Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (8): 184-192.doi: 10.11707/j.1001-7488.LYKX20220751
• Research papers • Previous Articles
Yuan Li,Zhu Li,Yamin Du,Jiali Jiang*
Received:
2022-11-03
Online:
2024-08-25
Published:
2024-09-03
Contact:
Jiali Jiang
CLC Number:
Yuan Li,Zhu Li,Yamin Du,Jiali Jiang. Longitudinal Tensile Mechanical Behavior of Earlywood and Latewood of Pinus massoniana in the Hydrothermal Environment[J]. Scientia Silvae Sinicae, 2024, 60(8): 184-192.
Table 1
Microfibril angle of earlywood and latewood in the radial and tangential sections at 30?80 ℃"
温度Temperature/℃ | LT-EW | LR-EW | LT-LW | LR-LW | |||||||
微纤丝角 MFA/(°) | 变异系数 CV(%) | 微纤丝角 MFA/(°) | 变异系数 CV(%) | 微纤丝角 MFA/(°) | 变异系数 CV(%) | 微纤丝角 MFA/(°) | 变异系数 CV(%) | ||||
30 | 15.28 | 2.47 | 10.73 | 3.80 | 12.37 | 1.98 | 9.79 | 1.77 | |||
40 | 15.10 | 5.31 | 10.50 | 5.06 | 12.35 | 4.28 | 9.82 | 2.78 | |||
50 | 15.07 | 6.62 | 10.31 | 5.73 | 12.34 | 3.29 | 9.54 | 6.02 | |||
60 | 14.79 | 6.66 | 10.17 | 5.75 | 12.33 | 3.63 | 9.09 | 2.61 | |||
70 | 14.34 | 7.10 | 10.03 | 4.52 | 12.28 | 6.33 | 8.88 | 5.95 | |||
80 | 14.12 | 4.58 | 10.05 | 5.35 | 12.25 | 2.15 | 8.84 | 0.90 |
鄂周寸. 马尾松种植技术及经济效益分析. 农业与技术, 2019, 39 (19): 72- 73. | |
E Z C. Analysis on planting technology and economic benefit of masson pine. Agriculture and Technology, 2019, 39 (19): 72- 73. | |
何啸宇, 孔繁旭, 王艳伟, 等. 木材软化技术研究进展及其应用. 林业机械与木工设备, 2021, 49 (10): 11- 17.
doi: 10.3969/j.issn.2095-2953.2021.10.002 |
|
He X Y, Kong F X, Wang Y W, et al. Research progress of wood softening technology and its application. Forestry Machinery & Woodworking Equipment, 2021, 49 (10): 11- 17.
doi: 10.3969/j.issn.2095-2953.2021.10.002 |
|
李安鑫, 吕建雄, 蒋佳荔. 基于生长轮的杉木早材黏弹性. 林业科学, 2019, 55 (12): 93- 100.
doi: 10.11707/j.1001-7488.20191210 |
|
Li A X, Lü J X, Jiang J L. The viscoelasticity of Chinese fir earlywood in individual growth rings. Scientia Silvae Sinicae, 2019, 55 (12): 93- 100.
doi: 10.11707/j.1001-7488.20191210 |
|
李澍农, 张亚梅, 余养伦, 等. 水煮处理对毛竹物理力学性能的影响. 木材科学与技术, 2021, 35 (3): 59- 64.
doi: 10.12326/j.2096-9694.2020158 |
|
Li S N, Zhang Y M, Yu Y L, et al. Effect of boiling treatment on physical and mechanical properties of moso bamboo. Chinese Journal of Wood Science and Technology, 2021, 35 (3): 59- 64.
doi: 10.12326/j.2096-9694.2020158 |
|
李澍农, 张亚梅, 余养伦, 等. 水煮处理竹材的吸湿性和化学成分研究. 林业科学, 2022, 58 (1): 119- 126.
doi: 10.11707/j.1001-7488.20220113 |
|
Li S N, Zhang Y M, Yu Y L, et al. Study on the hygroscopicity and chemical compositions of boiling-treated moso bamboo. Scientia Silvae Sinicae, 2022, 58 (1): 119- 126.
doi: 10.11707/j.1001-7488.20220113 |
|
任 宁, 刘一星, 巩翠芝. 木材微观构造与拉伸断裂的关系. 东北林业大学学报, 2008, 36 (2): 33- 35.
doi: 10.3969/j.issn.1000-5382.2008.02.012 |
|
Ren N, Liu Y X, Gong C Z. Relationship between wood microstructure and tensile fracture. Journal of Northeast Forestry University, 2008, 36 (2): 33- 35.
doi: 10.3969/j.issn.1000-5382.2008.02.012 |
|
王 聪, 吴 强, 林 鹏, 等. 不同纹理方向栎木微小无疵试样板材蠕变特性. 林业科学, 2018, 54 (4): 76- 83.
doi: 10.11707/j.1001-7488.20180409 |
|
Wang C, Wu Q, Lin P, et al. Orthotropic creep performance of small flawless oak board. Scientia Silvae Sinicae, 2018, 54 (4): 76- 83.
doi: 10.11707/j.1001-7488.20180409 |
|
张彩珍. 广西地区马尾松种植技术与经济效益浅析. 南方农业, 2020, 14 (3): 9- 10. | |
Zhang C Z. Analysis on planting technology and economic benefit of Pinus massoniana in Guangxi. South China Agriculture, 2020, 14 (3): 9- 10. | |
钟卫洲, 邓志方, 魏 强, 等. 不同加载速率下木材失效行为的多尺度数值分析. 中国测试, 2016, 42 (10): 79- 84.
doi: 10.11857/j.issn.1674-5124.2016.10.015 |
|
Zhong W Z, Deng Z F, Wei Q, et al. Multi-scale numerical analysis on failure behavior of wood under different speed loading conditions. China Measurement & Test, 2016, 42 (10): 79- 84.
doi: 10.11857/j.issn.1674-5124.2016.10.015 |
|
张娅梅, 潘 彪, 王 丰. 马尾松木材径向与弦向抗弯性能及破坏特征的比较研究. 林产工业, 2017, 44 (3): 26- 29,39. | |
Zhang Y M, Pan B, Wang F. Comparison of wood bending properties and breaking features of masson pine on radial and tangential direction. China Forest Products Industry, 2017, 44 (3): 26- 29,39. | |
Bertaud F, Holmbom B. Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Science and Technology, 2004, 38 (4): 245- 256. | |
Cramer S, Kretschmann D, Lakes R, et al. Earlywood and latewood elastic properties in loblolly pine. Holzforschung, 2005, 59 (5): 531- 538.
doi: 10.1515/HF.2005.088 |
|
Darmawan W, Nandika D, Hasna Afaf B D, et al. Radial variation in selected wood properties of Indonesian merkusii pine. Journal of the Korean Wood Science and Technology, 2018, 46 (4): 323- 337.
doi: 10.5658/WOOD.2018.46.4.323 |
|
Furuta Y, Okuyama T, Kojiro K, et al. Temperature dependence of the dynamic viscoelasticity of bases of Japanese cypress branches and the trunk close to the branches saturated with water. Journal of Wood Science, 2014, 60 (4): 249- 254.
doi: 10.1007/s10086-014-1402-6 |
|
Hartmann R, Puch F. Numerical simulation of the deformation behavior of softwood tracheids for the calculation of the mechanical properties of wood-polymer composites. Polymers, 2022, 14 (13): 2574.
doi: 10.3390/polym14132574 |
|
Hein P R G, Chaix G, Clair B, et al. Spatial variation of wood density, stiffness and microfibril angle along Eucalyptus trunks grown under contrasting growth conditions. Trees, 2016, 30 (3): 871- 882.
doi: 10.1007/s00468-015-1327-8 |
|
Hermawan A, Fujimoto N. Viscoelastic creep behavior of surface- and inner-layers of sugi boxed-heart timber under various temperatures. Journal of Wood Science, 2019, 65 (1): 52.
doi: 10.1186/s10086-019-1836-y |
|
Hermawan A, Sakagami H, Fujimoto N. Creep behaviour of Japanese cypress timber under various hygrothermal conditions. Wood Material Science & Engineering, 2021, 17 (3): 221- 229. | |
Kurata Y, Mori Y, Ishida A, et al. Variation in hemicellulose structure and assembly in the cell wall associated with the transition from earlywood to latewood in Cryptomeria japonica. Journal of Wood Chemistry and Technology, 2018, 38 (3): 254- 263.
doi: 10.1080/02773813.2018.1434206 |
|
Larsen F, Ormarsson S. Experimental and finite element study of the effect of temperature and moisture on the tangential tensile strength and fracture behavior in timber logs. Holzforschung, 2014, 68 (1): 133- 140.
doi: 10.1515/hf-2012-0149 |
|
Li A X, Jiang J L, Lü J X. Differences in the viscoelastic properties between earlywood and latewood in the growth rings of Chinese fir as analyzed by dynamic mechanical analysis (DMA) in the temperature range between −120 ℃ and 120 ℃. Holzforschung, 2018, 73 (3): 241- 250. | |
Li Z, Lü J X, Cao J Z, et al. Comparative study of the hydrothermal softening characteristics of heartwood and sapwood. Forest Products Journal, 2020, 70 (3): 243- 248.
doi: 10.13073/FPJ-D-20-00013 |
|
Nakai T, Toba K, Yamamoto H. Creep and stress relaxation behavior for natural cellulose crystal of wood cell wall under uniaxial tensile stress in the fiber direction. Journal of Wood Science, 2018, 64 (6): 745- 750.
doi: 10.1007/s10086-018-1767-z |
|
Ożyhar T. 2013. Moisture and time-dependent orthotropic mechanical characterization of beech wood. ETH Zürich: Switzerland. | |
Pearson H, Gabbitas B, Ormarsson S. Tensile behaviour of radiata pine with different moisture contents at elevated temperatures. Holzforschung, 2012, 66 (5): 659- 665.
doi: 10.1515/hf-2011-0185 |
|
Peng H, Salmén L, Stevanic J S, et al. Structural organization of the cell wall polymers in compression wood as revealed by FTIR microspectroscopy. Planta, 2019, 250 (1): 163- 171.
doi: 10.1007/s00425-019-03158-7 |
|
Placet V, Passard J, Perré P. Viscoelastic properties of green wood across the grain measured by harmonic tests in the range 0–95 ℃: hardwood vs. softwood and normal wood vs. reaction wood. Holzforschung, 2007, 61 (5): 548- 557.
doi: 10.1515/HF.2007.093 |
|
Qu W, Yang C, Zhang J W, et al. Hydraulic function analysis of conifer xylem based on a model incorporating tracheids, bordered pits, and cross-field pits. Forests, 2022, 13, 171.
doi: 10.3390/f13020171 |
|
Roszyk E, Kwiatkowski T, Moliński W. Mechanical parameters of pine wood in individual annual rings under tensile stress along the grains in dry and wet state. Wood Research, 2013, 58 (4): 571- 580. | |
Roszyk E, Mania P, Moliński W. The influence of microfibril angle on creep scotch pine wood under tensile stress alongthe grains. Wood Research, 2012, 57 (3): 347- 358. | |
Roszyk E, Moliński W, Jasińska M. The effect of microfibril angle on hygromechanic creep of wood under tensile stress along the grains. Wood Research, 2010, 55 (3): 13- 24. | |
Roszyk E. The effect of ultrastructure and moisture content on mechanical parameters of pine wood (Pinus sylvestris L. ) upon tensile stress along the grains. Turkish Journal of Agriculture And Forestry, 2014, 38, 413- 419.
doi: 10.3906/tar-1306-81 |
|
Salmén L, Burgert I. Cell wall features with regard to mechanical performance. A Review COST Action E35 2004—2008: Wood machining–micromechanics and fracture. Holzforschung, 2009, 63 (2): 121- 129.
doi: 10.1515/HF.2009.011 |
|
Salmén L, Stevanic J S, Olsson A M. Contribution of lignin to the strength properties in wood fibres studied by dynamic FTIR spectroscopy and dynamic mechanical analysis (DMA). Holzforschung, 2016, 70 (12): 1155- 1163.
doi: 10.1515/hf-2016-0050 |
|
Sanabria S J, Baensch F, Zauner M, et al. In-situ quantification of microscopic contributions of individual cells to macroscopic wood deformation with synchrotron computed tomography. Scientific Reports, 2020, 10 (1): 21615.
doi: 10.1038/s41598-020-78028-4 |
|
Tukiainen P, Hughes M. The effect of temperature and moisture content on the fracture behaviour of spruce and birch. Holzforschung, 2015, 70 (4): 369- 376. | |
Wang D, Lin L Y, Fu F, et al. The softwood fracture mechanisms at the scales of the growth ring and cell wall under bend loading. Wood Science and Technology, 2019a, 53 (6): 1295- 1310.
doi: 10.1007/s00226-019-01132-w |
|
Wang D, Lin L Y, Fu F, et al. Fracture mechanisms of softwood under longitudinal tensile load at the cell wall scale. Holzforschung, 2019b, 74 (7): 715- 724. | |
Wang X Z, Chen X Z, Xie X Q, et al. Effects of thermal modification on the physical, chemical and micromechanical properties of masson pine wood (Pinus massoniana Lamb. ). Holzforschung, 2018, 72 (12): 1063- 1070.
doi: 10.1515/hf-2017-0205 |
|
Yu Y, Wang H K, Lu F, et al. Bamboo fibers for composite applications: a mechanical and morphological investigation. Journal of Materials Science, 2014, 49 (6): 2559- 2566.
doi: 10.1007/s10853-013-7951-z |
[1] | Fangyu Yin,Yamin Du,Zhu Li,Jiali Jiang. Shrinkage and Swelling Behavior of Different Types of Tissues in Catalpa bungei Wood [J]. Scientia Silvae Sinicae, 2024, 60(7): 105-116. |
[2] | Ao Liu,Jiazheng Wang,Sihang Lu,Feiya Lei,Hongtao Ning,Yu Teng,Shouzhong Li. Population Dynamics and Driving Mechanism of Pinus massoniana in Coniferous and Broad-Leaved Mixed Forests with Different Mixing Ratios in Changting Ecological Restoration Area [J]. Scientia Silvae Sinicae, 2024, 60(5): 89-97. |
[3] | Yonglin Zheng,Yunqi Wang,Xiaoxiao Xu,Yujie Wang,Yaoming Li. The Acid Rain Response of Radial Growth of Pinus massoniana and Machilus nanmu in Jinyun Mountains of Chongqing [J]. Scientia Silvae Sinicae, 2024, 60(1): 58-67. |
[4] | Peidong Yan,Peng Li,Zhangqi Yang,Suili Huang,Yongbin Zhou,Tianwang Ling. Differentiation Characteristics and Their Effects on Productivity with Different Planting Densities of Pinus massoniana Plantations [J]. Scientia Silvae Sinicae, 2023, 59(10): 66-75. |
[5] | Sisheng Luo,Bizhen Luo,Shujing Wei,Haiqing Hu,Xiaochuan Li,Zhenshi Wang,Yufei Zhou,Zhao Song,Yingxia Zhong. Characteristics of Soil Carbon Pool in Pinus massoniana Forest One Year after Moderate Forest Fires [J]. Scientia Silvae Sinicae, 2022, 58(9): 25-35. |
[6] | Yanyan Ni,Zunji Jian,Jin Xu,Lixiong Zeng,Honghua Ruan,Lei Lei,Wenfa Xiao,Maihe Li. Latitudinal Variation of the Size and Allocation of Non-Structural Carbon in Pinus massoniana [J]. Scientia Silvae Sinicae, 2022, 58(8): 41-52. |
[7] | Min Li, Xizhou Zhao, Haoyun Wang, Zhongke Lu, Guijie Ding. Effects of Drought Stress and Ectomycorrhizal Fungi on the Root Morphology and Exudates of Pinus massoniana Seedlings [J]. Scientia Silvae Sinicae, 2022, 58(7): 63-72. |
[8] | Zijing Zhou,Fuhua Fan,Xianwen Shang,Huijuan Qin,Conghui Wang,Guijie Ding,Jianhui Tan. Effects of Exogenous IAA on Stem Secondary Growth of Pinus massoniana Seedlings [J]. Scientia Silvae Sinicae, 2021, 57(9): 42-51. |
[9] | Haiyang Wang,Qianli Ma. Adsorption Properties and Mechanisms of Pinus massoniana Bark Nano-Lignocellulose Aerogel Adsorbent for Cr3+/Cu2+/Pb2+/Ni2+ [J]. Scientia Silvae Sinicae, 2021, 57(7): 166-174. |
[10] | Linfeng Ye,Yan Li,Zhongyuan Wang,Shitong Lu,Tiantian Pan,Sen Chen,Jiangbo Xie. Efficiency-Safety Relationships of Hydraulic Conducting System for Branch and Root of Three Pinus Species Growing in Humid Area [J]. Scientia Silvae Sinicae, 2021, 57(7): 194-204. |
[11] | Bai Ouyang,Zhu Li,Jiali Jiang. Hygroscopicity and Swelling Behavior of Catalpa bungei Earlywood and Latewood [J]. Scientia Silvae Sinicae, 2021, 57(5): 176-183. |
[12] | Yunxing Bai,Yunchao Zhou,Xunyuan Zhang,Jiaojiao Du. Water Conservation Capacity of Litter and Soil in Mixed Plantation of Pinus massoniana and Broadleaved Trees [J]. Scientia Silvae Sinicae, 2021, 57(11): 24-36. |
[13] | Xiaosui Wen,Dunfu Song,Zhongqi Yang,Zhonghui Wang,Mingqing Shi. Relationships between the Emergence of Dastarcus helophoroides (Coleoptera: Bothrideridae) and the Emergence of the Host Monochamus alternatus (Coleoptera: Cerambycidae) in Pinus massoniana Forests [J]. Scientia Silvae Sinicae, 2020, 56(9): 193-200. |
[14] | Yin Wang,Ruiling Yao. Rooting Capacity of Pinus massoniana and the Correlations Endohormones Levels during Subcultur [J]. Scientia Silvae Sinicae, 2020, 56(8): 38-46. |
[15] | Lihua Zhu,Xinyue Zhang,Xinrui Xia,Yu Wan,Shanjun Dai,Jianren Ye. Pathogenicity of Aseptic Bursaphelenchus xylophilus on Pinus massoniana [J]. Scientia Silvae Sinicae, 2020, 56(7): 63-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||