Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (8): 95-108.doi: 10.11707/j.1001-7488.LYKX20240136
• Research papers • Previous Articles Next Articles
Yijun Wang1,Lixin Chen1,3,Zuosinan Chen1,2,Zhiqiang Zhang1,3,4,*(),Hang Xu1,Fei Yao5,Shengnan Chen1
Received:
2024-03-11
Online:
2024-08-25
Published:
2024-09-03
Contact:
Zhiqiang Zhang
E-mail:zhqzhang@bjfu.edu.cn
CLC Number:
Yijun Wang,Lixin Chen,Zuosinan Chen,Zhiqiang Zhang,Hang Xu,Fei Yao,Shengnan Chen. Biophysical Control of Water Physiological Processes in Poplar under Various Nighttime Environmental Stability Conditions[J]. Scientia Silvae Sinicae, 2024, 60(8): 95-108.
Table 1
Basic information of experimental sample trees"
样树编号 Tree No. | 胸径 DBH/cm | 树高 Tree height/m | 冠幅 Canopy diameter/m | 树冠投影面积 Crown projected area/m2 | 边材面积 Sapwood area/cm2 | |
东 西 East-west | 南 北 North-south | |||||
1 | 14 | 16 | 4.12 | 3.26 | 10.55 | 72.86 |
2 | 14.2 | 19.2 | 4.04 | 2.93 | 9.30 | 74.76 |
3 | 19.98 | 21.6 | 3.3 | 4.39 | 11.38 | 139.23 |
4 | 26.23 | 22.4 | 5.26 | 3.83 | 15.82 | 228.54 |
5 | 30.99 | 25.12 | 7.14 | 6.15 | 34.49 | 309.62 |
6 | 25.7 | 22.56 | 5.47 | 5.42 | 23.29 | 220.20 |
7* | 36.53 | 21.9 | 7.46 | 6.8 | 39.84 | 417.72 |
8 | 40.28 | 19.2 | 9.16 | 8.14 | 58.56 | 499.07 |
9* | 30.59 | 22.5 | 4.66 | 8.98 | 32.87 | 302.38 |
10* | 33.97 | 20.7 | 5.90 | 9.8 | 45.41 | 365.96 |
Table 2
Categories and names of variables appearing"
类别 Category | 全称 Full name | 简写 Abbreviation | 单位 Unit |
树木水分生理指标 Tree water physiological indicators | 气孔导度 Stomatal conductance | gs | mol·m?2 s?1 |
蒸腾速率 Transpiration rate | Tr | mmol·m?2 s?1 | |
叶片水势 Leaf water potential | Ψ | MPa | |
树干液流密度 Sap flux density | Js | g·cm?2 s?1 | |
环境因子 Environmental factors | 太阳辐射 Solar radiation | Rs | W·m?2 |
风速 Wind speed | v | m·s?1 | |
大气温度 Air temperature | Ta | ?C | |
空气相对湿度 Relative humidity | RH | % | |
饱和水汽压差 Vapor pressure deficit | VPD | kPa | |
土壤含水量 Soil water content | SWC | m3·m?3 | |
土壤水势 Soil water potential | SWP | kPa | |
土壤温度 Soil temperature | ST | ?C | |
昼夜节律因子 Circadian rhythm factors | 日落后历时 Hours after dusk | tnight | h |
Table 4
Environmental grouping information"
环境分组 Environmental grouping | 分组依据 Basis for grouping | 树木水分生理指标 Tree water physiological indicators | 环境因子 Environmental factors |
NU | Rs<5 W·m?2 & | gs, Tr, Ψ, Js | v, Ta, RH, VPD, SWC, SWP, ST, (tnight) |
NS | Rs<5 W·m?2 & ΔVPD<0.1 kPa | gs, Tr, Ψ, Js | Ta, RH, VPD, SWC, SWP, ST, (tnight) |
DT | Rs≥5 W·m?2 | gs, Tr, Ψ, Js | Rs, v, Ta, RH, VPD, VWC, SWP, ST |
Table 6
Partial least squares regression of sap flow density and leaf water physiological indicators across different environmental groupings"
环境分组 Environmental grouping | 模型参数Model parameters | 回归系数检验Regression coefficient test | ||||
R2 | RMSEP | IV | SRC | P | ||
NU | 0.666 | 0.22 | gs | 0.355 | 0.001 | |
Tr | 0.412 | <0.001 | ||||
Ψ | 0.188 | 0.015 | ||||
NS | 0.219 | 0.06 | gs | -0.512 | 0.006 | |
Tr | 0.176 | 0.31 | ||||
Ψ | 0.042 | 0.772 | ||||
DT | 0.762 | 0.87 | gs | 0.132 | 0.078 | |
Tr | 0.677 | <0.001 | ||||
Ψ | 0.191 | 0.001 |
Table 7
Results of partial least squares regression for plant water physiology"
环境分组 Environmental grouping | 自变量Independent variables | ||||||||
因变量 Dependent variables | 环境因子 Environmental factors | 黄昏后历时 Hours after dusk | 环境因子和黄昏后历时 Environmental factors and hours after dusk | ||||||
R2 | RMSEP | SRC | P | R2 | RMSEP | ||||
NU | gs | 0.333 | 0.68 | ?0.17 | 0.066 | 0.356 | 0.68 | ||
Tr | 0.484 | ?0.215 | 0.018 | 0.506 | |||||
Ψ | 0.462 | ?0.12 | 0.080 | 0.373 | |||||
Js | 0.851 | ?0.289 | 0.001 | 0.869 | |||||
NS | gs | 0.388 | 0.29 | 1.241 | 0.000 | 0.755 | 0.26 | ||
Tr | 0.119 | 1.17 | 0.007 | 0.456 | |||||
Ψ | 0.816 | 0.398 | 0.006 | 0.844 | |||||
Js | 0.711 | ?0.031 | 0.868 | 0.709 | |||||
DT | gs | 0.440 | 1.51 | — | — | — | — | ||
Tr | 0.564 | ||||||||
Ψ | 0.827 | ||||||||
Js | 0.859 |
曹生奎, 冯 起, 司建华, 等. 植物叶片水分利用效率研究综述. 生态学报, 2009, 29 (7): 3882- 3892.
doi: 10.3321/j.issn:1000-0933.2009.07.051 |
|
Cao S K, Feng Q, Si J H, et al. Summary on the plant water use efficiency at leaf level. Acta Ecologica Sinica, 2009, 29 (7): 3882- 3892.
doi: 10.3321/j.issn:1000-0933.2009.07.051 |
|
范云翔, 邸 楠, 刘 洋, 等. 毛白杨茎干夜间液流时空动态及其环境影响因子. 植物生态学报, 2023, 47 (2): 262- 274. | |
Fan Y X, Di N, Liu Y, et al. Spatiotemporal dynamics of nocturnal sap flow of Populus tomentosa and environmental impact factors. Journal of Plant Ecology, 2023, 47 (2): 262- 274. | |
高惠璇. 两个多重相关变量组的统计分析(3)(偏最小二乘回归与PLS过程). 数理统计与管理, 2002, 21 (2): 58- 64. | |
Gao H X. Statistical analyses for multiple correlation variables of two sets (3) (partial least-sguares regression and PLS procedure). Journal of Applied Statistics and Management, 2002, 21 (2): 58- 64. | |
贾国栋, 陈立欣, 李瀚之, 等. 北方土石山区典型树种耗水特征及环境影响因子. 生态学报, 2018, 38 (10): 3441- 3452. | |
Jia G D, Chen L X, Li H Z, et al. The effect of environmental factors on plant water consumption characteristics in a northern rocky mountainous area. Acta Ecologica Sinica, 2018, 38 (10): 3441- 3452. | |
孔 喆, 陈胜楠, 律 江, 等. 欧美杨单株液流昼夜组成及其影响因素分析. 林业科学, 2020, 56 (3): 8- 20.
doi: 10.11707/j.1001-7488.20200302 |
|
Kong Z, Chen S N, Lü J, et al. Characteristics of Populus euramericana sap flow over day and night and its influencing factors. Scientia Silvae Sinicae, 2020, 56 (3): 8- 20.
doi: 10.11707/j.1001-7488.20200302 |
|
李光莹, 祖姆热提·于苏甫江, 董正武, 等. 古尔班通古特沙漠西南缘地区多枝柽柳(Tamarix ramosissima)生理特性对沙堆不同堆积阶段的响应. 生态学报, 2024, 44 (8): 1- 14. | |
Li G Y, Zumrat·Yusufjan, Dong Z W, et al. Response of physiological characteristics of Tamarix ramosissima to different accumulation stages of cones in the southwestern margin of Gurbantungut Desert. Acta Ecologica Sinica, 2024, 44 (8): 1- 14. | |
罗丹丹, 王传宽, 金 鹰. 植物水分调节对策: 等水与非等水行为. 植物生态学报, 2017, 41 (9): 1020- 1032.
doi: 10.17521/cjpe.2016.0366 |
|
Luo D D, Wang C K, Jin Y. Plant water-regulation strategies: isohydric versus anisohydric behavior. Journal of Plant Ecology, 2017, 41 (9): 1020- 1032.
doi: 10.17521/cjpe.2016.0366 |
|
罗丹丹, 王传宽, 金 鹰. 木本植物水力系统对干旱胁迫的响应机制. 植物生态学报, 2021, 45 (9): 925- 941.
doi: 10.17521/cjpe.2021.0111 |
|
Luo D D, Wang C K, Jin Y. Response mechanisms of hydraulic systems of woody plants to drought stress. Journal of Plant Ecology, 2021, 45 (9): 925- 941.
doi: 10.17521/cjpe.2021.0111 |
|
魏鸾葳, 陈左司南, 陈胜楠, 等. 降雨对河岸生态系统杨树树干液流及其环境控制的影响. 水土保持学报, 2023, 37 (4): 284- 293. | |
Wei L W, Chen Z S N, Chen S N, et al. Effects of rainfall on sap flow and its environmental controls in a riparian poplar plantation ecosystem. Journal of Soil and Water Conservation, 2023, 37 (4): 284- 293. | |
徐志彬. 2022. 北方三种常见针叶树种蒸腾耗水特征及其环境响应和生理控制. 北京: 北京林业大学. | |
Xu Z B. 2022. Environmental responses and physiological controls of transpiration of three common coniferous tree species in North China. Beijing: Beijing Forestry University. [in Chinese] | |
Bai Y, Li X Y, Liu S M, et al. Modelling diurnal and seasonal hysteresis phenomena of canopy conductance in an oasis forest ecosystem. Agricultural and Forest Meteorology, 2017, 246, 98- 110.
doi: 10.1016/j.agrformet.2017.06.006 |
|
Barbour M M, Buckley T N. 2007. The stomatal response to evaporative demand persists at night in Ricinus communis plants with high nocturnal conductance. Plant, Cell & Environment, 30(6): 711–721. | |
Barbour M M, Cernusak L A, Whitehead D, et al. Nocturnal stomatal conductance and implications for modelling δ18O of leaf-respired CO2 in temperate tree species. Functional Plant Biology, 2005, 32 (12): 1107- 1121.
doi: 10.1071/FP05118 |
|
Battin T J, Lauerwald R, Bernhardt E S, et al. River ecosystem metabolism and carbon biogeochemistry in a changing world. Nature, 2023, 613 (7944): 449- 459.
doi: 10.1038/s41586-022-05500-8 |
|
Buckley T N. 2019. How do stomata respond to water status? New Phytologist, 224(1): 21–36. | |
Bucci S J, Scholz F G, Goldstein G, et al. Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species. Tree Physiology, 2004, 24 (10): 1119- 1127.
doi: 10.1093/treephys/24.10.1119 |
|
Caird M A, Richards J H & Donovan L A, 2007. Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiology, 143(1): 4–10. | |
Chen Z S N, Zhang Z Q, Sun G, et al. Biophysical controls on nocturnal sap flow in plantation forests in a semi-arid region of northern China. Agricultural and Forest Meteorology, 2020, 284, 107904.
doi: 10.1016/j.agrformet.2020.107904 |
|
Chowdhury F I, Arteaga C, Alam M S, et al. Drivers of nocturnal stomatal conductance in C3 and C4 plants. Science of the Total Environment, 2022, 814, 151952.
doi: 10.1016/j.scitotenv.2021.151952 |
|
Clearwater M J, Meinzer F C, Andrade J L, et al. Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiology, 1999, 19 (10): 681- 687.
doi: 10.1093/treephys/19.10.681 |
|
Cochard H, Coll L, Le Roux X, et al. Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut. Plant Physiology, 2002, 128 (1): 282- 290.
doi: 10.1104/pp.010400 |
|
Cunningham S C. Stomatal sensitivity to vapour pressure deficit of temperate and tropical evergreen rainforest trees of Australia. Trees, 2004, 18 (4): 399- 407. | |
Daley M J, Phillips N G. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest. Tree Physiology, 2006, 26 (4): 411- 419.
doi: 10.1093/treephys/26.4.411 |
|
Dawson T E, Burgess S S O, Tu K P, et al. Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiology, 2007, 27 (4): 561- 575.
doi: 10.1093/treephys/27.4.561 |
|
Dodd A N, Salathia N, Hall A, et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science, 2005, 309 (5734): 630- 633.
doi: 10.1126/science.1115581 |
|
Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33, 317- 345.
doi: 10.1146/annurev.pp.33.060182.001533 |
|
Forster M A. 2014. How significant is nocturnal sap flow? Tree Physiology, 34(7): 757–765. | |
Franks P J, Drake P L, Froend R H. 2007. Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant, Cell & Environment, 30(1): 19–30. | |
Fricke W. 2019. Night-time transpiration–favouring growth? Trends in Plant Science, 24(4): 311–317. | |
Fuentes S, Mahadevan M, Bonada M, et al. Night-time sap flow is parabolically linked to midday water potential for field-grown almond trees. Irrigation Science, 2013, 31 (6): 1265- 1276.
doi: 10.1007/s00271-013-0403-3 |
|
Goldstein G, Andrade J L, Meinzer F C, et al. 1998. Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant, Cell & Environment, 21(4): 397–406. | |
Gordon N D, McMahon T A, Finlayson B L, et al. 2004. Stream hydrology: an introduction for ecologists. New York: John Wiley and Sons. | |
Gould P D, Locke J C W, Larue C. et al. The molecular basis of temperature compensation in the Arabidopsis circadian clock. The Plant Cell, 2006, 18 (5): 1177- 1187.
doi: 10.1105/tpc.105.039990 |
|
Granier A, Bobay V, Gash J H C, et al. Vapour flux density and transpiration rate comparisons in a stand of Maritime pine (Pinus pinaster Ait. ) in Les Landes forest. Agricultural and Forest Meteorology, 1990, 51 (3): 309- 319. | |
Green S R, McNaughton K G, Clothier B E. Observations of night-time water use in kiwifruit vines and apple trees. Agricultural and Forest Meteorology, 1989, 48 (3): 251- 261. | |
Grossiord C, Buckley T N, Cernusak L A, et al. Plant responses to rising vapor pressure deficit. New Phytologist, 2020, 226 (6): 1550- 1566.
doi: 10.1111/nph.16485 |
|
Hasanuzzaman M, Zhou M & Shabala S, 2023. How does stomatal density and residual transpiration contribute to osmotic stress tolerance? Plants, 12(3): 494. | |
Haworth M, Marino G, Loreto F, et al. Integrating stomatal physiology and morphology: evolution of stomatal control and development of future crops. Oecologia, 2021, 197 (4): 867- 883.
doi: 10.1007/s00442-021-04857-3 |
|
Hogg E H, Hurdle P A. Sap flow in trembling aspen: implications for stomatal responses to vapor pressure deficit. Tree Physiology, 1997, 17 (8-9): 501- 509.
doi: 10.1093/treephys/17.8-9.501 |
|
Howard A R, Donovan L A. Helianthus nighttime conductance and transpiration respond to soil water but not nutrient availability. Plant Physiology, 2007, 143 (1): 145- 155.
doi: 10.1104/pp.106.089383 |
|
Huang C W, Domec J C, Ward E J, et al. The effect of plant water storage on water fluxes within the coupled soil–plant system. New Phytologist, 2017, 213 (3): 1093- 1106.
doi: 10.1111/nph.14273 |
|
Huang J T, Zhou Y X, Yin L H, et al. Climatic controls on sap flow dynamics and used water sources of Salix psammophila in a semi-arid environment in northwest China. Environmental Earth Sciences, 2015, 73 (1): 289- 301.
doi: 10.1007/s12665-014-3505-1 |
|
Jasechko S, Sharp Z D, Gibson J J, et al. Terrestrial water fluxes dominated by transpiration. Nature, 2013, 496 (7445): 347- 350.
doi: 10.1038/nature11983 |
|
Kim D, Oren R, Oishi A C, et al. Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest. Agricultural and Forest Meteorology, 2014, 187, 62- 71.
doi: 10.1016/j.agrformet.2013.11.013 |
|
Körner C. 1994. Scaling from species to vegetation: the usefulness of functional groups//Schulze E-D, Mooney H A, eds. Biodiversity and ecosystem function. Berlin, Heidelberg: Springer,117−140. | |
Liu X M, Luo Y Z, Zhang D, et al. 2011. Recent changes in pan-evaporation dynamics in China. Geophysical Research Letters, 38(13): L13404-1–L13404-4. | |
Lombardozzi D L, Zeppel M J B, Fisher R A, et al. Representing nighttime and minimum conductance in CLM4.5 global hydrology and carbon sensitivity analysis using observational constraints. Geoscientific Model Development, 2017, 10 (1): 321- 331.
doi: 10.5194/gmd-10-321-2017 |
|
Martínez-Vilalta J, Poyatos R., Aguadé D, et al. A new look at water transport regulation in plants. New Phytologis, 2014, 204 (1): 105- 115.
doi: 10.1111/nph.12912 |
|
McCarthy H R, Pataki D E. Drivers of variability in water use of native and non-native urban trees in the greater Los Angeles area. Urban Ecosystems, 2010, 13 (4): 393- 414.
doi: 10.1007/s11252-010-0127-6 |
|
Mcculloh K A, Johnson D M, Meinzer F C, et al. 2014. The dynamic pipeline: hydraulic capacitance and xylem hydraulic safety in four tall conifer species. Plant, Cell and Environment, 37(5): 1171–1183. | |
McVicar T R, Roderick M L, Donohue R J, et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. Journal of Hydrology, 2012, 416/417, 182- 205.
doi: 10.1016/j.jhydrol.2011.10.024 |
|
Morison J I L, Baker N R, Mullineaux P M, et al. Improving water use in crop production. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 363 (1491): 639- 658. | |
Muchow R C, Fisher M J, Ludlow M M, et al. Stomatal behaviour of kenaf and sorghum in a semiarid tropical environment. II. during the day. Functional Plant Biology, 1980, 7 (5): 621- 628.
doi: 10.1071/PP9800621 |
|
Neumann R B, Cardon Z G, Teshera-Levye J, et al. 2014. Modelled hydraulic redistribution by sunflower (Helianthus annuus L. ) matches observed data only after including night-time transpiration. Plant, Cell & Environment, 37(4): 899–910. | |
Nobel P S. 1999. Physicochemical & environmental plant physiology. Pittsburgh: Academic Press. | |
Oren R, Sperry J S, Katul G G, et al. 1999. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant, Cell & Environment, 22(12): 1515–1526. | |
Phillips N G, Ryan M G, Bond B J, et al. Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiology, 2003, 23 (4): 237- 245.
doi: 10.1093/treephys/23.4.237 |
|
Pivovaroff A L, Sack L & Santiago L S. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis. New Phytologist, 2014, 203 (3): 842- 850.
doi: 10.1111/nph.12850 |
|
Resco de Dios V. Circadian regulation and diurnal variation in gas exchange. Plant Physiology, 2017, 175 (1): 3- 4.
doi: 10.1104/pp.17.00984 |
|
Resco de Dios V, Chowdhury F I, Granda E, et al. Assessing the potential functions of nocturnal stomatal conductance in C3 and C4 plants. New Phytologist, 2019, 223 (4): 1696- 1706.
doi: 10.1111/nph.15881 |
|
Resco de Dios V, Díaz-Sierra R, Goulden M L, et al. Woody clockworks: circadian regulation of night-time water use in Eucalyptus globulus. New Phytologist, 2013, 200 (3): 743- 752.
doi: 10.1111/nph.12382 |
|
Resco de Dios V, Gessler A. Circadian regulation of photosynthesis and transpiration from genes to ecosystems. Environmental and Experimental Botany, 2018, 152, 37- 48.
doi: 10.1016/j.envexpbot.2017.09.010 |
|
Resco de Dios V, Gessler A, Ferrio J P, et al. Circadian rhythms have significant effects on leaf-to-canopy gas exchange under field conditions. GigaScience, 2016b, 5, 43.
doi: 10.1186/s13742-016-0149-y |
|
Resco de Dios V, Gessler A, Ferrio J P, et al. Circadian rhythms regulate the environmental responses of net CO2 exchange in bean and cotton canopies. Agricultural and Forest Meteorology, 2017, 239, 185- 191.
doi: 10.1016/j.agrformet.2017.03.014 |
|
Resco de Dios V, Goulden M L, Ogle K, et al. Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems. Global Change Biology, 2012, 18 (6): 1956- 1970.
doi: 10.1111/j.1365-2486.2012.02664.x |
|
Resco de Dios V, Loik M. E, Smith R, et al. 2016a. Genetic variation in circadian regulation of nocturnal stomatal conductance enhances carbon assimilation and growth. Plant, Cell & Environment, 39(1): 3–11. | |
Scholz F G, Phillips N G, Bucci S J, et al. 2011. Hydraulic capacitance: biophysics and functional significance of internal water sources in relation to tree size//Meinzer F C, Lachenbruch B, Dawson T E, eds. Size- and age-related changes in tree structure and function. Dordrecht: Springer, 341–361. | |
Tyree M T. Plant hydraulics: the ascent of water. Nature, 2003, 423 (6943): 923- 923.
doi: 10.1038/423923a |
|
Venturas M D, Sperry J S, Hacke U G. Plant xylem hydraulics: what we understand, current research, and future challenges. Journal of Integrative Plant Biology, 2017, 59 (6): 356- 389.
doi: 10.1111/jipb.12534 |
|
Wu S P, Gu X X, Zheng Y H, et al. Nocturnal sap flow as compensation for water deficits: an implicit water-saving strategy used by mangroves in stressful environments. Frontiers in Plant Science, 2023, 14, 1118970.
doi: 10.3389/fpls.2023.1118970 |
|
Wu Y Z, Zhang Y K, An J, et al. Sap flow of black locust in response to environmental factors in two soils developed from different parent materials in the lithoid mountainous area of North China. Trees, 2018, 32 (3): 675- 688.
doi: 10.1007/s00468-018-1663-6 |
|
Xu H, Zhang Z Q, Chen J Q, et al. Regulations of cloudiness on energy partitioning and water use strategy in a riparian poplar plantation. Agricultural and Forest Meteorology, 2018, 262, 135- 146.
doi: 10.1016/j.agrformet.2018.07.008 |
|
Yu K L, Goldsmith G R, Wang Y J, et al. Phylogenetic and biogeographic controls of plant nighttime stomatal conductance. New Phytologist, 2019, 222 (4): 1778- 1788.
doi: 10.1111/nph.15755 |
|
Zeppel M J B, Lewis J D, Phillips N G, et al. Consequences of nocturnal water loss: a synthesis of regulating factors and implications for capacitance, embolism and use in models. Tree Physiology, 2014, 34 (10): 1047- 1055.
doi: 10.1093/treephys/tpu089 |
|
Zeppel M, Tissue D, Taylor D, et al. Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies. Tree Physiology, 2010, 30 (8): 988- 1000.
doi: 10.1093/treephys/tpq053 |
|
Zhu M X, Xue W L, Xu H, et al. Diurnal and seasonal variations in soil respiration of four plantation forests in an urban park. Forests, 2019, 10 (6): 513.
doi: 10.3390/f10060513 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||