林业科学 ›› 2024, Vol. 60 ›› Issue (9): 50-58.doi: 10.11707/j.1001-7488.LYKX20230385
张时馨1,2(),耿阳阳1,2,周汀3,*,王纪辉1,2,胡伯凯1,2,刘亚娜1,2
收稿日期:
2023-08-24
出版日期:
2024-09-25
发布日期:
2024-10-08
通讯作者:
周汀
E-mail:1510208632@qq.com
基金资助:
Shixin Zhang1,2(),Yangyang Geng1,2,Ting Zhou3,*,Jihui Wang1,2,Bokai Hu1,2,Yana Liu1,2
Received:
2023-08-24
Online:
2024-09-25
Published:
2024-10-08
Contact:
Ting Zhou
E-mail:1510208632@qq.com
摘要:
目的: 探究接种橙黄乳菇对马尾松和华山松幼苗生长、根系发育及代谢物的影响,为橙黄乳菇与2种松树菌根化苗木培育及共生栽培提供参考。方法: 以马尾松和华山松幼苗为研究对象,基于大棚盆栽试验,测定分析接种和未接种橙黄乳菇的2种松树幼苗菌根侵染情况、地上和地下生长指标、根系构型性状(根长、表面积、根体积、根尖数、分叉数)、形态性状(比根长、组织密度、比表面积)及根系代谢物差异。结果: 橙黄乳菇与2种松树幼苗均形成明显的菌根形态,并有较高的菌根侵染率和菌根依赖性。接种橙黄乳菇对2种松树幼苗生长具有一定促进作用,但存在差异,接种后马尾松幼苗株高和地上部分干质量显著增加,华山松幼苗株高和地下部分干质量显著增加,2种松树幼苗总根长、根表面积、根体积、根尖数和分叉数均明显提高,根系活力和阳离子交换量降低。接种橙黄乳菇明显影响2种松树幼苗根系代谢物含量,接种后马尾松幼苗根系总酚和总黄酮质量分数降低,总三萜、总生物碱和总甾醇质量分数升高,华山松幼苗根系代谢物变化趋势与马尾松相反。结论: 接种橙黄乳菇可改善2种松树幼苗根系形态、提高生物量、影响根系主要代谢物含量,在松树菌根化苗木培育即外生菌根真菌共生栽培方面具有可行性。
中图分类号:
张时馨,耿阳阳,周汀,王纪辉,胡伯凯,刘亚娜. 橙黄乳菇对马尾松和华山松幼苗生长及根系代谢物的调控[J]. 林业科学, 2024, 60(9): 50-58.
Shixin Zhang,Yangyang Geng,Ting Zhou,Jihui Wang,Bokai Hu,Yana Liu. Regulation of Lactarius akahatsu on the Growth and Root Metabolites of Pinus massoniana and Pinus armandii Seedlings[J]. Scientia Silvae Sinicae, 2024, 60(9): 50-58.
表1
2种松树幼苗生长指标①"
处理 Treatment | 株高 Plant height/cm | 地径 Ground diameter/ cm | 地上部分Shoot | 地下部分Root | 总生物量 Total biomass/g | |||
鲜质量 Fresh weight/g | 干质量 Dry weight/g | 鲜质量 Fresh weight/g | 干质量 Dry weight/g | |||||
PM | 7.19±1.56b | 1.13±0.24a | 0.31±0.13b | 0.13±0.06b | 0.77±0.32a | 0.13±0.05a | 0.26±0.10a | |
PM×LA | 9.59±1.69a | 1.15±0.18a | 0.45±0.15a | 0.17±0.06a | 0.71±0.34a | 0.14±0.07a | 0.31±0.12a | |
PA | 10.50±2.03a | 2.07±0.23a | 1.36±0.36a | 0.52±0.16a | 2.31±0.95b | 0.47±0.17b | 0.99±0.17a | |
PA×LA | 11.01±1.90a | 2.09±0.23a | 1.44±0.94a | 0.59±0.14a | 2.86±0.78a | 0.63±0.15a | 1.15±0.15a |
图4
不同处理下2种松树幼苗的根系构型 a、b分别为未接种和接种橙黄乳菇的马尾松幼苗根系形态;c、d分别为未接种和接种橙黄乳菇的华山松幼苗根系形态。 a and b represents root morphology of Pinus massoniana seedlings with non-inoculated and inoculated Lactarius akahatsu. c and d represents root morphology of Pinus armandii seedlings with non-inoculated and inoculated Lactarius akahatsu."
表2
接种橙黄乳菇后2种松树幼苗根系参数①"
处理 Treatment | 总根长 Total root length/cm | 根表面积 Root surface area/cm2 | 平均直径 Average diameter/mm | 体积 Volume/mm3 | 根尖数 Tips | 分叉数 Bifurcation | 根部含水率 Root moisture content(%) |
PM | 18.91±2.01b | 24.10±4.89b | 0.44±0.05a | 0.29±0.02b | 909.44±15.91b | 907.00±276.58b | 83.01±2.52a |
PM×LA | 30.12±5.58a | 37.95±7.58a | 0.40±0.03a | 0.38±0.08a | 1 179.75±180.58a | 1 288.42±301.29a | 79.64±3.22a |
PA | 28.87±4.28b | 70.98±6.35b | 0.78±0.06a | 1.40±0.06b | 1 022.18±258.66b | 2 249.64±260.03b | 79.33±2.21a |
PA×LA | 38.17±8.72a | 87.44±5.72a | 0.73±0.08a | 1.61±0.28a | 1 274.75±380.28a | 2 874.00±139.29a | 77.75±3.04a |
表3
接种橙黄乳菇后2种松树幼苗根系形态性状指标①"
处理 Treatment | 比根长 Specific root length/ (cm·g?1) | 组织密度 Root tissue density/ (g·cm?3) | 比表面积 Specific root surface area/(cm2·g?1) | 根冠比 Root shoot ratio |
PM | 146.85±5.60b | 0.44±0.03a | 187.12±7.20b | 1.04±0.32a |
PM×LA | 213.20±10.21a | 0.37±0.10a | 268.61±12.34a | 0.82±0.21b |
PA | 61.42±3.81a | 0.34±0.06a | 151.02±4.95a | 0.91±0.23a |
PA×LA | 60.59±6.10a | 0.39±0.12a | 138.80±6.33b | 0.85±0.15a |
程 鑫, 吴纯泽, 韦庆钰, 等. 水曲柳丛枝菌根真菌接菌苗对干旱胁迫的生长和生理响应. 林业科学, 2023, 59 (2): 58- 66.
doi: 10.11707/j.1001-7488.LYKX20220348 |
|
Cheng X, Wu C Z, Wei Q Y, et al. Growth and physiological responses of Fraxinus mandshurica seedlings inoculated with arbuscular mycorrhizal fungi to drought stress. Scientia Silvae Sinicae, 2023, 59 (2): 58- 66.
doi: 10.11707/j.1001-7488.LYKX20220348 |
|
董 硕, 马 群, 阿拉木萨, 等. 菌根菌剂对科尔沁沙地3种常见造林绿化树种幼苗生长的影响. 生态学杂志, 2023, 42 (2): 291- 297. | |
Dong S, Ma Q, Almusa, et al. Effects of mycorrhizal inoculants on seedling growth of three common afforestation tree species in Horqin Sand Land. Chinese Journal of Ecology, 2023, 42 (2): 291- 297. | |
冯万艳, 赵燕珍, 谭健晖, 等. 马尾松与粘盖乳牛肝菌菌根共生体形成过程. 菌物学报, 2019, 38 (10): 1620- 1630. | |
Feng W Y, Zhao Y Z, Tan J H, et al. Establishment of Pinus massoniana-Suillus bovinus symbiosis. Mycosystema, 2019, 38 (10): 1620- 1630. | |
高晓磊, 张丽仔, 唐 窈, 等. 接种外生菌根真菌对不同种源栓皮栎幼苗生长和生理特征的影响. 中南林业科技大学学报, 2022, 42 (11): 63- 70. | |
Gao X L, Zhang L Z, Tang Y, et al. Effects of ectomycorrhizal fungi inoculation on the growth and physiological characteristics of Quercus variabilis from different provenances. Journal of Central South University of Forestry & Technology, 2022, 42 (11): 63- 70. | |
郝龙飞, 李星月, 武晓倩, 等. 施肥方式及接种菌根真菌对1年生油松苗木根系构型的影响. 西北林学院学报, 2021, 36 (3): 168- 174.
doi: 10.3969/j.issn.1001-7461.2021.03.25 |
|
Hao L F, Li X Y, Wu X Q, et al. Responses of the root system architecture of one-year-old Pinus tabuliformis seedlings to fertilization and ectomycorrhizal fungus inoculation. Journal of Northwest Forestry University, 2021, 36 (3): 168- 174.
doi: 10.3969/j.issn.1001-7461.2021.03.25 |
|
贾林巧, 陈光水, 张礼宏, 等. 常绿阔叶林外生和丛枝菌根树种细根形态和构型性状对氮添加的可塑性响应. 应用生态学报, 2021, 32 (2): 529- 537. | |
Jia L Q, Chen G S, Zhang L H, et al. Plastic responses of fine root morphology and architecture traits to nitrogen addition in ectomycorrhizal and arbuscular mycorrhizal tree species in an evergreen broadleaved forest. Chinese Journal of Applied Ecology, 2021, 32 (2): 529- 537. | |
姜清彬, 仲崇禄, 陈 羽, 等. 红菇菌根食用菌接种马尾松苗期的共生效应研究. 中南林业科技大学学报, 2016, 36 (8): 6- 9,38. | |
Jiang Q B, Zhong C L, Chen Y, et al. Study on inoculating Russula fungi with Pinus massoniana seedling. Journal of Central South University of Forestry & Technology, 2016, 36 (8): 6- 9,38. | |
李 敏, 赵熙州, 王好运, 等. 干旱胁迫及外生菌根菌对马尾松幼苗根系形态及分泌物的影响. 林业科学, 2022, 58 (7): 63- 72.
doi: 10.11707/j.1001-7488.20220707 |
|
Li M, Zhao X Z, Wang H Y, et al. Effects of drought stress and ectomycorrhizal fungi on the root morphology and exudates of Pinus massoniana seedlings. Scientia Silvae Sinicae, 2022, 58 (7): 63- 72.
doi: 10.11707/j.1001-7488.20220707 |
|
祁金玉, 邓继峰, 尹大川, 等. 外生菌根菌对油松幼苗抗氧化酶活性及根系构型的影响. 生态学报, 2019, 39 (8): 2826- 2832. | |
Qi J Y, Deng J F, Yin D C, et al. Effects of inoculation of exogenous mycorrhizal fungi on the antioxidant and root configuration enzyme activity of Pinus tabulaeformis seedlings. Acta Ecologica Sinica, 2019, 39 (8): 2826- 2832. | |
孙佳琦, 曹文琪, 冷平生, 等. 接种4种外生菌根真菌对槲树幼苗生长、光合及营养元素含量的影响. 中南林业科技大学学报, 2021, 41 (10): 67- 74,101. | |
Sun J Q, Cao W Q, Leng P S, et al. Effect of four ectomycorrhizal fungi inoculation on the growth, photosynthesis, and nutrient element content of Quercus dentata seedlings. Journal of Central South University of Forestry & Technology, 2021, 41 (10): 67- 74,101. | |
王 策, 谢宏鑫, 刘润进, 等. 丛枝菌根真菌调控根系构型与矿质元素平衡提高西瓜植株耐盐性的研究. 菌物学报, 2021, 40 (10): 2800- 2810. | |
Wang C, Xie H X, Liu R J, et al. Salt tolerance of watermelon plants through AM fungus adjusting root architecture and mineral element balance. Mycosystema, 2021, 40 (10): 2800- 2810. | |
王 迪, HALLIan Robert, 何晓兰, 等. 人工合成松乳菇菌根及杂菌侵染宿主的形态学观察和分子鉴定. 食用菌学报, 2021, 28 (3): 129- 134. | |
Wang D, Robert H, He X L, et al. Morphological observation of synthesized ectomycorrhizae betweeen Lactarius deliciosus and three Pinus species and molecular identification of contaminating species. Acta Edulis Fungi, 2021, 28 (3): 129- 134. | |
王 冉, Guerin-Laguette Alexis, 于富强. 两种乳菇菌丝生长的最适培养基与菌根合成. 菌物学报, 2020, 39 (7): 1346- 1355. | |
Wang R, Alexis G, Yu F Q. Optimum media for hyphal growth and mycorrhizal synthesis of two Lactarius species. Mycosystema, 2020, 39 (7): 1346- 1355. | |
温祝桂, 朱小梅, 刘 冲, 等. 两株外生菌根真菌对盐渍土壤中黑松幼苗生长的影响. 中南林业科技大学学报, 2019, 39 (4): 22- 27. | |
Wen Z G, Zhu X M, Liu C, et al. Effects of two ectomycorrhizal fungi on growth of Pinus thunbergii seedlings planted in saline soil. Journal of Central South University of Forestry & Technology, 2019, 39 (4): 22- 27. | |
阎秀峰, 王 琴. 接种外生菌根对辽东栎幼苗生长的影响. 植物生态学报, 2002, 26 (6): 701- 707.
doi: 10.3321/j.issn:1005-264X.2002.06.011 |
|
Yan X F, Wang Q. Effects of ectomycorrhizal inoculation on the seedling growth of Quercus liaotungensis. Acta Phytoecologica Sinica, 2002, 26 (6): 701- 707.
doi: 10.3321/j.issn:1005-264X.2002.06.011 |
|
尹大川, 祁金玉. 褐环乳牛肝菌对樟子松生长的调控——影响激素和代谢产物含量. 菌物学报, 2021, 40 (10): 2811- 2820. | |
Yin D C, Qi J Y. Regulation of Suillus luteus on the growth of Pinus sylvestris var. mongolica: influencing the hormone and metabolite content of the seedlings. Mycosystema, 2021, 40 (10): 2811- 2820. | |
张可可, 蒋德明, 余海滨, 等. 接种菌根菌剂对科尔沁沙地4种造林幼苗生长特性的影响. 生态学杂志, 2017, 36 (7): 1791- 1800. | |
Zhang K K, Jiang D M, Yu H B, et al. Impacts of mycorrhizal fungi inoculum on growth characteristics of four kinds of afforestation seedlings in Horqin sandy land, China. Chinese Journal of Ecology, 2017, 36 (7): 1791- 1800. | |
张倩倩, 黄 青. 基于香草醛-高氯酸显色反应测定灵芝三萜的方法探讨与修正. 菌物学报, 2018, 37 (12): 1792- 1801. | |
Zhang Q Q, Huang Q. Revised method for determining Ganoderma lingzhi terpenoids by UV-Vis spectrophotometry based on colorimetric vanillin perchloric acid reaction. Mycosystema, 2018, 37 (12): 1792- 1801. | |
周晓莹, 梁 玉, 李红丽, 等. 双色蜡蘑对黑松幼苗生长量及其根系形态的影响. 西北植物学报, 2018, 38 (6): 1153- 1159.
doi: 10.7606/j.issn.1000-4025.2018.06.1153 |
|
Zhou X Y, Liang Y, Li H L, et al. Effect of Laccaria bicolor on growth and root morphology of Pinus thunbergii seedlings. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38 (6): 1153- 1159.
doi: 10.7606/j.issn.1000-4025.2018.06.1153 |
|
Corkidi L, Rowland D L, Johnson N C, et al. Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands. Plant and Soil, 2002, 240 (2): 299- 310.
doi: 10.1023/A:1015792204633 |
|
Deng M F, Hu S J, Guo L L, et al. Tree mycorrhizal association types control biodiversity-productivity relationship in a subtropical forest. Science Advances, 2023, 9 (3): eadd4468.
doi: 10.1126/sciadv.add4468 |
|
Ditengou F A, Müller A, Rosenkranz M, et al. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nature Communications, 2015, 6, 6279.
doi: 10.1038/ncomms7279 |
|
Dong X Y, Wang H F, Gu J C, et al. Root morphology, histology and chemistry of nine fern species (pteridophyta) in a temperate forest. Plant and Soil, 2015, 393 (1): 215- 227. | |
Genre A, Lanfranco L, Perotto S, et al. Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 2020, 18, 649- 660.
doi: 10.1038/s41579-020-0402-3 |
|
Hawkins H J, Cargill R I M, van Nuland M E, et al. Mycorrhizal mycelium as a global carbon pool. Current Biology, 2023, 33 (11): R560- R573.
doi: 10.1016/j.cub.2023.02.027 |
|
Hazard C, Kruitbos L, Davidson H, et al. Contrasting effects of intra- and interspecific identity and richness of ectomycorrhizal fungi on host plants, nutrient retention and multifunctionality. New Phytologist, 2017, 213 (2): 852- 863.
doi: 10.1111/nph.14184 |
|
Jia S X, Wang Z Q, Li X P, et al. N fertilization affects on soil respiration, microbial biomass and root respiration in Larix gmelinii and Fraxinus mandshurica plantations in China. Plant and Soil, 2010, 333 (1): 325- 336. | |
Kou L, Guo D L, Yang H, et al. Growth, morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China. Plant and Soil, 2015, 391 (1): 207- 218. | |
Ma Z Q, Guo D L, Xu X L, et al. Evolutionary history resolves global organization of root functional traits. Nature, 2018, 555, 94- 97.
doi: 10.1038/nature25783 |
|
Rüger L, Ganther M, Freudenthal J, et al. Root cap is an important determinant of rhizosphere microbiome assembly. New Phytologist, 2023, 239 (4): 1434- 1448.
doi: 10.1111/nph.19002 |
|
Sun L J, Ataka M, Han M G, et al. Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest. New Phytologist, 2021, 229 (1): 259- 271.
doi: 10.1111/nph.16865 |
|
Tian B L, Pei Y C, Huang W, et al. Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant. The ISME Journal, 2021, 15 (7): 1919- 1930.
doi: 10.1038/s41396-021-00894-1 |
|
Valenzuela-Estrada L R, Vera-Caraballo V, Ruth L E, et al. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae). American Journal of Botany, 2008, 95 (12): 1506- 1514.
doi: 10.3732/ajb.0800092 |
|
Vayssières A, Pěnčík A, Felten J, et al. Development of the poplar-Laccaria bicolor ectomycorrhiza modifies root auxin metabolism, signaling, and response. Plant Physiology, 2015, 169 (1): 890- 902.
doi: 10.1104/pp.114.255620 |
|
Wang L X, Chen M X, Lam P Y, et al. Multifaceted roles of flavonoids mediating plant-microbe interactions. Microbiome, 2022, 10 (1): 233.
doi: 10.1186/s40168-022-01420-x |
|
Zhuang Y C, Zhang C, Ou L L, et al. Determination of total flavonoids in leaves of Paliurus ramosissimus and orthogonal experiment optimization process. Medicinal Plant, 2018, 9 (2): 40- 43. |
[1] | 都亚敏, 李珠, 蒋佳荔, 殷方宇, 吕建雄. 吸湿解吸循环过程中木材水分吸附特性[J]. 林业科学, 2024, 60(9): 150-158. |
[2] | 沈熙为, 曾彬, 葛梦婷, 王敬贤. 基于GC-MS-O技术的景观设计用马尾松木材气味化合物分析[J]. 林业科学, 2024, 60(9): 159-169. |
[3] | 李媛,李珠,都亚敏,蒋佳荔. 水热环境中马尾松早材和晚材的轴向拉伸力学行为[J]. 林业科学, 2024, 60(8): 184-192. |
[4] | 刘澳,王嘉铮,卢思航,雷菲娅,宁宏涛,腾渝,李守中. 长汀生态恢复区不同混交比例针阔混交林内马尾松种群动态及其驱动机制[J]. 林业科学, 2024, 60(5): 89-97. |
[5] | 郑永林,王云琦,徐晓晓,王玉杰,李耀明. 重庆缙云山马尾松和润楠径向生长的酸雨响应[J]. 林业科学, 2024, 60(1): 58-67. |
[6] | 颜培栋,李鹏,杨章旗,黄绥理,周永斌,零天旺. 不同造林密度马尾松人工林分化特征及其对生产力的影响[J]. 林业科学, 2023, 59(10): 66-75. |
[7] | 黄金莲,崔鸿侠,唐万鹏,胡琛,马致远,雷静品. 虫害对华山松人工林土壤酶活性及碳氮磷化学计量特征的影响[J]. 林业科学, 2023, 59(10): 128-137. |
[8] | 罗斯生,罗碧珍,魏书精,胡海清,李小川,王振师,周宇飞,宋兆,钟映霞. 中度火灾一年后马尾松林土壤碳库特征[J]. 林业科学, 2022, 58(9): 25-35. |
[9] | 倪妍妍,简尊吉,徐瑾,曾立雄,阮宏华,雷蕾,肖文发,李迈和. 马尾松非结构性碳库大小及分配的纬向变化[J]. 林业科学, 2022, 58(8): 41-52. |
[10] | 李敏, 赵熙州, 王好运, 卢中科, 丁贵杰. 干旱胁迫及外生菌根菌对马尾松幼苗根系形态及分泌物的影响[J]. 林业科学, 2022, 58(7): 63-72. |
[11] | 耿瑜欣,李红姣,郑建伟,张芹,于丽娜,李佳秋,李保会. 皂荚与野皂荚刺中次生代谢物的差异[J]. 林业科学, 2022, 58(4): 82-94. |
[12] | 薛海连,田相林,曹田健. 利用经验-过程混合建模方法优化华山松过程模型的参数[J]. 林业科学, 2021, 57(9): 21-33. |
[13] | 周紫晶,范付华,尚先文,覃慧娟,王聪慧,丁贵杰,谭健晖. 外源IAA对马尾松幼苗茎干次生生长的影响[J]. 林业科学, 2021, 57(9): 42-51. |
[14] | 王海洋,马千里. 马尾松树皮纳米木质纤维素气凝胶吸附剂对Cr3+、Cu2+、Pb2+、Ni2+的吸附性能及机理[J]. 林业科学, 2021, 57(7): 166-174. |
[15] | 叶琳峰,李彦,王忠媛,陆世通,潘天天,陈森,谢江波. 湿润地区3种松属植物枝和根导水系统的效率-安全关系[J]. 林业科学, 2021, 57(7): 194-204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||