|
高 慧, 牛 敏, 张利萍, 等. 马尾松应压区与对应区制浆性能的比较. 东北林业大学学报, 2010, 38 (2): 42- 44.
doi: 10.3969/j.issn.1000-5382.2010.02.015
|
|
Gao H, Niu M, Zhang L P, et al. Difference in pulping properties between compression zone and opposite zone in masson pine. Journal of Northeast Forestry University, 2010, 38 (2): 42- 44.
doi: 10.3969/j.issn.1000-5382.2010.02.015
|
|
高玉磊. 2019. 高温热处理杉木的吸湿吸水性变化规律及其机理研究. 北京: 中国林业科学研究院.
|
|
Gao Y L. 2019. Study on the changes and its mechanism of moisture adsorption and absorption properties of high temperature heat treated Chinese fir wood. Beijing: Chinese Academy of Forestry. [in Chinese]
|
|
李本贵, 彭万喜, 乔建政, 等. 循环解吸-吸湿处理对尾巨桉胀缩性的影响. 木材工业, 2007, 21 (5): 16- 17, 20.
|
|
Li B G, Peng W X, Qiao J Z, et al. Effect of alternate adsorption-desorption treatments on shrinkage and bulking properties of Eucalyptus urophylla×grandis. China Wood Industry, 2007, 21 (5): 16- 17, 20.
|
|
李 珠, 殷方宇, 蒋佳荔, 等. 杉木应压木和对应木的水分吸附特性比较研究. 木材科学与技术, 2022, 36 (5): 37- 42.
|
|
Li Z, Yin F Y, Jiang J L, et al. Comparative studies on water vapor sorption characteristics between compression wood and opposite wood of Chinese fir. Chinese Journal of Wood Science and Technology, 2022, 36 (5): 37- 42.
|
|
马尔妮. 木材的水分吸着和干缩湿胀——从静态到动态的研究. 湖北农业科学, 2013, 52 (21): 5121- 5125.
doi: 10.3969/j.issn.0439-8114.2013.21.001
|
|
Ma E N. Studies on moisture sorption and hygroexpansion of wood from static condition to dynamic condition. Hubei Agricultural Sciences, 2013, 52 (21): 5121- 5125.
doi: 10.3969/j.issn.0439-8114.2013.21.001
|
|
马尔妮, 赵广杰. 木材的干缩湿胀——从平衡态到非平衡态. 北京林业大学学报, 2006, 28 (5): 133- 138.
doi: 10.3321/j.issn:1000-1522.2006.05.024
|
|
Ma E N, Zhao G J. Hygroexpansion of wood: from equilibrious state to non-equilibrious state. Journal of Beijing Forestry University, 2006, 28 (5): 133- 138.
doi: 10.3321/j.issn:1000-1522.2006.05.024
|
|
欧阳白, 李 珠, 蒋佳荔. 楸木早/晚材水分吸着与湿胀行为. 林业科学, 2021, 57 (5): 176- 183.
doi: 10.11707/j.1001-7488.20210517
|
|
Ouyang B, Li Z, Jiang J L. Hygroscopicity and swelling behavior of Catalpa bungei earlywood and latewood. Scientia Silvae Sinicae, 2021, 57 (5): 176- 183.
doi: 10.11707/j.1001-7488.20210517
|
|
杨利梅, 刘杏娥, 江泽慧, 等. 单叶省藤材水分吸附特性. 林业科学, 2021, 57 (7): 150- 157.
|
|
Yang L M, Liu X E, Jiang Z H, et al. Water adsorption characteristics of Calamus simplicifolius cane. Scientia Silvae Sinicae, 2021, 57 (7): 150- 157.
|
|
Broda M, Spear M J, Curling S F, et al. Effects of biological and chemical degradation on the properties of Scots pine: Part II: wood-moisture relations and viscoelastic behaviour. Forests, 2022, 13 (9): 1390.
doi: 10.3390/f13091390
|
|
Chomcharn A, Skaar C. Dynamic sorption and hygroexpansion of wood wafers exposed to sinusoidally varying humidity. Wood Science and Technology, 1983, 17 (4): 259- 277.
doi: 10.1007/BF00349914
|
|
Engelund E T, Thygesen L G, Svensson S, et al. A critical discussion of the physics of wood-water interactions. Wood Science and Technology, 2013, 47 (1): 141- 161.
doi: 10.1007/s00226-012-0514-7
|
|
García Esteban L, Gril J, de Palacios de Palacios P, et al. Reduction of wood hygroscopicity and associated dimensional response by repeated humidity cycles. Annals of Forest Science, 2005, 62 (3): 275- 284.
doi: 10.1051/forest:2005020
|
|
Hill C A S, Ramsay J, Keating B, et al. The water vapour sorption properties of thermally modified and densified wood. Journal of Materials Science, 2012, 47 (7): 3191- 3197.
doi: 10.1007/s10853-011-6154-8
|
|
Hill C A S, Ramsay J, Laine K, et al. Water vapour sorption behaviour of thermally modified wood. International Wood Products Journal, 2013, 4 (3): 191- 196.
doi: 10.1179/2042645313Y.0000000040
|
|
Hou S Y, Wang J Y, Yin F Y, et al. Moisture sorption isotherms and hysteresis of cellulose, hemicelluloses and lignin isolated from birch wood and their effects on wood hygroscopicity. Wood Science and Technology, 2022, 56 (4): 1087- 1102.
doi: 10.1007/s00226-022-01393-y
|
|
Källbom S, Rautkari L, Wålinder M, et al. Water vapour sorption characteristics and surface chemical composition of thermally modified spruce (Picea abies Karst). International Wood Products Journal, 2016, 7 (3): 116- 123.
doi: 10.1080/20426445.2016.1160590
|
|
Ma E N, Nakao T, Zhao G J, et al. Dynamic sorption and hygroexpansion of wood subjected to cyclic relative humidity changes. Wood and Fiber Science, 2010, 42 (2): 229- 236.
|
|
Popescu C M, Hill C A S. The water vapour adsorption-desorption behaviour of naturally aged Tilia cordata Mill. wood. Polymer Degradation and Stability, 2013, 98 (9): 1804- 1813.
doi: 10.1016/j.polymdegradstab.2013.05.021
|
|
Spalt H A. The fundamentals of water vapor sorption by wood. Forest Product Journal, 1958, 8 (10): 288- 295.
|
|
Time B. Studies on hygroscopic moisture transport in Norway spruce (Picea abies) Part 1: Sorption measurements of spruce exposed to cyclic step changes in relative humidity. Holz Als Roh- Und Werkstoff, 2002a, 60 (4): 271- 276.
doi: 10.1007/s00107-002-0303-3
|
|
Time B. Studies on hygroscopic moisture transport in Norway spruce (Picea abies) Part 2: Modelling of transient moisture transport and hysteresis in wood. Holz Als Roh- Und Werkstoff, 2002b, 60 (6): 405- 410.
doi: 10.1007/s00107-002-0334-9
|
|
Yang T T, Ma E N, Cao J Z. Effects of lignin in wood on moisture sorption and hygroexpansion tested under dynamic conditions. Holzforschung, 2018, 72 (11): 943- 950.
doi: 10.1515/hf-2017-0198
|
|
Yin F Y, Du Y M, Li Z, et al. Water vapor sorption characteristics and hysteresis of earlywood and latewood within the same growth ring of Catalpa bungei. Wood Science and Technology, 2023, 57 (2): 507- 521.
doi: 10.1007/s00226-023-01457-7
|
|
Yuan J, Chen Q, Fei B H. Investigation of the water vapor sorption behavior of bamboo fibers with different sizes. European Journal of Wood and Wood Products, 2021, 79 (5): 1131- 1139.
doi: 10.1007/s00107-020-01652-4
|
|
Zauer M, Pfriem A, Wagenführ A. Toward improved understanding of the cell-wall density and porosity of wood determined by gas pycnometry. Wood Science and Technology, 2013, 47 (6): 1197- 1211.
doi: 10.1007/s00226-013-0568-1
|
|
Zhang X X, Li J, Yu Y, et al. Investigating the water vapor sorption behavior of bamboo with two sorption models. Journal of Materials Science, 2018, 53 (11): 8241- 8249.
doi: 10.1007/s10853-018-2166-y
|