林业科学 ›› 2023, Vol. 59 ›› Issue (7): 106-114.doi: 10.11707/j.1001-7488.LYKX20210732
屈彦成1,2,江怡航1,姜彦妍1,张建国1,罗安利3,张雄清1,2,*
收稿日期:
2021-09-27
出版日期:
2023-07-25
发布日期:
2023-09-08
通讯作者:
张雄清
基金资助:
Yancheng Qu1,2,Yihang Jiang1,Yanyan Jiang1,Jianguo Zhang1,Anli Luo3,Xiongqing Zhang1,2,*
Received:
2021-09-27
Online:
2023-07-25
Published:
2023-09-08
Contact:
Xiongqing Zhang
摘要:
目的: 基于多个变量分别构建杉木单木叶生物量预测模型,并选择出预测效果最佳的模型,为杉木叶生物量的精准预测提供参考。方法: 以21块不同林龄样地共63株解析木为例,分别基于胸高处边材面积、胸径和冠基部直径3个变量,考虑其他与叶生物量相关的单木和林分因子,以样地为随机效应因子构建非线性混合模型,采用指数函数、幂函数和常数加幂函数消除数据间的异方差性。根据模型评价指标赤池信息准则(AIC)、贝叶斯信息准则(BIC)和对数似然值(Log Likelihood)选择最佳模型,并对不同参数的混合模型进行似然比检验。采用留一交叉验证法,计算模型决定系数(R2)、总相对误差(TRE)和平均绝对误差(MAE),对模型预测效果进行检验。结果: 基于3个变量以幂函数为异方差结构构建的混合模型效果最好,混合模型均优于基础模型,且基于冠基部直径构建的模型预测效果最佳。结论: 以基于冠基部直径构建的非线性混合效应模型(模型16)作为预测杉木单木叶生物量的最佳模型,符合管道模型理论。各变量均具有一定生物学和统计学意义,野外调查较易获取(非破坏性)。模型具有一定实用性,且预测精度较高(R2 = 0.805 1)。本研究结果可为其他树种构建单木叶生物量模型提供参考。
中图分类号:
屈彦成,江怡航,姜彦妍,张建国,罗安利,张雄清. 基于胸高处边材面积、胸径和冠基部直径的杉木单木叶生物量预测模型[J]. 林业科学, 2023, 59(7): 106-114.
Yancheng Qu,Yihang Jiang,Yanyan Jiang,Jianguo Zhang,Anli Luo,Xiongqing Zhang. Tree Leaf Biomass Models of Chinese fir Plantations Based on Sapwood Area and Diameter at Breast Height and Diameter at Crown Base[J]. Scientia Silvae Sinicae, 2023, 59(7): 106-114.
表1
杉木人工林调查因子统计量"
因子类型 Attribute type | 因子 Attribute | 样本数 Number | 最小值 Min. | 最大值 Max. | 平均值 Mean | 标准差 Std. | 变异系数 CV(%) |
单木因子 Tree attributes | 叶生物量 Leaf biomass (LB) / kg | 63 | 0.41 | 21.15 | 6.99 | 5.57 | 79.73 |
树高 Tree height(H) / m | 63 | 3.40 | 20.70 | 12.63 | 4.96 | 39.25 | |
胸径 Diameter at breast height(DBH) / cm | 63 | 3.70 | 26.20 | 14.73 | 6.39 | 43.37 | |
冠基部直径 Diameter at crown base(DCB) / cm | 63 | 4.70 | 21.80 | 11.66 | 4.65 | 39.84 | |
胸高处边材面积 Sapwood area at breast height(SABH)/ cm2 | 63 | 37.13 | 332.42 | 118.75 | 68.38 | 57.58 | |
冠幅 Crown width(CW) / m | 63 | 1.17 | 4.40 | 2.94 | 0.85 | 28.86 | |
冠长 Crown length(CL) / m | 63 | 2.80 | 13.80 | 7.17 | 2.66 | 37.10 | |
冠长率 Crown ratio(CR) | 63 | 0.32 | 0.93 | 0.61 | 0.16 | 25.84 | |
林分因子 Stand attributes | 林龄 Stand age(A) / a | 21 | 3 | 49 | 20.71 | 15.05 | 72.63 |
林分密度 Stand density(N) /(trees·hm?2) | 21 | 533 | 3 550 | 1 731.81 | 1 113.99 | 64.33 | |
每公顷断面积 Basal area per hectare(BA) /(m2·hm?2) | 21 | 4.27 | 35.16 | 22.60 | 8.74 | 38.67 | |
优势木平均高 Dominant tree mean height(Hd) / m | 21 | 5.15 | 20.85 | 15.11 | 5.30 | 35.05 |
表2
基于各变量考虑不同随机效应参数的模型拟合结果比较"
变量 Variable | 模型 Model | 随机参数 Random parameter | 参数个数 Number of parameters | AIC | BIC | Loglik | LRT | P |
胸高处边材面积 Sapwood area at breast height(SABH) | 11.1 | b1 | 6 | 319.028 2 | 331.887 0 | ?153.514 1 | ||
11.2 | b2, b3 | 8 | 310.105 7 | 327.250 8 | ?147.052 9 | 12.922 5 | 0.001 6 | |
11.3 | b1, b2, b3 | 11 | 316.110 2 | 339.684 7 | ?147.055 1 | 0.004 5 | 0.999 9 | |
胸径 Diameter at breast height(DBH) | 12.1 | b1 | 6 | 309.181 4 | 322.040 2 | ?148.590 7 | ||
12.2 | b1, b3 | 8 | 313.181 4 | 330.326 5 | ?148.590 7 | 0.000 0 | 1.000 0 | |
12.3 | b1, b2, b3 | 11 | 306.027 2 | 329.601 7 | ?142.013 6 | 13.154 2 | 0.022 0 | |
12.4 | b0, b1, b2, b3 | 15 | 314.027 2 | 346.174 2 | ?142.013 6 | 0.000 0 | 1.000 0 | |
冠基部直径 Diameter at crown base(DCB) | 13.1 | b0 | 7 | 295.749 3 | 310.751 2 | ?140.874 7 | ||
13.2 | b0, b1 | 9 | 299.749 3 | 319.037 5 | ?140.874 7 | 0.000 0 | 1.000 0 | |
13.3 | b2, b3, b4 | 12 | 296.098 9 | 321.816 6 | ?136.0495 | 9.650 4 | 0.085 8 | |
13.4 | b1, b2, b3, b4 | 16 | 297.0968 | 331.387 0 | ?132.5484 | 16.652 5 | 0.054 4 |
表3
基于各变量考虑异方差结构的模型拟合结果比较"
变量 Variable | 异方差结构 Heteroscedasticity structure | 参数个数 Number of parameters | AIC | BIC | Loglik | LRT | P |
胸高处边材面积 Sapwood area at breast height(SABH) | 无 None | 8 | 310.105 7 | 327.250 8 | ?147.052 9 | ||
指数函数 Exponential function | 9 | 不收敛 No convergence | |||||
幂函数 Power function | 9 | 271.213 7 | 290.5019 | ?126.606 8 | 40.892 1 | <0.000 1 | |
常数加幂函数 Constant plus power function | 10 | 273.213 7 | 294.6450 | ?126.606 8 | 0.000 0 | 0.999 6 | |
胸径 Diameter at breast height(DBH) | 无 None | 11 | 306.027 2 | 329.6017 | ?142.013 6 | ||
指数函数 Exponential function | 12 | 265.331 6 | 291.0492 | ?120.665 8 | |||
幂函数 Power function | 12 | 253.975 4 | 279.6930 | ?114.987 7 | 54.051 8 | <0.000 1 | |
常数加幂函数 Constant plus power function | 13 | 255.975 0 | 283.8357 | ?114.987 5 | 0.000 4 | 0.983 3 | |
冠基部直径 Diameter at crown base(DCB) | 无 None | 7 | 295.749 3 | 310.7512 | ?140.874 7 | ||
指数函数 Exponential function | 8 | 257.680 5 | 274.8256 | ?120.840 2 | |||
幂函数 Power function | 8 | 239.787 7 | 256.9328 | ?111.893 9 | 57.961 6 | <0.000 1 | |
常数加幂函数 Constant plus power function | 9 | 241.791 4 | 261.0796 | ?111.895 7 | 0.003 7 | 0.951 3 |
表4
各模型参数估计值和评价指标①"
项目 Item | 参数 Parameter | 胸高处边材面积 Sapwood area at breast height | 胸径 Diameter at breast height | 冠基部直径 Diameter at crown base | |||||
基础模型 Basic model | 混合模型 Mixed model | 基础模型 Basic model | 混合模型 Mixed model | 基础模型 Basic model | 混合模型 Mixed model | ||||
固定效应参数 Fixed effect parameter | β0 | 0.000 2 | 0.029 9 | 0.103 4 | 0.081 6* | 0.067 6 | 0.034 6* | ||
β1 | 0.386 9* | 0.219 1 | 1.825 2* | 1.678 6* | 1.983 6* | 1.652 2* | |||
β2 | 1.115 1* | 0.929 4* | 0.738 9* | 0.556 3 | 0.885 3* | 0.719 3* | |||
β3 | 2.606 8* | 1.184 9* | ?0.542 5* | ?0.262 9* | ?1.335 1* | ?0.695 9* | |||
β4 | ?0.700 7* | ?0.027 2 | |||||||
随机效应方差 Random effect variance | | 7.59×10?13* | |||||||
| 0.020 5 | ||||||||
| 0.040 8* | 0.005 6 | |||||||
| 1.46×10?11* | 0.027 9 | |||||||
| 0.010 7 | ||||||||
| ?0.023 9 | ||||||||
| 7.71×10?10* | ?0.012 5 | |||||||
误差方差 Error variance | σ2 | 7.833 3 | 0.088 6 | 6.679 2 | 0.072 5 | 5.195 9 | 0.076 0 | ||
异方差 Heteroscedasticity | λ | 1.061 5* | 1.069 7 | 1.042 0* | |||||
评价指标 Evaluation index | AIC | 318.164 9 | 271.213 7 | 307.465 9 | 253.975 4 | 293.749 3 | 239.787 7 | ||
BIC | 328.880 5 | 290.501 9 | 318.181 5 | 279.693 0 | 306.608 1 | 256.932 8 | |||
Loglik | ?154.082 4 | ?126.606 8 | ?148.732 9 | ?114.987 7 | ?140.874 6 | ?111.893 8 |
表5
基础模型和最优混合模型检验"
变量 Variable | 模型类型 Model type | 留一交叉验证 Leave-one-out cross-validation | ||
R2 | TRE(%) | MAE | ||
胸高处边材面积 Sapwood area at breast height(SABH) | 基础模型 Basic model | 0.645 4 | 0.14 | 2.472 6 |
混合模型 Mixed model | 0.650 0 | 0.17 | 2.367 3 | |
胸径 Diameter at breast height(DBH) | 基础模型 Basic model | 0.732 1 | 0.11 | 1.892 8 |
混合模型 Mixed model | 0.753 7 | 0.11 | 1.849 6 | |
冠基部直径 Diameter at crown base(DCB) | 基础模型 Basic model | 0.773 2 | 0.09 | 1.925 3 |
混合模型 Mixed model | 0.805 1 | 0.06 | 2.461 1 |
符利勇, 张会儒, 唐守正. 基于非线性混合模型的杉木优势木平均高. 林业科学, 2012, 48 (7): 66- 71.
doi: 10.11707/j.1001-7488.20120711 |
|
Fu L Y, Zhang H R, Tang S Z. Dominant height for Chinese fir plantation using nonlinear mixed effects model based on linearization algorithm. Scientia Silvae Sinicae, 2012, 48 (7): 66- 71.
doi: 10.11707/j.1001-7488.20120711 |
|
李凤日. 长白落叶松人工林树冠形状的模拟. 林业科学, 2004, 40 (5): 16- 24.
doi: 10.3321/j.issn:1001-7488.2004.05.003 |
|
Li F R. Modeling crown profile of Larix olgensis trees . Scientia Silvae Sinicae, 2004, 40 (5): 16- 24.
doi: 10.3321/j.issn:1001-7488.2004.05.003 |
|
刘 盛, 刘 成. 长白落叶松水分输导模式及叶生物量估测方法. 东北林业大学学报, 2005, 33 (5): 35- 37.
doi: 10.3969/j.issn.1000-5382.2005.05.013 |
|
Liu S, Liu C. The model of water transportation and the estimation methods of leaf biomass for Larix olgensis . Journal of Northeast Forestry University, 2005, 33 (5): 35- 37.
doi: 10.3969/j.issn.1000-5382.2005.05.013 |
|
刘 盛, 张友祥, 李 想, 等. 管道模型和树木年轮水分输导模式的理论及在落叶松生产力估测中的应用. 北京林业大学学报, 2021, 43 (3): 18- 26.
doi: 10.12171/j.1000-1522.20200117 |
|
Liu S, Zhang Y X, Li X, et al. Application of pipe model and the theory of water transportation pattern through tree rings in larch productivity estimation. Journal of Beijing Forestry University, 2021, 43 (3): 18- 26.
doi: 10.12171/j.1000-1522.20200117 |
|
张雄清, 雷渊才, 陈新美. 林分断面积组合预测模型权重确定的比较. 林业科学, 2011, 47 (7): 36- 41.
doi: 10.11707/j.1001-7488.20110706 |
|
Zhang X Q, Lei Y C, Chen X M. Comparison of weight computation in stand basal area combined model. Scientia Silvae Sinicae, 2011, 47 (7): 36- 41.
doi: 10.11707/j.1001-7488.20110706 |
|
Calama R, Montero G. Interregional nonlinear height diameter model with random coefficients for stone pine in Spain. Canadian Journal of Forest Research, 2004, 34 (1): 150- 163.
doi: 10.1139/x03-199 |
|
Chave J, Andalo C, Brown S, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 2005, 145 (1): 87- 99.
doi: 10.1007/s00442-005-0100-x |
|
Dobbs C, Hernández J, Escobedo F. Above ground biomass and leaf area models based on a nondestructive method for urban trees of two communes in Central Chile. Bosque (Valdivia), 2011, 32 (3): 287- 296.
doi: 10.4067/S0717-92002011000300010 |
|
Dong L H, Zhang L J, Li F R. Developing two additive biomass equations for three coniferous plantation species in northeast China. Forests, 2016, 7 (12): 136.
doi: 10.3390/f7070136 |
|
Fang Z X, Bailey R L. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments. Forest Science, 2001, 47 (3): 287- 300. | |
Feldpausch T R, Banin L, Phillips O L, et al. Height-diameter allometry of tropical forest trees. Biogeosciences, 2011, 8 (5): 1081- 1106.
doi: 10.5194/bg-8-1081-2011 |
|
Fu L Y, Sun W, Wang G X. A climate-sensitive aboveground biomass model for three larch species in northeastern and northern China. Trees, 2017, 31 (2): 557- 573.
doi: 10.1007/s00468-016-1490-6 |
|
Gilmore D W, Zenner E K. Foliage sapwood area relationships for balsam fir in north-central Minnesota. Northern Journal of Applied Forestry, 2005, 22 (3): 203- 210.
doi: 10.1093/njaf/22.3.203 |
|
Kaufmann M R, Troendle C A. The relationship of leaf area and foliage biomass to sapwood conducting area in four subalpine forest tree species. Forest Science, 1981, 27 (3): 477- 482. | |
Law B, Van Tuyl S, Cescatti A, et al. Estimation of leaf area index in open-canopy ponderosa pine forests at different successional stages and management regimes in Oregon. Agricultural and Forest Meteorology, 2001, 108 (1): 1- 14.
doi: 10.1016/S0168-1923(01)00226-X |
|
Lehnebach R, Beyer R, Letort V, et al. The pipe model theory half a century on: a review. Annals of Botany, 2018, 121 (5): 773- 795.
doi: 10.1093/aob/mcx194 |
|
Li H K, Zhao P. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale. Forest Ecology and Management, 2013, 289, 153- 163.
doi: 10.1016/j.foreco.2012.10.002 |
|
Mazzoleni S, Schirone B. 1990. Allometric estimations of woody and foliar biomass. Applications on Quercus cerris sprouts and mediterranean shrubs. Annali Botanica XVIII. | |
Meadows J S, Hodges J D. Sapwood area as an estimator of leaf area and foliar weight in cherrybark oak and green ash. Forest Science, 2002, 48 (1): 69- 76. | |
Nord-Larsen T, Meilby H, Skovsgaard J P. Site-specific height growth models for six common tree species in Denmark. Scandinavian Journal of Forest Research, 2009, 24 (3): 194- 204.
doi: 10.1080/02827580902795036 |
|
Nowak D J. Estimating leaf area and leaf biomass of open-grown deciduous urban trees. Forest Science, 1996, 42 (4): 504- 507. | |
Ogawa K, Adu-Bredu S, Yokota T, et al. Leaf biomass changes with stand development in hinoki cypress (Chamaecyparis obtusa[Sieb . et Zucc. ]Endl. ). Plant Ecology, 2010, 211 (1): 79- 88.
doi: 10.1007/s11258-010-9774-1 |
|
Pinheiro J C, Bates D M. 2000. Mixed-effects models in S and S-PLUS. Wilkinson: The Grammar of Graphics. | |
Sharma R P, Vacek Z, Vacek S. Individual tree crown width models for Norway spruce and European beech in Czech Republic. Forest Ecology and Management, 2016, 366, 208- 220.
doi: 10.1016/j.foreco.2016.01.040 |
|
Shinozaki K, Yoda K, Hozumi K, et al. A quantitative analysis of plant form-the pipe model theory: I. Basic analyses. Japanese Journal of Ecology, 1964a, 14 (3): 97- 105. | |
Shinozaki K, Yoda K, Hozumi K, et al. A quantitative analysis of plant form-the pipe model theory: II. Further evidence of the theory and its application in forest ecology. Japanese Journal of Ecology, 1964b, 14 (4): 133- 139. | |
Spyroglou G, Koleta D Z I, Radoglou K. Leaf area and foliar weight to sapwood cross sectional area models for Quercus fraientto in Greece . Silva, 2019, 20, 1. | |
Stancioiu P T, O'Hara K L. Sapwood area leaf area relationships for coast redwood. Canadian Journal of Forest Research, 2005, 35 (5): 1250- 1255.
doi: 10.1139/x05-039 |
|
Timilsina N, Staudhammer C L. Individual tree-based diameter growth model of slash pine in Florida using nonlinear mixed modeling. Forest Science, 2013, 59 (1): 27- 37.
doi: 10.5849/forsci.10-028 |
|
Trincado G, Burkhart H E. A generalized approach for modeling and localizing stem profile curves. Forest Science, 2006, 52 (6): 670- 682. | |
Turner D P, Acker S A, Means J E, et al. Assessing alternative allometric algorithms for estimating leaf area of Douglas-fir trees and stands. Forest Ecology and Management, 2000, 126 (1): 61- 76.
doi: 10.1016/S0378-1127(99)00083-3 |
|
Waring R H, Schroeder P E, Oren R. Application of the pipe model theory to predict canopy leaf area. Canadian Journal of Forest Research, 1982, 12 (3): 556- 560.
doi: 10.1139/x82-086 |
|
Whitehead D. The estimation of foliage area from sapwood basal area in Scots pine. Forestry:an International Journal of Forest Research, 1978, 51 (2): 137- 149.
doi: 10.1093/forestry/51.2.137 |
|
Yang Y, Huang S M. Comparison of different methods for fitting nonlinear mixed forest models and for making predictions. Canadian Journal of Forest Research, 2011, 41 (8): 1671- 1686.
doi: 10.1139/x11-071 |
|
Zhang X Q, Chhin S, Fu L Y, et al. Climate-sensitive tree height-diameter allometry for Chinese fir in southern China. Forestry:An International Journal of Forest Research, 2019, 92 (2): 167- 176.
doi: 10.1093/forestry/cpy043 |
|
Zhang X Q, Duan A G, Zhang J G. Tree biomass estimation of Chinese fir (Cunninghamia lanceolata) based on Bayesian method . PLoS One, 2013, 8 (11): e79868.
doi: 10.1371/journal.pone.0079868 |
|
Zhang X Q, Lei Y C, Liu X Z. Modeling stand mortality using Poisson mixture models with mixed-effects. IForest-Biogeosciences and Forestry, 2015, 8 (3): 333- 338.
doi: 10.3832/ifor1022-008 |
[1] | 赵文菲,曹小玉,谢政锠,庞一凡,孙亚萍,李际平,莫永俊,袁达. 基于结构方程模型的杉木公益林林分空间结构评价[J]. 林业科学, 2022, 58(8): 76-88. |
[2] | 何静,李新建,朱晋梅,朱光玉. 基于最粗优势木胸径生长的湖南栎类天然林立地质量评价模型[J]. 林业科学, 2022, 58(8): 89-98. |
[3] | 李舟阳,陆文玲,钱旺,黄奕孜,林二培,黄华宏,童再康. 杉木根边缘细胞生物学特性及其对铝胁迫的响应[J]. 林业科学, 2022, 58(7): 73-81. |
[4] | 陈嘉琪,赵光宇,李仰龙,董玉红,厚凌宇,焦如珍. 杉木人工林土壤磷素形态及含量的林龄变化[J]. 林业科学, 2022, 58(5): 10-17. |
[5] | 史月冬,郑宏,叶代全,施季森,边黎明. 杉木生长性状的空间与竞争效应及其对遗传参数估计的影响[J]. 林业科学, 2022, 58(5): 75-84. |
[6] | 王淑真,梁晶晶,包明琢,潘菲,周垂帆. 不同林龄杉木林土壤磷形态与解磷菌变化[J]. 林业科学, 2022, 58(2): 58-69. |
[7] | 于水今,王娟,何海燕,张春雨,赵秀海. 针阔混交林生物量稳定性驱动因子[J]. 林业科学, 2022, 58(11): 181-190. |
[8] | 鲁乐乐,王震,张雄清,张建国. 基于贝叶斯模型平均法和逐步回归法构建杉木单木胸径生长模型[J]. 林业科学, 2021, 57(9): 87-97. |
[9] | 陈敏,赖华燕,郑姗姗,李明,马祥庆,吴鹏飞. 磷胁迫下外源乙烯对杉木幼苗生长及磷素利用的影响[J]. 林业科学, 2021, 57(7): 43-50. |
[10] | 孙林豪,翁卫松,方陆明,任俊俊. 三段式立木胸径测量方法及装置设计与试验[J]. 林业科学, 2021, 57(5): 130-139. |
[11] | 贾茹,孙海燕,王玉荣,汪睿,赵荣军,任海青. 杉木无性系新品种‘洋020’和‘洋061’10年生幼龄材微观结构与力学性能的相关性[J]. 林业科学, 2021, 57(5): 165-175. |
[12] | 臧颢,刘洪生,黄锦程,张祖栋,欧阳勋志,宁金魁. 竞争和气候及其交互作用对杉木人工林胸径生长的影响[J]. 林业科学, 2021, 57(3): 39-50. |
[13] | 李锦隆,王满堂,李涵诗,陈晓萍,孙俊,钟全林,程栋梁. 冠层高度对江西69种阔叶树小枝单叶生物量与出叶强度关系的影响[J]. 林业科学, 2021, 57(2): 62-71. |
[14] | 刘恩斌,姚鸿文,任泽茜,周国模,杜华强. 基于Copula密度函数的毛竹胸径年龄结构特征二元联合分布[J]. 林业科学, 2021, 57(11): 94-104. |
[15] | 何潇,雷相东. 东北地区落叶松人工林生物量转换与扩展因子空间自回归模型[J]. 林业科学, 2021, 57(10): 49-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||