Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (8): 67-78.doi: 10.11707/j.1001-7488.LYKX20230408
• Research papers • Previous Articles Next Articles
Bingnan Chen1,2,Fengting Yang1,Shengwang Meng1,Xiaoqin Dai1,Liang Kou1,2,Yifan Chen3,Huimin Wang1,2,Xiaoli Fu1,2,*()
Received:
2023-09-04
Online:
2024-08-25
Published:
2024-09-03
Contact:
Xiaoli Fu
E-mail:fuxl@igsnrr.ac.cn
CLC Number:
Bingnan Chen,Fengting Yang,Shengwang Meng,Xiaoqin Dai,Liang Kou,Yifan Chen,Huimin Wang,Xiaoli Fu. Temporal-Spatial Variation and Drivers of Phenology in Pinus massoniana and Pinus elliottii Forests in Hilly Regions with Red Soil[J]. Scientia Silvae Sinicae, 2024, 60(8): 67-78.
Table 1
Stand structure and soil traits for the P. massoniana and P. elliottii forests"
参数 Parameter | 马尾松 P. massoniana | 湿地松 P. elliottii | |||
平均值 Mean | 变异系数 CV (%) | 平均值 Mean | 变异系数 CV (%) | ||
林分密度 Stand density/(tree·hm?2) | 1 089.51±65.40a | 25.47 | 532.32±19.45b | 12.12 | |
林龄 Age/a | 37a | — | 37a | — | |
透光度 Light transmission (%) | 38.07±1.18a | 13.20 | 41.54±1.36a | 10.86 | |
胸径 Diameter at breast height/cm | 15.97±0.13a | 34.26 | 22.31±0.26b | 26.69 | |
灌木层物种丰富度 Shrubs richness | 5.65±0.30a | 22.39 | 5.35±0.31 a | 19.17 | |
草本层物种丰富度 Herbs richness | 1.55±0.15a | 40.13 | 1.45±0.20a | 45.80 | |
土层厚度 Soil thickness/cm | 111±7a | 24.94 | 141±11b | 25.52 | |
0~60 cm土层石砾含量 Soil gravel content at 0-60cm depth (%) | 10.86±2.12a | 89.89 | 3.88±1.05b | 82.92 |
Fig.2
Temporal variations of the monthly averaged effective leaf area index (LAIe) for the P. massoniana (PM) and P. elliottii (PE) forests during 2017–2021 The orange dots (n = 90) and green dots (n = 55) represent the mean values of LAIe for the P. massoniana (PM) and P. elliottii (PE), respectively. The orange and green solid lines represent phenological fitting curves of P. massoniana (PM) and P. elliottii (PE), respectively. * in figure (a) indicates significant differences among stands at P<0.05. In the histogram, data are expressed as means ± standard error (n = 5), and different letters indicate significant differences between forest types at P<0.05."
陈立新, 哈雪梅, 段文标, 等. 2022. 红松人工林优势木竞争指数影响因子. 生态学报, 42(5): 1777−1778. | |
Chen L X, Ha X M, Duan W B, et al. 2022. Analysis on influencing factors of competitive index of dominant trees in Pinus koraiensis plantation. Acta Ecologica Sinica, 42(5): 1777−1787. [in Chinese] | |
高 伟, 叶功富, 郑兆飞, 等. 相似生境下马尾松与湿地松幼树的光合日动态. 中南林业科技大学学报, 2012, 32 (10): 34- 39. | |
Gao W, Ye G F, Zheng Z F, et al. Diurnal dynamics of photosynthetic characteristics of Pinus massoniana and Pinus elliottii saplings under similar habitat. Journal of Central South University of Forestry & Technology, 2012, 32 (10): 34- 39. | |
贾炜玮, 林 键. 黑龙江省主要林分类型林分碳储量预估模型. 东北林业大学学报, 2017, 45 (8): 30- 38.
doi: 10.3969/j.issn.1000-5382.2017.08.007 |
|
Jia W W, Lin J. Carbon stock predicting models of main forest types in Heilongjiang Province. Journal of Northeast Forestry University, 2017, 45 (8): 30- 38.
doi: 10.3969/j.issn.1000-5382.2017.08.007 |
|
侯光雷, 张洪岩, 郭 聃, 等. 长白山区植被生长季 NDVI 时空变化及其对气候因子敏感性. 地理科学进展, 2012, 31 (3): 285- 292.
doi: 10.11820/dlkxjz.2012.03.003 |
|
Hou G L, Zhang H Y, Guo D, et al. Spatial-temporal variation of NDVI in the growing season and its sensitivity to climatic factors in Changbai Mountains. Progress in Geography, 2012, 31 (3): 285- 292.
doi: 10.11820/dlkxjz.2012.03.003 |
|
胡婉仪. 六种国外松的早期生长、物候和适应性. 湖北林业科技, 1989, 1, 1- 4, 49. | |
Hu W Y. Early growth, phenology and adaptation of six foreign pine species. Hubei Forestry Science and Technology, 1989, 1, 1- 4, 49. | |
黄 鑫. 2021. 区域尺度马尾松生产力的空间分异、影响因素及模拟预测. 武汉: 华中农业大学. | |
Huang X. 2021. Spatial differentiation, influencing factors, and simulation and prediction of P. Massoniana productivity at the regional scale. Wuhan: Huazhong Agricultural University. [in Chinese] | |
李 晖, 彭韧超, 李万凯, 等. 2019. 厦门典型树种的HJ-1A/B NDVI时序数据滤波算法及物候特性. 生态学杂志, 38(11): 3460–3471. | |
Li H, Peng R Z, Li W K, et al. 2019. Filtering algorithms of HJ-1 A /B NDVI time series data and phenology of typical tree species in Xiamen. Chinese Journal of Ecology, 38(11): 3460–3471. [in Chinese] | |
刘 芳, 杨广斌. 2013. 基于鱼眼照片的森林郁闭度快速提取方法研究. 西南林业大学学报, 33(2): 71−74. | |
Liu F, Yang G B. 2013. An efficient method for extracting forest canopy density from fisheye photos. Journal of Southwest Forestry University, 33(2): 71−74. [in Chinese] | |
马泽清, 刘琪璟, 徐雯佳, 等. 江西千烟洲人工林生态系统的碳蓄积特征. 林业科学, 2007, 43 (11): 1- 7.
doi: 10.3321/j.issn:1001-7488.2007.11.001 |
|
Ma Z Q, Liu Q J, Xu W J, et al. Carbon storage of artificial forest in Qianyanzhou, Jiangxi Province. Scientia Silvae Sinicae, 2007, 43 (11): 1- 7.
doi: 10.3321/j.issn:1001-7488.2007.11.001 |
|
王晓荣, 庞宏东, 胡文杰, 等. 武汉城市森林常见木本植物物候研究——以九峰国家森林公园为例. 中国农业通报, 2020, 36 (10): 39- 46. | |
Wang X R, Pang H D, Hu W J, et al. Phenology research on the common ligneous species in Wuhan urban forest: an example of Jiufeng national forest park. Chinese Agricultural Science Bulletin, 2020, 36 (10): 39- 46. | |
谢政锠, 曹小玉, 赵文菲, 等. 不同龄组杉木公益林林分空间结构与灌木物种多样性. 生态学杂志, 2022, 41 (8): 1466- 1473. | |
Xie Z C, Cao X Y, Zhao W F, et al. Spatial structure and shrub species diversity of different aged stands of Chinese fir public welfare forests. Chinese Journal of Ecology, 2022, 41 (8): 1466- 1473. | |
徐 珂. 2021. 千烟洲亚热带针叶林GPP模型优化及生态服务价值研究. 哈尔滨: 东北林业大学. | |
Xu k. 2021. Research on GPP model optimization and ecological service value of subtropical coniferous forest in Qianyanzhou. Harbin: Northeast Forestry University. [in Chinese] | |
袁再健, 马东方, 聂小东, 等. 南方红壤丘陵区林下水土流失防治研究进展. 土壤学报, 2020, 57 (1): 12- 21. | |
Yuan Z J, Ma D F, Nie X D, et al. Progress in research on prevention and control of soil erosion under forest in red soil hilly region of south China. Acta Pedologica Sinica, 2020, 57 (1): 12- 21. | |
张明辉, 尹昀洲, 王 珂, 等. 水曲柳人工林空间结构特征对土壤养分含量的影响. 北京林业大学学报, 2023, 45 (9): 73- 82.
doi: 10.12171/j.1000-1522.20220476 |
|
Zhang M H, Yin Y Z, Wang K, et al. Effects of spatial structure characteristics of Fraxinus mandshurica plantation on soil nutrient content. Journal of Beijing Forestry University, 2023, 45 (9): 73- 82.
doi: 10.12171/j.1000-1522.20220476 |
|
张太平, 任 海, 彭少麟, 等. 1999. 湿地松(P. elliottii Engelm.)的生态生物学特征. 生态科学, (2): 10−14. | |
Zhang T P, Ren H, Peng S L, et al. 1999. The Ecological and biological characteristics of P. elliottii. Ecologic Science, (2): 10−14. [in Chinese] | |
中国植物志编辑委员会. 2004. 中国植物志(第七卷). 北京: 科学出版社, 263. | |
Editorial Committee of Flora of China . Chinese Academy of Science. 2004. Flora of China (7). Beijing: Science Press, 263. [in Chinese] | |
周 蕾, 迟永刚, 刘啸添, 等. 日光诱导叶绿素荧光对亚热带常绿针叶林物候的追踪. 生态学报, 2020, 40 (12): 4114- 4125. | |
Zhou L, Chi Y G, Liu X T, et al. Land surface phenology tracked by remotely sensed sun-induced chlorophyll fluorescence in subtropical evergreen coniferous forests. Acta Ecologica Sinica, 2020, 40 (12): 4114- 4125. | |
Babalola O, Lal R. Subsoil gravel horizon and maize root growth. Plant and Soil, 1977, 46 (2): 337- 346.
doi: 10.1007/BF00010090 |
|
Bannari A, Morin D, Bonn F, et al. A review of vegetation indices. Remote Sensing Reviews, 1995, 13 (1/2): 95- 120. | |
Bequet R, Campioli M, Kint V, et al. Leaf area index development in temperate oak and beech forests is driven by stand characteristics and weather conditions. Trees, 2011, 25 (5): 935- 946.
doi: 10.1007/s00468-011-0568-4 |
|
Brown L A, Ogutu B O, Dash J. Tracking forest biophysical properties with automated digital repeat photography: a fisheye perspective using digital hemispherical photography from below the canopy. Agricultural and Forest Meteorology, 2020, 287, 107994. | |
Calinger K M, Queenborough S, Curtis P S. Herbarium specimens reveal the footprint of climate change on flowering trends across north-central North America. Ecology Letters, 2013, 16 (8): 1037- 1044.
doi: 10.1111/ele.12135 |
|
Chen H S, Liu J W, Wang K L, et al. Spatial distribution of rock fragments on steep hillslopes in karst region of northwest Guangxi, China. Catena, 2011, 84 (1/2): 21- 28. | |
Chen M, Melaas E K, Gray J M, et al. A new seasonal-deciduous spring phenology submodel in the Community Land Model 4.5: impacts on carbon and water cycling under future climate scenarios. Global Change Biology, 2016, 22 (11): 3675- 3688.
doi: 10.1111/gcb.13326 |
|
Chianucci F, Bajocco S, Ferrara C. Continuous observations of forest canopy structure using low-cost digital camera traps. Agricultural and Forest Meteorology, 2021, 307, 108516.
doi: 10.1016/j.agrformet.2021.108516 |
|
Chianucci F, Cutini A. Estimation of canopy properties in deciduous forests with digital hemispherical and cover photography. Agricultural and Forest Meteorology, 2013, 168, 130- 139.
doi: 10.1016/j.agrformet.2012.09.002 |
|
Chuine I. A unified model for budburst of trees. Journal of Theoretical Biology, 2000, 207 (3): 337- 347.
doi: 10.1006/jtbi.2000.2178 |
|
Cleland E E, Chuine I, Menzel A, et al. Shifting plant phenology in response to global change. Trends in Ecology & Evolution, 2007, 22 (7): 357- 365. | |
Cong N, Piao S L, Chen A P, et al. Spring vegetation green-up date in China inferred from SPOT NDVI data: a multiple model analysis. Agricultural and Forest Meteorology, 2012, 165, 104- 113.
doi: 10.1016/j.agrformet.2012.06.009 |
|
Croft H, Chen J M, Luo X Z, et al. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Global Change Biology, 2017, 23 (9): 3513- 3524.
doi: 10.1111/gcb.13599 |
|
Du Y J, Chen J R, Willis C G, et al. 2017. Phylogenetic conservatism and trait correlates of spring phenological responses to climate change in northeast China. Ecology and Evolution, 7(17): 6747–6757. | |
Filippa G, Cremonese E, Migliavacca M, et al. Phenopix: a R package for image-based vegetation phenology. Agricultural and Forest Meteorology, 2016, 220, 141- 150.
doi: 10.1016/j.agrformet.2016.01.006 |
|
Fu Y H, Piao S L, Zhao H, 2014. Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Global Change Biology, 20(12): 3743–3755. | |
Gargiulo L, Mele G, Terribile F. Effect of rock fragments on soil porosity: a laboratory experiment with two physically degraded soils. European Journal of Soil Science, 2016, 67 (5): 597- 604.
doi: 10.1111/ejss.12370 |
|
Garonna I, de Jong R, Schaepman M E. Variability and evolution of global land surface phenology over the past three decades (1982–2012). Global Change Biology, 2016, 22 (4): 1456- 1468.
doi: 10.1111/gcb.13168 |
|
Ge W Y, Han J Q, Zhang D J, et al. Divergent impacts of droughts on vegetation phenology and productivity in the Yungui Plateau, southwest China. Ecological Indicators, 2021, 127, 107743.
doi: 10.1016/j.ecolind.2021.107743 |
|
Getzin S, Dean C, He F L, et al. Spatial patterns and competition of tree species in a Douglas-fir chronosequence on Vancouver Island. Ecography, 2006, 29 (5): 671- 682.
doi: 10.1111/j.2006.0906-7590.04675.x |
|
Goulden M L, Munger J W, Fan S M, et al. Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science, 1996, 271 (5255): 1576- 1578.
doi: 10.1126/science.271.5255.1576 |
|
Jeong S J, Ho C H, Gim H J, et al. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Global Change Biology, 2011, 17 (7): 2385- 2399.
doi: 10.1111/j.1365-2486.2011.02397.x |
|
Jiang P P, Wang H M, Fu X L, et al. Elaborate differences between trees and understory plants in the deployment of fine roots. Plant and Soil, 2018, 431 (1/2): 433- 447. | |
Keeling C D, Chin J F S, Whorf T P, et al. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 1996, 382 (6587): 146- 149.
doi: 10.1038/382146a0 |
|
Keenan T F, Williams C A. The terrestrial carbon sink. Annual Review of Environment and Resources, 2018, 43, 219- 243.
doi: 10.1146/annurev-environ-102017-030204 |
|
Kenkel N C. Pattern of self-thinning in Jack pine: testing the random mortality hypothesis. Ecology, 1988, 69 (4): 1017- 1024.
doi: 10.2307/1941257 |
|
Klosterman S T, Hufkens K, Gray J M, et al. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences, 2014, 11 (16): 4305- 4320.
doi: 10.5194/bg-11-4305-2014 |
|
Laube J, Sparks T H, Estrella N, et al, 2014. Chilling outweighs photoperiod in preventing precocious spring development. Global Change Biology, 20(1): 170-182. | |
Lian X, Piao S L, Li L Z X, et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Science Advance, 2020, 6 (1): eaax0255. | |
Liu Q, Fu Y H, Zeng Z, et al. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Global Change Biology, 2016, 22 (2): 644- 656.
doi: 10.1111/gcb.13081 |
|
Ma Z Q, Hartmann H, Wang H M, et al. 2014. Carbon dynamics and stability between native Masson pine and exotic slash pine plantations in subtropical China. European Journal of Forest Research, 133(2): 307–321. | |
Margalef R. 1958. Information theory in ecology. General Systematics, 3: 36-71. | |
Menzel A, Sparks T H, Estrella N, et al. European phenological response to climate change matches the warming pattern. Global Change Biology, 2006, 12 (10): 1969- 1976.
doi: 10.1111/j.1365-2486.2006.01193.x |
|
Miller F T, Guthrie R L. Classification and distribution of soils containing rock fragments in the United States. Erosion and Productivity of Soils Containing Rock Fragments, 1984, 13, 1- 6. | |
Nemani R R, White M A, Thronton P, et al. Recent trends in hydrological balance have enhanced the terrestrial carbon sink in the United States. Geophysical Research Letters, 2002, 29 (10): 1468. | |
Peñuelas J, Rutishauser T, Filella I. Phenology feedbacks on climate change. Science, 2009, 324 (5929): 887- 888.
doi: 10.1126/science.1173004 |
|
Piao S L, Ciais P, Friedlingstein P, et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 2008, 451 (7174): 49- 52.
doi: 10.1038/nature06444 |
|
Piao S L, Fang J Y, Zhu B, et al. Forest biomass carbon stocks in China over the past 2 decades: estimation based on integrated inventory and satellite data. Journal of Geophysical Research, 2005, 110 (G1): G01006. | |
Piao S L, Friedlingstein P, Ciais P, et al. Growing season extension and its effects on terrestrial carbon flux over the last two decades. Global Biogeochemical Cycles, 2007, 21, GB3018. | |
Piao S L, Liu Q, Chen A P, et al. Plant phenology and global climate change: current progresses and challenges. Global Change Biology, 2019, 25 (6): 1922- 1940.
doi: 10.1111/gcb.14619 |
|
Poesen J, Ingelmo-Sanchez F, Mucher H. The hydrological response of soil surfaces to rainfall as affected by cover and position of rock fragments in the top layer. Earth Surface Process and Landforms, 1990, 15 (7): 653- 671.
doi: 10.1002/esp.3290150707 |
|
Poesen J, Lavee H. Rock fragments in top soils: significance and processes. Catena, 1994, 23 (1/2): 1- 28. | |
Polgar C A, Primack R B. Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytologist, 2011, 191 (4): 926- 941.
doi: 10.1111/j.1469-8137.2011.03803.x |
|
Richardson A D, Hufkens K, Milliman T, et al. 2018. Data descriptor: tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. Scientific Data, 5(1): 180028. | |
Ryu Y, Sonnentag O, Nilson T, et al. How to quantify tree leaf area index in an open savanna ecosystem: a multi-instrument and multi-model approach. Agricultural and Forest Meteorology, 2010, 150 (1): 63- 76.
doi: 10.1016/j.agrformet.2009.08.007 |
|
Sakai A, Larcher W. 1987. Frost survival of plants: responses and adaptation to freezing stress. New York: Springer−Verlag. | |
Sonnentag O, Hufkens K, Sterne C T, et al. Digital repeat photography for phenological research in forest ecosystems. Agricultural and Forest Meteorology, 2012, 152, 159- 177.
doi: 10.1016/j.agrformet.2011.09.009 |
|
Sparks T, Carey P. The responses of species to climate over two centuries: an analysis of the Marsham phenological record, 1736–1947. Journal of Ecology, 1995, 83 (2): 321- 329.
doi: 10.2307/2261570 |
|
Tahir M, Lv Y J, Gao L, et al. Soil water dynamics and availability for citrus and peanut along a hillslope at the Sunjia Red Soil Critical Zone Observatory (CZO). Soil & Tillage Research, 2016, 163, 110- 118. | |
Walther S, Voigt M, Thum T, et al. Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests. Global Change Biology, 2016, 22 (9): 2979- 2996.
doi: 10.1111/gcb.13200 |
|
Wang H J, Dai J H, Zheng J Y, et al. Temperature sensitivity of plant phenology in temperate and subtropical regions of China from 1850 to 2009. International Journal of Climatology, 2015, 35 (6): 913- 922.
doi: 10.1002/joc.4026 |
|
Wang X, Dannenberg M P, Yan D, et al. 2020. Globally consistent patterns of asynchrony in vegetation phenology derived from optical, microwave, and fluorescence satellite data. Journal of Geophysical Research: Biogeosciences, 125(7): e2020JG005732. | |
White M A, Running S W, Thornton P E. The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. International Journal of Biometeorol, 1999, 42 (3): 139- 145.
doi: 10.1007/s004840050097 |
|
White M A, Thornton P E, Running S W, et al. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles, 1997, 11 (2): 217- 234.
doi: 10.1029/97GB00330 |
|
Wielgolaski F. Phenological modifications in plants by various edaphic factors. International Journal of Biometeorology, 2001, 45 (4): 196- 202.
doi: 10.1007/s004840100100 |
|
Wu C Y, Peng J, Ciais P. et al. Increased drought effects on the phenology of autumn leaf senescence. Nature Climate Change, 2022, 12 (10): 943- 949.
doi: 10.1038/s41558-022-01464-9 |
|
Wu C Y, Wang X Y, Wang H J, et al. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nature Climate Change, 2018, 8 (12): 1092- 1096.
doi: 10.1038/s41558-018-0346-z |
|
Xia J Y, Niu S L, Ciais P, et al. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (9): 2788- 2793. | |
Yan H, Kou L, Wang H M, et al. Contrasting root foraging strategies of two subtropical coniferous forests under an increased diversity of understory species. Plant and Soil, 2019, 436 (1/2): 427- 438. | |
Yang B, Wen X F, Sun X M. Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region. Agricultural and Forest Meteorology, 2015, 201, 218- 228.
doi: 10.1016/j.agrformet.2014.11.020 |
|
Yang F T, Feng Z M, Wang H M, et al. 2017. Deep soil water extraction helps to drought avoidance but shallow soil water uptake during dry season controls the inter-annual variation in tree growth in four subtropical plantations. Agricultural and Forest Meteorology, 234–235: 106-114. | |
Yu G R, Chen Z, Piao S L, et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 (13): 4910- 4915. | |
Yuan M X, Zhao L, Lin A W, et al. Impacts of preseason drought on vegetation spring phenology across the Northeast China Transect. Science of the Total Environment, 2020, 738, 140297.
doi: 10.1016/j.scitotenv.2020.140297 |
|
Zeng Z Q, Wu W X, Ge Q S, et al. Legacy effects of spring phenology on vegetation growth under preseason meteorological drought in the Northern Hemisphere. Agricultural and Forest Meteorology, 2021, 310, 108630.
doi: 10.1016/j.agrformet.2021.108630 |
|
Zhang L M, Yu G R, Sun X M, et al. Seasonal variations of ecosystem apparent quantum yield (α) and maximum photosynthesis rate (Pmax) of different forest ecosystems in China. Agricultural and Forest Meteorology, 2006, 137 (3/4): 176- 187. | |
Zhang W J, Wang H M, Yang F T, et al. Underestimated effects of low temperature during early growing season on carbon sequestration of a subtropical coniferous plantation. Biogeosciences, 2011, 8 (6): 1667- 1678.
doi: 10.5194/bg-8-1667-2011 |
|
Zhang Y H, Zhang M X, Niu J Z, et al. Rock fragments and soil hydrological processes: significance and progress. Catena, 2016, 147, 153- 166.
doi: 10.1016/j.catena.2016.07.012 |
|
Zhao Q, Zhu Z C, Zeng H, et al. Publisher correction: seasonal peak photosynthesis is hindered by late canopy development in northern ecosystems. Nature Plants, 2023, 9 (1): 192.
doi: 10.1038/s41477-023-01342-y |
|
Zhu W Q, Tian H Q, Xu X F, et al. Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982–2006. Global Ecology and Biogeography, 2012, 21 (2): 260- 271.
doi: 10.1111/j.1466-8238.2011.00675.x |
[1] | Yusup Asadilla,Halik Ümüt,Dilixiati Babierjiang,Cheng Lei,Jianxin Wei,Abliz Abdulla,Jianluo Cui,Xixiang He. Spatial Distribution Pattern and Intraspecific Competition of Populus euphratica Population in the Lower Reaches of the Tarim River Based on LiDAR Data [J]. Scientia Silvae Sinicae, 2024, 60(4): 31-39. |
[2] | Wang Linghe;Zhang Guosheng;Sui Mingjie;Liu Meizhen. STUDY ON SPROUTING OF ADVENTITIOUS ROOTS OF SABINA VULGARIS IN MU US SANDY LAND [J]. Scientia Silvae Sinicae, 2002, 38(5): 156-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||