10Aa | 0.33±0.01 | |
无机氮Available nitrogen/ (mg ? kg?1) | 5.20±0.44Ab | 7.00±1.77Aab | 8.00±1.10Aa | 5.11±1.49Aa | 8.40±2.17Aa | 6.25±0.50Aa | 4.29±1.52 | |
有效磷Available phosphorus/ (mg?kg?1) | 4.16±0.16Ba | 3.65±0.37Ba | 3.97±0.06Ba | 5.92±0.53Aa | 5.51±0.37Aa | 3.05±0.88Ab | 8.54±1.73* |
表3
不同接菌和种植密度处理下沙棘根系菌根侵染情况①"
处理 Treatment | 根系菌根侵染率 Mycorrhizal colonization frequency (%) | 根系菌根侵染密度 Mycorrhizal colonization intensity (%) | 根系丛枝丰富度 Arbuscule Abundance (%) | |
对照区Control area | 低Low | 86±5.13Bb | 17.67±1.10Bb | 0.01±0.01Bb |
中Intermediate | 98±2.89Aa | 27.04±1.63Ba | 0.00±0.00Bb | |
高High | 100±0.00Aa | 27.18±0.48Ba | 0.12±0.03Ba | |
接菌区Inoculated area | 低Low | 100±0.00Aa | 22.56±0.89Ac | 0.32±0.04Ac |
中Intermediate | 100±0.00Aa | 33.92±1.88Ab | 0.63±0.03Ab | |
高High | 100±0.00Aa | 43.97±1.51Aa | 4.34±1.14Aa |
表4
不同处理植被与土壤改良效应综合得分及排名"
处理 Treatment | 第1 主成分 PC1 | 第2 主成分 PC2 | 第3 主成分 PC3 | 第4 主成分 PC4 | 第5 主成分 PC5 | 综合得分 Comprehensive score | 排名 Rank | |
对照区 Control area | 低 Low | ?1.747 | 2.204 | ?0.539 | ?0.388 | ?0.969 | ?0.766 | 6 |
中等 Intermediate | 2.490 | 1.731 | 0.152 | ?0.713 | ?0.094 | 1.708 | 2 | |
高 High | 0.280 | ?2.064 | ?0.967 | ?0.569 | 0.906 | ?0.292 | 5 | |
接菌区 Inoculated area | 低 Low | 0.966 | ?1.687 | 1.634 | 0.871 | ?0.847 | 0.440 | 4 |
中等 Intermediate | 3.230 | 1.114 | 0.789 | 0.732 | 1.206 | 2.284 | 1 | |
高 High | 2.095 | ?1.112 | ?1.461 | 0.183 | ?0.672 | 0.838 | 3 | |
自然恢复区 Natural recovery area | ?7.454 | ?0.173 | 0.392 | ?0.116 | 0.471 | ?4.292 | 7 |
鲍士旦. 2000. 土壤农化分析.3版. 北京: 中国农业出版社. | |
Bao S D. 2000. Soil and agricultural chemistry analysis.3rd ed. Beijing: Chinese Agriculture Press.[in Chinese] | |
毕银丽. 丛枝菌根真菌在煤矿区沉陷地生态修复应用研究进展. 菌物学报, 2017, 36 (7): 800- 806. | |
Bi Y L. Research advance of application of arbuscular mycorrhizal fungi to ecological remediation in subsided land of coal mining areas. Mycosystema, 2017, 36 (7): 800- 806. | |
毕银丽, 郭 晨, 王 坤. 煤矿区复垦土壤的生物改良研究进展. 煤炭科学技术, 2020, 48 (4): 52- 59. | |
Bi Y L, Guo C, Wang K. Research progress of biological improvement of reclaimed soil in coal mining area. Coal Science and Technology, 2020, 48 (4): 52- 59. | |
毕银丽, 申慧慧. 西部采煤沉陷地微生物复垦植被种群自我演变规律. 煤炭学报, 2019, 44 (1): 307- 315. | |
Bi Y L, Shen H H. Effect of micro–reclamation on different planted forest on the vegetation self-succession in the western mining subsidence area. Journal of China Coal Society, 2019, 44 (1): 307- 315. | |
毕银丽, 薛子可. 丛枝菌根真菌提高植物高温胁迫抗逆性及在矿区生态修复应用展望. 中国科学基金, 2021, 35 (6): 933- 939. | |
Bi Y L, Xue Z K. Effects of arbuscular mycorrhizal fungi on resistance of plants to high temperature stress and application prospect of ecological restoration in mine area. Bulletin of National Natural Science Foundation of China, 2021, 35 (6): 933- 939. | |
丁继伟, 张芸香, 郭跃东, 等. 2018. 华北落叶松天然林密度对林下植被物种组成和多样性的影响研究. 西北林学院学报, 33(4): 10–16. | |
Ding J W, Zhang Y X, Guo Y D, et al. 2018. Influences of the density on understory species composition and diversity of Larix principis-rupprechtii natural forest. Journal of Northwest Forestry University, 33(4): 10–16.[in Chinese] | |
丁 凯, 张毓婷, 张俊红, 等. 不同密度杉木林对林下植被和土壤微生物群落结构的影响. 植物生态学报, 2021, 45 (1): 62- 73.
doi: 10.17521/cjpe.2020.0158 |
|
Ding K, Zhang Y T, Zhang J H, et al. Effects of Chinese fir plantations with different densities on understory vegetation and soil microbial community structure. Chinese Journal of Plant Ecology, 2021, 45 (1): 62- 73.
doi: 10.17521/cjpe.2020.0158 |
|
董 哲, 魏天兴, 石 鑫, 等. 两种不同生长状况沙棘根系分泌物差异分析. 四川农业大学学报, 2012, 30 (2): 195- 200. | |
Dong Z, Wei T X, Shi X, et al. Main compounds variations of root exudates in Hippophae rhamnoides with different growth states . Journal of Sichuan Agricultural University, 2012, 30 (2): 195- 200. | |
范军波, 夏静芳, 袁成平. 毛乌素沙地人工种植沙棘及管理经验浅谈. 国际沙棘研究与开发, 2008, 6 (3): 28- 30. | |
Fan J B, Xia J F, Yuan C P. Study and experiences on seabuckthorn plantation and management in mu us sandy land. The Global Seabuckthorn Research and Development, 2008, 6 (3): 28- 30. | |
谷振军, 刘 倩, 曾纪孟, 等. 马尾松人工林密度控制对林下植被多样性的影响. 森林与环境学报, 2021, 41 (5): 504- 509. | |
Gu Z J, Liu Q, Zeng J M, et al. Effects of density management on understory plant diversity in plantation forests of Pinus massoniana . Journal of Forest and Environment, 2021, 41 (5): 504- 509. | |
郭连金. 2005. 黄土丘陵区沙棘和小叶杨人工林群落稳定性研究. 杨凌: 西北农林科技大学. | |
Guo L J. 2005. Study on the community stability of Hippophae rhamnoide and Populus simonii plantations in hilly-gully region of loess plateau. Yangling: Northwest A & F University.[in Chinese] | |
江飞焰. 2019. AM 真菌生物量及其对植物磷营养贡献的田间原位研究方法的建立. 北京: 中国农业大学. | |
Jiang F Y. 2019. A method to evaluate arbuscular mycorrhizal fungal biomass and their contribution to maize phosphorus nutrition in situ in the field. Beijing: china agriculatral university.[in Chinese] | |
金 锁, 毕浩杰, 刘 佳, 等. 林分密度对云顶山柏木人工林群落结构和物种多样性的影响. 北京林业大学学报, 2020, 42 (1): 10- 17. | |
Jin S, Bi H J, Liu J, et al. Effects of stand density on community structure and species diversity of Cupressus funebris plantation in Yunding Mountain, southwestern China . Journal of Beijing Forestry University, 2020, 42 (1): 10- 17. | |
李婷婷, 唐永彬, 周润惠, 等. 云顶山不同人工林林下植物多样性及其与土壤理化性质的关系. 生态学报, 2021, 41 (3): 1168- 1177. | |
Li T T, Tang Y B, Zhou R H, et al. Understory plant diversity and its relationship with soil physicochemical properties in different plantations in Yunding Mountain. Acta Ecologica Sinica, 2021, 41 (3): 1168- 1177. | |
马克平, 黄建辉, 于顺利, 等. 北京东灵山地区植物群落多样性的研究Ⅱ丰富度、均匀度和物种多样性指数. 生态学报, 1995, 15 (3): 268- 277.
doi: 10.3321/j.issn:1000-0933.1995.03.006 |
|
Ma K P, Huang J H, Yu S L, Chen L Z. Plant community diversity in Dongling mountain, Beijing, China Ⅱ. Species richness, evenness and species diversities. Acta Ecologica Sinica, 1995, 15 (3): 268- 277.
doi: 10.3321/j.issn:1000-0933.1995.03.006 |
|
舒韦维, 卢立华, 李 华, 等. 林分密度对杉木人工林林下植被和土壤性质的影响. 生态学报, 2021, 41 (11): 4521- 4530. | |
Shu W W, Lu L H, Li H, et al. Effects of stand density on understory vegetation and soil properties of Cunninghamia lanceolata plantation . Acta Ecological Sinica, 2021, 41 (11): 4521- 4530. | |
孙迎涛, 岳艳鹏, 成 龙, 等. 毛乌素沙地油蒿(Artemisia ordosica)生长及生物量分配对沙漠化的响应 . 中国沙漠, 2022, 42 (1): 123- 133. | |
Sun Y T, Yue Y P, Cheng L, et al. Responses of growth and biomass allocation of Artemisia ordosica to desertification in Mu Us Sandyland . Journal of Desert Research, 2022, 42 (1): 123- 133. | |
田祥珅, 郑重谊, 刘勇军, 等. 稻作烟区土壤电导率和阳离子交换量的垂直分布特征与养分有效性的关系. 西南农业学报, 2021, 34 (12): 2700- 2706. | |
Tian X S, Zeng Z Y, Liu Y J, et al. Vertical distribution of electrical conductivity and cation exchange capacity in soil and their relationship with nutrient availability in rice-growing tobacco areas. Southwest China Journal of Agricultural Sciences, 2021, 34 (12): 2700- 2706. | |
王 瑾, 毕银丽, 邓穆彪, 等. 丛枝菌根对采煤沉陷区紫穗槐生长及土壤改良的影响. 科技导报, 2014, 32 (11): 26- 32. | |
Wang J, Bi Y L, Deng M B, et al. Effects of arbuscular mycorrhiza on growth of Amorpha fruticosa L. and soil improvement in coal mining subsidence area . Science & Technology Review, 2014, 32 (11): 26- 32. | |
魏 静, 杨 珂, 董起广. 不同检测方法对判断土壤机械组成的影响. 西部大开发(土地开发工程研究), 2020, 5 (2): 68- 72. | |
Wei J, Yang K, Dong Q G. The influence of different detection methods on the determination of soil mechanical composition. Land Development and Engineering Research, 2020, 5 (2): 68- 72. | |
吴金水, 林启美, 黄巧云, 等. 2006. 土壤微生物生物量测定方法及其应用. 北京: 气象出版社. | |
Wu J S, Lin Q M, Huang Q Y, et al. 2006. Determination methods and its applications of soil microbial biomass. Beijing: China Meteorological Press.[in Chinese] | |
悦飞雪, 李继伟, 王艳芳, 等. 生物炭和AM真菌提高矿区土壤养分有效性的机理. 植物营养与肥料学报, 2019, 25 (8): 1325- 1334.
doi: 10.11674/zwyf.18511 |
|
Yue F X, Li J W, Wang Y F, et al. Mechanism of the improvement effect by biochar and AM fungi on the availability of soil nutrients in coal mining area. Journal of Plant Nutrition and Fertilizers, 2019, 25 (8): 1325- 1334.
doi: 10.11674/zwyf.18511 |
|
张爱梅, 殷一然, 孙 坤. 沙棘属植物弗兰克氏菌研究进展. 微生物学通报, 2020, 47 (11): 3933- 3944. | |
Zhang A M, Yin Y R, Sun K. Research progress in Frankia spp. associated with Hippophae L . Microbiology China, 2020, 47 (11): 3933- 3944. | |
张柳桦, 齐锦秋, 李婷婷, 等. 林分密度对新津文峰山马尾松人工林林下物种多样性和生物量的影响. 生态学报, 2019, 39 (15): 5709- 5717. | |
Zhang L H, Qi J Q, Li T T, et al. Effects of stand density on understory plant diversity and biomass in a Pinus massoniana plantation in Wenfeng Mountain, Xinjin County . Acta Ecologica Sinica, 2019, 39 (15): 5709- 5717. | |
张 筱, 陈义堂, 杨秋菊, 等. 不同地形100年生杉木人工林土壤理化性质及林下植被多样性差异分析. 西南林业大学学报(自然科学), 2021, 41 (6): 60- 70. | |
Zhang X, Chen Y T, Yang Q J, et al. Differences of soil physicochemical properties and undergrowth vegetation diversity of 100-year-old Chinese fir plantations in different terrain. Journal of Southwest Forestry University (Natural Sciences), 2021, 41 (6): 60- 70. | |
张勇强, 李智超, 厚凌宇, 等. 林分密度对杉木人工林下物种多样性和土壤养分的影响. 土壤学报, 2020, 57 (1): 239- 250. | |
Zhang Y Q, Li Z C, Hou L Y, et al. Effects of stand density on understory species diversity and soil nutrients in Chinese fir plantation. Acta Pedologica Sinica, 2020, 57 (1): 239- 250. | |
Ares A, Neill A R, Puettmann K J. Understory abundance, species diversity and functional attribute response to thinning in coniferous stands. Forest Ecology and Management, 2010, 260 (7): 1104- 1113.
doi: 10.1016/j.foreco.2010.06.023 |
|
Brundrett M, Bougher N, Dell B, et al. 1996. Working with mycorrhizas in forestry and agriculture. Canberra, Australia: Australian Centre for International Agricultural Research (ACIAR). | |
Carr C A, Krueger W C. Understory vegetation and ponderosa pine abundance in eastern Oregon. Rangeland Ecology & Management, 2011, 64 (5): 533- 542. | |
Fredericksen T S, Agramont A R E. Regeneration patterns of Eastern white pine (Pinus strobus L.) in hardwood-dominated forests in Virginia, USA . New Forests, 2013, 44 (1): 51- 61.
doi: 10.1007/s11056-011-9300-x |
|
Jenkinson D S, Brookes P C, Powlson D S. Measuring soil microbial biomass. Soil Biology and Biochemistry, 2004, 36 (1): 5- 7.
doi: 10.1016/j.soilbio.2003.10.002 |
|
Kiers E T, Duhamel M, Beesetty Y, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 2011, 333 (6044): 880- 882.
doi: 10.1126/science.1208473 |
|
Smith S E, Dickson S. Quantification of active vesicular-arbuscular mycorrhizal infection using image analysis and other techniques. Functional Plant Biology, 1991, 18 (6): 637.
doi: 10.1071/PP9910637 |
|
Smith S E, Read D J. 1983. Mycorrhizal symbiosis. London: Academic Press. | |
Zhang L, Xu M G, Liu Y, et al. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytologist, 2016, 210 (3): 1022- 1032.
doi: 10.1111/nph.13838 |
[1] | 程鑫,吴纯泽,韦庆钰,李伟,卫星. 水曲柳丛枝菌根真菌接菌苗对干旱胁迫的生长和生理响应[J]. 林业科学, 2023, 59(2): 58-66. |
[2] | 谭明涛,姜礅,武帅,张杰,刘磊,赵佳齐,孟昭军,严善春. 美国白蛾对摩西球囊霉定殖银中杨的适应和生理响应[J]. 林业科学, 2022, 58(6): 88-94. |
[3] | 郝龙飞,刘婷岩,何永琴,张盛晰,赵媛. 菌根真菌调控灌木铁线莲根际土壤生态化学计量特征对氮沉降的应激响应[J]. 林业科学, 2022, 58(6): 151-160. |
[4] | 韩丽娜,谢贤安,陈辉,唐明. 巨桉金属耐受蛋白EgMTP6的分子特征及功能[J]. 林业科学, 2022, 58(5): 93-101. |
[5] | 宋娟,吴祝华,翁行良,赵邢,杨学祥,唐荣林,曹兵,巫昱,沈厚宇,任嘉红,陈凤毛. 枫香根际丛枝菌根真菌多样性[J]. 林业科学, 2021, 57(9): 98-109. |
[6] | 吴林川, 王冬梅, 任远, 张丹丹, 黄端. 漓江水陆交错带4种草本覆盖对地表径流氮素的消减作用[J]. 林业科学, 2018, 54(5): 168-176. |
[7] | 赵丽丽, 钟哲科, 史作民, 杨慧敏, 邵琼. 汶川地震对四川理县典型受灾区岷江柏人工林土壤理化性质的影响[J]. 林业科学, 2016, 52(3): 1-9. |
[8] | 宋福强, 孔祥仕, 李季泽, 常伟. 基于抑制消减杂交技术筛选AM真菌与紫穗槐共生相关基因[J]. 林业科学, 2014, 50(11): 64-74. |
[9] | 宰学明, 郝振萍, 赵辉, 钦佩. 丛枝菌根化滨梅苗的根际微生态环境[J]. 林业科学, 2014, 50(1): 41-48. |
[10] | 刘振坤, 田帅, 唐明. 不同树龄刺槐林丛枝菌根真菌的空间分布及与根际土壤因子的关系[J]. 林业科学, 2013, 49(8): 89-95. |
[11] | 李登武;薛玲;张万红. 黄土丘陵沟壑区丛枝菌根真菌多样性及其分布[J]. 林业科学, 2011, 47(7): 116-122. |
[12] | 崔心红 朱义 张群 范林洁 罗国雄 黄一青. 棉花秸秆隔离层对滨海滩涂土壤及绿化植物的影响[J]. 林业科学, 2009, 12(1): 31-35. |
[13] | 尹刚强. 田大伦 方晰 洪瑜.. 不同土地利用方式对湘中丘陵区土壤质量的影响*[J]. 林业科学, 2008, 44(8): 9-15. |
[14] | 唐明 陈辉 高延锋. 5种林木的11个丛枝菌根菌株分子遗传初步研究[J]. 林业科学, 2006, 42(1): 126-128. |
[15] | 唐明,陈辉,商鸿生. 丛枝菌根真菌(AMF)对沙棘抗旱性的影响[J]. 林业科学, 1999, 35(3): 48-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||