Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (8): 109-119.doi: 10.11707/j.1001-7488.LYKX20230080
• Research papers • Previous Articles Next Articles
Aoyu Wang1(),Youzheng Guo1,Tan Deng2,Yang Liu1,Nan Di3,Jie Duan1,Ximeng Li4,*,Benye Xi1
Received:
2023-03-01
Online:
2024-08-25
Published:
2024-09-03
Contact:
Ximeng Li
E-mail:1319376254@qq.com
CLC Number:
Aoyu Wang,Youzheng Guo,Tan Deng,Yang Liu,Nan Di,Jie Duan,Ximeng Li,Benye Xi. Comparison of Several Methods for Evaluating Plant Water Regulation Strategies[J]. Scientia Silvae Sinicae, 2024, 60(8): 109-119.
Table 1
Basic information of the sample trees"
处理 Treatment | 样树编号 Tree No. | 胸径 Diameter at breast height/cm | 树高 Height/m | 最低活枝高 Height of lowest living branch/m |
FI | T1 | 12.45 | 15.0 | 3.9 |
T2 | 13.70 | 15.4 | 2.0 | |
T3 | 10.68 | 12.5 | 2.2 | |
T4 | 10.13 | 11.6 | 2.9 | |
NI | T1 | 13.15 | 16.1 | 3.1 |
T2 | 15.02 | 14.4 | 4.2 | |
T3 | 13.35 | 15.2 | 3.8 | |
T4 | 11.61 | 15.0 | 3.8 | |
FI | TFI | 11.74±0.38a | 13.6±0.4a | 2.8±0.5a |
NI | TNI | 13.28±0.31a | 15.3±0.2a | 3.7±0.2a |
Fig.1
Schematic diagram of four quantitative methods of water regulation strategies A–D shows the water potential difference, the relationship between PD-MD leaf water potential, the relationship between vapor pressure deficit and midday leaf water potential, and the hydroscape area, respectively. Blue represents the partial an-isohydric regulation strategy, yellow represents the partial isohydric regulation strategy, the solid point is the simulation point, the solid line area enclosed in Fig. D is the hydroscape area, and the dotted line is the 1∶1 line."
Fig.2
The maximum daily leaf water potential difference in two seasons under different irrigation treatments Different capital letters represent the difference between two water treatments in the same season, and different lowercase letters represent the difference between the same water treatments in different seasons, the significance level P=0.05. The solid line is the standard error bar."
Table 2
Results of isohydric/anisohydric regulation of Populus tomentosa in different seasons"
评价方法 Evaluation methods | 不灌溉 Non irrigation | 灌溉 Full irrigation | |||
旱季Dry season | 雨季Rainy season | 旱季Dry season | 雨季Rainy season | ||
ΔΨ | 偏等水 Isohydric | 偏非等水 An-isohydric | 偏等水 Isohydric | 偏非等水 An-isohydric | |
KΨPD-ΨMD | 偏等水 Isohydric | 偏非等水 An-isohydric | 偏非等水 An-isohydric | 偏等水 Isohydric | |
KΨMD-ΨVPD | 偏等水 Isohydric | 偏非等水 An-isohydric | 偏等水 Isohydric | 偏非等水 An-isohydric | |
HSA | 偏等水 Isohydric | 偏非等水 An-isohydric | 偏等水 Isohydric | 偏非等水 An-isohydric |
Table 3
Results of isohydric/anisohydric regulation of Populus tomentosa in different treatments"
评价方法 Evaluation methods | 旱季 Dry season | 雨季 Rainy season | |||
不灌溉Non irrigation | 灌溉Full irrigation | 不灌溉Non irrigation | 灌溉Full irrigation | ||
ΔΨ | 偏等水 Isohydric | 偏非等水 An-isohydric | 偏等水 Isohydric | 偏非等水 An-isohydric | |
KΨPD-ΨMD | 偏等水 Isohydric | 偏非等水 An-isohydric | 偏等水 Isohydric | 偏非等水 An-isohydric | |
KΨMD-ΨVPD | 偏等水 Isohydric | 偏非等水 An-isohydric | 偏非等水 An-isohydric | 偏等水 Isohydric | |
HSA | 偏等水 Isohydric | 偏非等水 An-isohydric | 偏等水 Isohydric | 偏非等水 An-isohydric |
范嘉智, 王 丹, 胡亚林, 等. 2016. 最优气孔行为理论和气孔导度模拟. 植物生态学报, 40(6): 631–642. | |
Fan J Z , Wang D, Hu Y L, et al., 2016. Optimal stomatal behavior theory for simulating stomatal conductance. Chinese Journal of Plant Ecology, 40(6): 631–642. [in Chinese] | |
李 荣, 姜在民, 张硕新, 等. 木本植物木质部栓塞脆弱性研究新进展. 植物生态学报, 2015, 39 (8): 838- 848. | |
Li R, Jang Z M, Zhang S X, et al. A review of new research progress on the vulnerability of xylem embolism of woody plants. Chinese Journal of Plant Ecology, 2015, 39 (8): 838- 848. | |
刘金玉, 付培立, 王玉杰, 等. 2012. 热带喀斯特森林常绿和落叶榕树的水力特征和水分关系与抗旱策略. 植物科学学报, 30(5): 484−493. | |
Liu J Y, Fu P L, Wang Y J, et al. , 2012. Different drought-adaptation strategies as characterized by hydraulic and water relations traits of vergreen and deciduous figs in a tropical Karst Forest. Chinese Journal of Plant Ecology, 30(5): 484−493. [in Chinese] | |
隆彦昕. 2021. 艾比湖流域荒漠林5种优势木本植物的水分调节策略. 乌鲁木齐: 新疆大学. | |
Long Y X. 2021. Water regulation strategies of five dominant woody plants in desert forest of Ebinur Lake Basin. Urumqi: Xinjiang University. [in Chinese] | |
罗丹丹, 王传宽, 金 鹰. 木本植物水力系统对干旱胁迫的响应机制. 植物生态学报, 2021, 45 (9): 925- 941.
doi: 10.17521/cjpe.2021.0111 |
|
Luo D D, Wang C K, Jin Y. Response mechanisms of hydraulic systems of woody plants to drought stress. Chinese Journal of Plant Ecology, 2021, 45 (9): 925- 941.
doi: 10.17521/cjpe.2021.0111 |
|
罗丹丹, 王传宽, 金 鹰. 植物水分调节对策: 等水与非等水行为. 植物生态学报, 2017, 41 (9): 1020- 1032.
doi: 10.17521/cjpe.2016.0366 |
|
Luo D D, Wang C K, Jin Y. Plant water-regulation strategies: Isohydric versus anisohydric behavior. Chinese Journal of Plant Ecology, 2017, 41 (9): 1020- 1032.
doi: 10.17521/cjpe.2016.0366 |
|
罗丹丹. 2017. 东北温带森林8种树种水分调节对策研究. 哈尔滨: 东北林业大学. | |
Luo D D. 2017. Water regulation strategies for 8 tree species in the temperate forest of northeastern China. Harbin: Northeast Forestry University. [in Chinese] | |
马 煦. 2020. 不同土壤水分条件下毛白杨不同高度冠层的水分调节特征与机制. 北京: 北京林业大学. | |
Ma X. 2020. Characteristics and mechanism of water regulation of Populus tomentosa in different canopy layer under various soil water conditions. Beijing: Beijing Forestry University. [in Chinese] | |
国家林业和草原局. 2019. 中国森林资源报告. 2014—2018. 北京: 中国林业出版社. | |
National Forestry and Grassland Administration. 2019. China Forest Resources Report. Beijing: Chinese Forestry Publishing House, 5. [in Chinese] | |
Álvarez-Maldini C, Acevedo M, Pinto M. 2021. Hydroscapes: a useful metric for distinguishing iso-/anisohydric behavior in almond cultivars. Plants, 10(6): 1249. | |
Anderegg W R L, Wolf A, Arango-Velez A, et al. Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecology Letters, 2018, 21 (7): 968- 977.
doi: 10.1111/ele.12962 |
|
Berger-Landefeldt U. 1936. Das Wasserhaushalt der Alpenp- flanzen. Bibliotheca Botanica. | |
Binks O, Cernusak L A, Liddell M, et al. Forest system hydraulic conductance: partitioning tree and soil components. New Phytologist, 2022, 233 (4): 1667- 1681.
doi: 10.1111/nph.17895 |
|
Campbell G S, Norman J M. 1998. An introduction to environmental biophysics. 2nd edition. New York: Springer Verlag. | |
Choat B, Brodribb T J, Brodersen C R, et al. Triggers of tree mortality under drought. Nature, 2018, 558 (7711): 531- 539.
doi: 10.1038/s41586-018-0240-x |
|
Choat B, Jansen S, Brodribb T J, et al. Global convergence in the vulnerability of forests to drought. Nature, 2012, 491 (7426): 752- 755.
doi: 10.1038/nature11688 |
|
Chen Y, Choat B, Sterck F, et al. Hydraulic prediction of drought-induced plant dieback and top-kill depends on leaf habit and growth form. Ecology Letters, 2021a, 24, 2350- 2363.
doi: 10.1111/ele.13856 |
|
Chen Y, Maenpuen P, Zhang Y, et al. 2021b. Quantifying vulnerability to embolism in tropical trees and lianas using five methods: can discrepancies be explained by xylem structural traits? New Phytologist, 229: 805–819. | |
Chen Z C, Li S, Wan X C, et al. Strategies of tree species to adapt to drought from leaf stomatal regulation and stem embolism resistance to root properties. Frontiers in Plant Science, 2022, 13, 926535.
doi: 10.3389/fpls.2022.926535 |
|
Egea G, Nortes P A, González-Real M M, et al. Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes. Agricultural Water Management, 2010, 97 (1): 171- 181.
doi: 10.1016/j.agwat.2009.09.006 |
|
Fu X, Meinzer F C. Metrics and proxies for stringency of regulation of plant water status (iso/anisohydry): a global data set reveals coordination and trade offs among water transport traits. Tree Physiology, 2019, 39 (1): 122- 134.
doi: 10.1093/treephys/tpy087 |
|
Fu Z, Ciais P, Prentice I C, et al. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nature Communications, 2022, 13 (1): 989.
doi: 10.1038/s41467-022-28652-7 |
|
Goud E M, Sparks J P, Fishbein M, et al. Integrated metabolic strategy: A framework for predicting the evolution of carbon-water tradeoffs within plant clades. Journal of Ecology, 2019, 107 (4): 1633- 1644.
doi: 10.1111/1365-2745.13204 |
|
Gu L, Pallardy S G, Hosman K P, et al. Predictors and mechanisms of the drought-influenced mortality of tree species along the isohydric to anisohydic continuum in a decade-long study of a central US temperate forest. Biogeosciences Discussions, 2015, 12 (2): 1285- 1325. | |
Guo Y Z, Ma Y J, Ding C J, et al. Plant hydraulics provide guidance for irrigation management in mature polar plantation. Agricultural Water Management, 2023, 275, 108029.
doi: 10.1016/j.agwat.2022.108029 |
|
Hochberg U, Rockwell F E, Holbrook N M, et al. Iso/anisohydry: a plant–environment interaction rather than a simple hydraulic trait. Trends in Plant Science, 2018, 23 (2): 112- 120.
doi: 10.1016/j.tplants.2017.11.002 |
|
Hartmann H. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytologist, 2018, 218 (1): 15- 28.
doi: 10.1111/nph.15048 |
|
Johnson D M, Berry Z C, Baker K V, et al. Leaf hydraulic parameters are more plastic in species that experience a wider range of leaf water potentials. Functional Ecology, 2018, 32 (4): 894- 903.
doi: 10.1111/1365-2435.13049 |
|
Klein T. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology, 2014, 28 (6): 1313- 1320.
doi: 10.1111/1365-2435.12289 |
|
Li D, Fernández J E, Li X, et al. Tree growth patterns and diagnosis of water status based on trunk diameter fluctuations in fast-growing Populus tomentosa plantations. Agricultural Water Management, 2020, 241, 106348.
doi: 10.1016/j.agwat.2020.106348 |
|
Liu L B, Gudmundsson L, Hauser M, et al. Soil moisture dominates dryness stress on ecosystem production globally. Nature Communications, 2020, 11 (1): 4892.
doi: 10.1038/s41467-020-18631-1 |
|
Li X M, Blackman C J, Peters J M R, et al. More than iso/anisohydry: Hydroscapes integrate plant water use and drought tolerance traits in 10 eucalypt species from contrasting climates. Functional Ecology, 2019, 33 (6): 1035- 1049.
doi: 10.1111/1365-2435.13320 |
|
Liu Y, Nadezhdina N, Di N, et al. An undiscovered facet of hydraulic redistribution driven by evaporation—a study from a Populus tomentosa plantation. Plant Physiology, 2021, 186 (1): 361- 372.
doi: 10.1093/plphys/kiab036 |
|
Liu J Q, Li D D, Fernándezc J E, et al. Variations of water balance components and carbon sequestration in poplar plantations with differing water inputs over a whole rotation: implications for sustainable forest management under climate change. Agricultural and Forest Meteorology, 2022, 320, 108958.
doi: 10.1016/j.agrformet.2022.108958 |
|
Lu M Z, Hedin L O. Global plant-symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nature Ecology & Evolution, 2019, 3 (2): 239- 250. | |
Markesteijn L, Poorter L. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traitspc. Plant Cell Environment, 2011, 34 (1): 137- 148.
doi: 10.1111/j.1365-3040.2010.02231.x |
|
Martínez-Vilalta J, Garcia-Forner N. 2017. Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant, Cell & Environment, 40(6): 962−976. | |
Martinez-Vilalta J, Poyatos R, Aguade D, et al. A new look at water transport regulation in plants. New Phytologist, 2014, 204 (1): 105- 15.
doi: 10.1111/nph.12912 |
|
Meinzer F C, Woodruff D R, Marias D E, et al. 2014. Dynamics of leaf water relations components in co-occurring iso-and anisohydric conifer species. Plant, Cell & Environment, 37(11): 2577-2586. | |
Meinzer F C, Woodruff D R, Marias D E, et al. Mapping ‘hydroscapes’ along the iso- to anisohydric continuum of stomatal regulation of plant water status. Ecology Letters, 2016, 19 (11): 1343- 1352.
doi: 10.1111/ele.12670 |
|
Ratzmann G, Meinzer F C, Tietjen B. Iso/anisohydry: still a useful concept. Trends in Plant Science, 2019, 24 (3): 191- 194.
doi: 10.1016/j.tplants.2019.01.001 |
|
Rodriguez‐Dominguez C M, Forner A, Martorell S, et al. Leaf water potential measurements using the pressure chamber: Synthetic testing of assumptions towards best practices for precision and accuracy. Plant Cell Environment, 2022, 45 (7): 2037- 2061.
doi: 10.1111/pce.14330 |
|
Rogiers S Y, Greer D H, Hatfield J M, et al. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. Tree Physiology, 2012, 32 (3): 249- 261.
doi: 10.1093/treephys/tpr131 |
|
Schultz H. Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant Cell Environment, 2003, 26 (8): 1393- 1405.
doi: 10.1046/j.1365-3040.2003.01064.x |
|
Tardieu F, Simonneau T. 1998. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. Journal of Experimental Botany, 419-432. | |
Wright I J, Ackerly D D, Bongers F, et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Annals of Botany, 2007, 99 (5): 1003- 1015.
doi: 10.1093/aob/mcl066 |
|
Xi B Y, Bloomberg M, Watt M S, et al. Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the North China Plain. Agricultural Water Management, 2016, 176, 243- 254.
doi: 10.1016/j.agwat.2016.06.017 |
|
Yang T, Li D D, Clothier B, et al. Where to monitor the soil-water potential for scheduling drip irrigation in Populus tomentosa plantations located on the North China Plain. Forest Ecology and Management, 2019, 437, 99- 112. | |
Zou S Y, Li D D, Di N, et al. Stand development modifies effects of soil water availability on poplar fine-root traits: evidence from a six-year experiment. Plant Soil, 2022, 480 (1-2): 165- 184.
doi: 10.1007/s11104-022-05568-1 |
[1] | Shuai Chen,Hongzhong Dang,Yingming Zhao,Yaru Huang,Mingyang Li,Chunying Liu. Azimuthal Variation in Water Transport in Tree Trunks of Shelterbelt Forests of Oasis Farmland [J]. Scientia Silvae Sinicae, 2024, 60(7): 73-80. |
[2] | Kong Yue,Xiang Li,Xinlei Shi,Xuekai Jiao,Peng Wu,Zhongfeng Zhang,Guoliang Dong,Yuanjin Fang. Effects of Thermal Pretreatment on Lateral Performance of Poplar Cross-Laminated Timber Shear Walls [J]. Scientia Silvae Sinicae, 2024, 60(7): 117-128. |
[3] | Lei Xu,Xiaoyun Wu,Jiang Lü,Yun Shi,Mengxun Zhu,Hang Xu,Zhiqiang Zhang. Impacts of Diffuse Radiation Fraction on Energy Partitioning in a Poplar Plantation in the North China Plain [J]. Scientia Silvae Sinicae, 2024, 60(3): 100-110. |
[4] | Jiaming Wan,Jiang Lü,Yun Shi,Hang Xu,Zhiqiang Zhang. Effects of Diffuse Radiation on the Gross Primary Productivity of a Poplar Plantation [J]. Scientia Silvae Sinicae, 2023, 59(5): 1-10. |
[5] | Lu Han,Han Zhao,Wei Wang,Wenhui Liu,Zaimin Jiang,Jing Cai. Hydraulic Vulnerability Segmentation and Its Correlation with Growth in Hybrid Poplar [J]. Scientia Silvae Sinicae, 2023, 59(3): 94-103. |
[6] | Weifeng Wang,Yuqi Zhao,Miaoqin Gao,Yuzheng Zong,Xingyu Hao. Leaf Photosynthesis and Carbon and Nitrogen Distribution of Populus×popularis‘35-44’ Young Cuttings in Response to Elevated CO2 Concentration and Temperature [J]. Scientia Silvae Sinicae, 2023, 59(2): 40-47. |
[7] | Ruirui Zhao,Yong Liu,Kai Wang. Effects of Biochar and Manure on Wood Decomposition and Soil Enzyme Activities Related Soil Nutrient Cycling in a triploid Populus tomentosa Plantation [J]. Scientia Silvae Sinicae, 2023, 59(11): 1-11. |
[8] | Wei Wang,Han Zhao,Xin Huang,Zhuoliang Hou,Zaimin Jiang,Jing Cai. Relationship Between Leaf Hydraulic and Economic Traits and Biomass of Poplar Clones [J]. Scientia Silvae Sinicae, 2023, 59(10): 89-98. |
[9] | Minxia Ren,Tan Li,Ziheng Zhang,Yuexia Zeng,Lifeng Wang,Minsheng Yang,Junxia Liu. Effects of Transgenic BtCry1Ac and API gene in Poplar 107 on Diversity and Stability of Arthropod Community [J]. Scientia Silvae Sinicae, 2022, 58(4): 110-118. |
[10] | Youjing Zhang,Yueyang Li,Han Zhao,Yuwan Cheng,Wei Wang,Zaimin Jiang,Jing Cai. Relationship between Hydraulic Efficiency and Gas Exchange and Growth of Six Poplar Clones [J]. Scientia Silvae Sinicae, 2022, 58(11): 118-126. |
[11] | Weixi Zhang,Yanbo Wang,Changjun Ding,Wenxu Zhu,Xiaohua Su. Detection of Horizontal Transfer of the Exogenous Gene in Adult Trees of Transgenic Populus alba × P. berolinensis in a Field Trial and Successive Years of Monitoring of Soil Microorganism [J]. Scientia Silvae Sinicae, 2022, 58(1): 52-61. |
[12] | Fang Tang,Shutang Zhao,Lijuan Wang,Xueqin Song,Mengzhu Lu. Gene Expression of Secondary Vascular System Regeneration in Populus tomentosa [J]. Scientia Silvae Sinicae, 2021, 57(9): 52-65. |
[13] | Yuequ Chen,Qingzhen Liu,Limei Li,Yang Zhang,Jiao Han,Yong'an Zhang. Screening and Identification of Antagonistic Streptomyces for Biocontrol of Poplar Canker [J]. Scientia Silvae Sinicae, 2021, 57(7): 92-100. |
[14] | Yang Qu,Qin Guo,Tian Li,Ziyun Zhao,Haitao Yue,Jie Yang,Qiang Wang. Preparation and Characterization of Hot-Pressed Peanut Meal Based Adhesive [J]. Scientia Silvae Sinicae, 2021, 57(6): 144-149. |
[15] | Hui Liu,Xiaoqin Wu,Jianren Ye,Dan Chen. Phosphate-Dissolving Mechanisms of Pseudomonas fluorescens and Its Colonizing Dynamics in the Mycorrhizosphere of Poplars [J]. Scientia Silvae Sinicae, 2021, 57(3): 90-97. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||