Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (7): 105-116.doi: 10.11707/j.1001-7488.LYKX20220705
Previous Articles Next Articles
Fangyu Yin,Yamin Du,Zhu Li,Jiali Jiang*
Received:
2022-10-20
Online:
2024-07-25
Published:
2024-08-19
Contact:
Jiali Jiang
CLC Number:
Fangyu Yin,Yamin Du,Zhu Li,Jiali Jiang. Shrinkage and Swelling Behavior of Different Types of Tissues in Catalpa bungei Wood[J]. Scientia Silvae Sinicae, 2024, 60(7): 105-116.
Table 2
The dimensional change ratios and EMC of the moisture adsorption period and the EMC constant period"
HR(%) | 试样 Sample | CW(%) | RC(WFT-T) | RC(WFT-L) | RC(WR-S) | RC(WR-T) | RC(WR-L) | RC(V-T) | |||||||||||||
X1 | X2 | X1 | X2 | X1 | X2 | X1 | X2 | X1 | X2 | X1 | X2 | X1 | X2 | ||||||||
10 | EW | 1.34 | 1.38 | 1.004 1 | 1.003 9 | 1.001 8 | 1.002 1 | 1.008 1 | 1.008 5 | 1.007 2 | 1.006 9 | 1.001 4 | 1.001 0 | 0.992 1 | 0.991 7 | ||||||
LW | 1.73 | 1.74 | 1.007 6 | 1.008 0 | 1.000 7 | 1.001 0 | 1.007 2 | 1.007 0 | 1.002 3 | 1.002 7 | 1.003 9 | 1.003 9 | 0.985 0 | 0.985 5 | |||||||
20 | EW | 2.55 | 2.61 | 1.008 3 | 1.008 0 | 1.003 2 | 1.003 4 | 1.016 3 | 1.016 6 | 1.013 1 | 1.013 5 | 1.003 0 | 1.003 3 | 0.985 1 | 0.985 4 | ||||||
LW | 3.20 | 3.24 | 1.016 5 | 1.016 5 | 1.001 2 | 1.001 5 | 1.013 2 | 1.013 2 | 1.006 4 | 1.006 0 | 1.008 1 | 1.008 6 | 0.976 4 | 0.976 1 | |||||||
30 | EW | 3.62 | 3.67 | 1.013 1 | 1.013 4 | 1.005 3 | 1.005 1 | 1.024 0 | 1.024 4 | 1.018 0 | 1.018 6 | 1.005 3 | 1.005 0 | 0.977 4 | 0.977 7 | ||||||
LW | 4.45 | 4.44 | 1.023 3 | 1.023 6 | 1.002 0 | 1.002 5 | 1.021 2 | 1.021 3 | 1.009 1 | 1.009 2 | 1.011 3 | 1.011 7 | 0.963 9 | 0.963 4 | |||||||
40 | EW | 4.47 | 4.49 | 1.018 4 | 1.018 9 | 1.006 2 | 1.005 9 | 1.035 1 | 1.035 6 | 1.022 1 | 1.022 7 | 1.007 6 | 1.008 0 | 0.972 0 | 0.972 3 | ||||||
LW | 5.67 | 5.68 | 1.030 5 | 1.030 4 | 1.002 8 | 1.003 1 | 1.029 4 | 1.029 5 | 1.012 2 | 1.012 6 | 1.013 2 | 1.013 5 | 0.955 5 | 0.955 5 | |||||||
50 | EW | 5.80 | 5.82 | 1.024 3 | 1.024 7 | 1.007 6 | 1.007 7 | 1.043 3 | 1.043 7 | 1.026 3 | 1.026 6 | 1.009 2 | 1.009 2 | 0.968 1 | 0.968 4 | ||||||
LW | 6.93 | 6.94 | 1.036 2 | 1.036 6 | 1.003 4 | 1.003 4 | 1.037 4 | 1.037 7 | 1.015 3 | 1.015 0 | 1.016 0 | 1.016 4 | 0.944 1 | 0.944 1 | |||||||
60 | EW | 7.01 | 7.07 | 1.031 5 | 1.031 4 | 1.009 7 | 1.009 5 | 1.050 4 | 1.050 8 | 1.032 2 | 1.032 7 | 1.011 1 | 1.011 0 | 0.964 3 | 0.964 8 | ||||||
LW | 8.30 | 8.36 | 1.044 1 | 1.044 4 | 1.004 0 | 1.004 4 | 1.044 5 | 1.044 0 | 1.019 0 | 1.019 2 | 1.019 3 | 1.019 1 | 0.937 0 | 0.937 7 | |||||||
70 | EW | 8.26 | 8.33 | 1.037 2 | 1.037 6 | 1.011 9 | 1.012 3 | 1.057 2 | 1.057 2 | 1.036 1 | 1.036 3 | 1.013 3 | 1.013 6 | 0.959 0 | 0.959 1 | ||||||
LW | 9.77 | 9.77 | 1.051 3 | 1.051 0 | 1.004 6 | 1.004 4 | 1.050 2 | 1.050 0 | 1.022 3 | 1.022 0 | 1.021 2 | 1.021 5 | 0.929 3 | 0.929 6 | |||||||
80 | EW | 9.71 | 9.74 | 1.044 4 | 1.044 2 | 1.014 3 | 1.014 9 | 1.066 1 | 1.066 5 | 1.042 2 | 1.041 5 | 1.013 0 | 1.013 3 | 0.953 2 | 0.953 8 | ||||||
LW | 11.43 | 11.45 | 1.060 2 | 1.060 3 | 1.005 6 | 1.006 0 | 1.057 4 | 1.057 7 | 1.026 1 | 1.026 6 | 1.024 5 | 1.024 6 | 0.925 1 | 0.925 0 | |||||||
90 | EW | 12.63 | 12.66 | 1.054 6 | 1.054 1 | 1.016 5 | 1.016 3 | 1.073 2 | 1.072 9 | 1.047 0 | 1.047 2 | 1.021 0 | 1.021 7 | 0.948 4 | 0.947 8 | ||||||
LW | 14.33 | 14.37 | 1.069 5 | 1.069 6 | 1.006 5 | 1.006 0 | 1.065 1 | 1.065 0 | 1.031 9 | 1.031 6 | 1.028 0 | 1.028 5 | 0.920 6 | 0.921 0 | |||||||
95 | EW | 14.27 | 14.29 | 1.060 4 | 1.060 8 | 1.018 3 | 1.018 3 | 1.079 4 | 1.079 1 | 1.051 6 | 1.051 0 | 1.027 4 | 1.027 0 | 0.945 0 | 0.945 5 | ||||||
LW | 15.66 | 15.70 | 1.077 2 | 1.077 7 | 1.007 3 | 1.007 6 | 1.071 0 | 1.071 5 | 1.038 1 | 1.038 4 | 1.032 3 | 1.032 1 | 0.918 3 | 0.918 8 |
Table 3
The dimensional change ratios and EMC of the moisture desorption period and the EMC constant period"
HR(%) | 试样 Sample | CW(%) | RC(WFT-T) | RC(WFT-L) | RC(WR-S) | RC(WR-T) | RC(WR-L) | RC(V-T) | |||||||||||||
X3 | X4 | X3 | X4 | X3 | X4 | X3 | X4 | X3 | X4 | X3 | X4 | X3 | X4 | ||||||||
95 | EW | 14.27 | 14.29 | 1.060 3 | 1.060 8 | 1.018 2 | 1.018 8 | 1.079 4 | 1.079 0 | 1.051 0 | 1.051 1 | 1.027 4 | 1.027 7 | 0.945 2 | 0.945 9 | ||||||
LW | 15.66 | 15.70 | 1.077 0 | 1.077 2 | 1.007 3 | 1.007 0 | 1.071 6 | 1.072 0 | 1.038 3 | 1.038 3 | 1.032 5 | 1.032 0 | 0.918 5 | 0.918 2 | |||||||
90 | EW | 13.75 | 13.76 | 1.058 4 | 1.058 8 | 1.017 4 | 1.017 1 | 1.077 5 | 1.007 8 | 1.049 4 | 1.049 0 | 1.026 5 | 1.026 4 | 0.953 4 | 0.953 4 | ||||||
LW | 15.05 | 15.09 | 1.074 3 | 1.074 0 | 1.007 1 | 1.007 8 | 1.069 3 | 1.069 0 | 1.037 0 | 1.037 6 | 1.031 0 | 1.031 1 | 0.927 4 | 0.927 1 | |||||||
80 | EW | 12.22 | 12.30 | 1.051 2 | 1.050 9 | 1.015 2 | 1.014 6 | 1.073 2 | 1.073 3 | 1.045 2 | 1.045 3 | 1.024 1 | 1.024 6 | 0.962 1 | 0.962 3 | ||||||
LW | 13.56 | 13.59 | 1.069 2 | 1.069 7 | 1.006 7 | 1.007 0 | 1.064 2 | 1.064 5 | 1.034 2 | 1.034 4 | 1.029 3 | 1.029 0 | 0.935 1 | 0.935 8 | |||||||
70 | EW | 11.04 | 11.07 | 1.045 3 | 1.045 5 | 1.013 3 | 1.013 4 | 1.068 0 | 1.068 2 | 1.041 3 | 1.041 0 | 1.022 0 | 1.022 3 | 0.968 0 | 0.968 4 | ||||||
LW | 12.33 | 12.41 | 1.064 4 | 1.064 8 | 1.006 2 | 1.006 3 | 1.059 1 | 1.059 7 | 1.031 0 | 1.031 6 | 1.028 1 | 1.028 5 | 0.944 2 | 0.944 3 | |||||||
60 | EW | 9.73 | 9.77 | 1.038 8 | 1.038 8 | 1.010 9 | 1.010 4 | 1.060 5 | 1.060 3 | 1.036 2 | 1.036 6 | 1.019 3 | 1.018 7 | 0.972 6 | 0.972 8 | ||||||
LW | 10.83 | 10.85 | 1.057 2 | 1.057 9 | 1.005 4 | 1.005 9 | 1.053 4 | 1.054 0 | 1.027 1 | 1.027 3 | 1.025 2 | 1.025 6 | 0.950 4 | 0.950 4 | |||||||
50 | EW | 8.36 | 8.39 | 1.031 6 | 1.031 0 | 1.008 7 | 1.008 4 | 1.052 1 | 1.052 6 | 1.030 6 | 1.030 9 | 1.016 4 | 1.016 4 | 0.975 4 | 0.975 9 | ||||||
LW | 9.31 | 9.32 | 1.049 2 | 1.049 3 | 1.004 7 | 1.004 7 | 1.046 7 | 1.046 6 | 1.023 3 | 1.022 9 | 1.055 0 | 1.055 1 | 0.957 2 | 0.957 6 | |||||||
40 | EW | 7.01 | 7.03 | 1.024 4 | 1.024 4 | 1.007 1 | 1.007 6 | 1.043 3 | 1.043 2 | 1.025 1 | 1.025 4 | 1.014 3 | 1.014 4 | 0.979 1 | 0.978 5 | ||||||
LW | 7.79 | 7.84 | 1.040 1 | 1.040 3 | 1.004 0 | 1.004 4 | 1.037 5 | 1.037 7 | 1.019 4 | 1.019 0 | 1.018 4 | 1.018 0 | 0.966 3 | 0.966 4 | |||||||
30 | EW | 5.57 | 5.58 | 1.018 3 | 1.018 8 | 1.005 6 | 1.005 3 | 1.033 1 | 1.033 2 | 1.020 0 | 1.020 7 | 1.011 0 | 1.011 2 | 0.984 0 | 0.984 2 | ||||||
LW | 6.21 | 6.24 | 1.031 1 | 1.031 0 | 1.003 1 | 1.002 9 | 1.028 0 | 1.028 5 | 1.015 2 | 1.015 4 | 1.015 3 | 1.015 7 | 0.974 5 | 0.974 3 | |||||||
20 | EW | 4.10 | 4.17 | 1.012 1 | 1.012 5 | 1.003 6 | 1.003 7 | 1.022 7 | 1.022 0 | 1.014 4 | 1.014 4 | 1.008 3 | 1.008 0 | 0.989 1 | 0.989 6 | ||||||
LW | 4.57 | 4.57 | 1.023 5 | 1.023 3 | 1.002 3 | 1.002 3 | 1.019 5 | 1.019 6 | 1.011 0 | 1.011 5 | 1.011 1 | 1.011 3 | 0.984 0 | 0.984 2 | |||||||
10 | EW | 2.39 | 2.44 | 1.007 2 | 1.007 4 | 1.002 1 | 1.002 6 | 1.012 4 | 1.012 6 | 1.008 6 | 1.008 8 | 1.005 1 | 1.005 6 | 0.994 4 | 0.994 3 | ||||||
LW | 2.65 | 2.68 | 1.013 4 | 1.013 0 | 1.001 3 | 1.001 0 | 1.010 6 | 1.010 8 | 1.006 3 | 1.006 3 | 1.006 2 | 1.006 4 | 0.991 3 | 0.991 8 |
成俊卿, 杨家驹, 刘 鹏. 1992. 中国木材志. 北京: 中国林业出版社. | |
Cheng J Q, Yang J J, Liu P. 1992. Wood records of China. Beijing: China Forestry Publishing House. [in Chinese] | |
高玉磊. 2019. 高温热处理杉木的吸湿吸水性变化规律及其机理研究. 北京: 中国林业科学研究院. | |
Gao Y L. 2019. Study on the changes and its mechanism of moisture adsorption and absorption properties of high temperature heat treated Chinese fir wood. Beijing: Chinese Academy of Forestry. [in Chinese] | |
刘盛全, 张 锦, 胡治华, 等. “皖青1号”人工林楸树物理力学性质的研究. 安徽农业大学学报, 2008, 35 (4): 473- 477. | |
Liu S Q, Zhang J, Hu Z H, et al. Physical and mechanical properties of Catalpa bungei (Wanqing number 1). Journal of Anhui Agricultural University, 2008, 35 (4): 473- 477. | |
麻文俊, 张守攻, 王军辉, 等. 楸树新无性系木材的物理力学性质. 林业科学, 2013, 49 (9): 126- 134. | |
Ma W J, Zhang S G, Wang J H, et al. Timber physical and mechanical properties of new Catalpa bungei clones. Scientia Silvae Sinicae, 2013, 49 (9): 126- 134. | |
欧阳白, 李 珠, 蒋佳荔. 楸木早/晚材水分吸着与湿胀行为. 林业科学, 2021, 57 (5): 176- 183. | |
Ouyang B, Li Z, Jiang J L. Hygroscopicity and swelling behavior of Catalpa bungei earlywood and latewood. Scientia Silvae Sinicae, 2021, 57 (5): 176- 183. | |
吴 玮. 2015. 楸木材性及其变化规律的研究. 南京: 南京林业大学. | |
Wu W. 2015. Study on the variance of wood structure and properties of Catalpa bungei C. A. Mey. Nanjing: Nanjing Forestry University. [in Chinese] | |
尹思慈. 1996. 木材学. 北京: 中国林业出版社. | |
Yin S C. 1996. Woodology. Beijing: China Forestry Publishing House. [in Chinese] | |
Bertaud F, Holmbom B. Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Science and Technology, 2004, 38 (4): 245- 256. | |
Bonnet M, Courtier-Murias D, Faure P, et al. NMR determination of sorption isotherms in earlywood and latewood of Douglas fir. Identification of bound water components related to their local environment. Holzforschung, 2017, 71 (6): 481- 490.
doi: 10.1515/hf-2016-0152 |
|
Boyd J D. Relating lignification to microfibril angle differences between tangential and radial faces of all layers in wood cells. Drevársky Výskum, 1974, 19 (2): 41- 54. | |
Carmeliet J, Van Den Abeele K. Application of the Preisach-Mayergoyz space model to analyze moisture effects on the nonlinear elastic response of rock. Geophysical Research Letters, 2002, 29 (7): 1144- 1148. | |
Carmeliet J, Van Den Abeele K. Poromechanical approach describing the moisture influence on the non-linear quasi-static and dynamic behaviour of porous building materials. Materials and Structures, 2004, 37 (4): 271- 280.
doi: 10.1007/BF02480635 |
|
Chau T, Ma E N, Cao J Z. Moisture adsorption and hygroexpansion of paraffin wax emulsion-treated southern pine (Pinus spp. ). BioResources, 2015, 10 (2): 2719- 2731. | |
Christensen G N, Kelsey K E. Die geschwindigkeit der wasserdampfsorption durch holz. Holz Als Roh- Und Werkstoff, 1959, 17 (5): 178- 188.
doi: 10.1007/BF02608810 |
|
Derome D, Griffa M, Koebel M, et al. Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. Journal of Structural Biology, 2011, 173 (1): 180- 190.
doi: 10.1016/j.jsb.2010.08.011 |
|
Derome D, Kulasinski K, Zhang C, et al. 2018. Using modeling to understand the hygromechanical and hysteretic behavior of the S2 cell wall layer of wood//Geitmann A, Gril J. Plant Biomechanics. Cham: Springer, 247−269. | |
Dong F, Olsson A M, Salmén L. Fibre morphological effects on mechano-sorptive creep. Wood Science and Technology, 2010, 44 (3): 475- 483.
doi: 10.1007/s00226-009-0300-3 |
|
Engelund E T, Thygesen L G, Svensson S, et al. A critical discussion of the physics of wood-water interactions. Wood Science and Technology, 2013, 47 (1): 141- 161.
doi: 10.1007/s00226-012-0514-7 |
|
Garcia R A, Rosero-Alvarado J, Hernández R E. Full-field moisture-induced strains of the different tissues of tamarack and red oak woods assessed by 3D digital image correlation. Wood Science and Technology, 2020a, 54 (1): 139- 159.
doi: 10.1007/s00226-019-01145-5 |
|
Garcia R A, Rosero-Alvarado J, Hernández R E. Swelling strain assessment of fiber and parenchyma tissues in the tropical hardwood Ormosia coccinea. Wood Science and Technology, 2020b, 54 (6): 1447- 1461.
doi: 10.1007/s00226-020-01223-z |
|
Hæggström E, Koponen T, Karppinen T, et al. Ultrasonic study on hysteresis in modulus of elasticity in Norway spruce as a function of year ring. AIP Conference Proceedings. Brunswick, Maine (USA). AIP, 2006, 820 (1): 1366- 1369. | |
Hill C A S, Norton A, Newman G. The water vapor sorption behavior of natural fibers. Journal of Applied Polymer Science, 2009, 112 (3): 1524- 1537.
doi: 10.1002/app.29725 |
|
Hou S Y, Wang J Y, Yin F Y, et al. Moisture sorption isotherms and hysteresis of cellulose, hemicelluloses and lignin isolated from birch wood and their effects on wood hygroscopicity. Wood Science and Technology, 2022, 56 (4): 1087- 1102.
doi: 10.1007/s00226-022-01393-y |
|
Joffre T, Isaksson P, Dumont P J J, et al. A method to measure moisture induced swelling properties of a single wood cell. Experimental Mechanics, 2016, 56 (5): 723- 733.
doi: 10.1007/s11340-015-0119-9 |
|
Kitin P, Funada R. Earlywood vessels in ring-porous trees become functional for water transport after bud burst and before the maturation of the current-year leaves. IAWA Journal, 2016, 37 (2): 315- 331.
doi: 10.1163/22941932-20160136 |
|
Kulasinski K, Guyer R, Derome D, et al. Water adsorption in wood microfibril-hemicellulose system: role of the crystalline-amorphous interface. Biomacromolecules, 2015, 16 (9): 2972- 2978.
doi: 10.1021/acs.biomac.5b00878 |
|
Kurata Y, Mori Y, Ishida A, et al. Variation in hemicellulose structure and assembly in the cell wall associated with the transition from earlywood to latewood in Cryptomeria japonica. Journal of Wood Chemistry and Technology, 2018, 38 (3): 254- 263.
doi: 10.1080/02773813.2018.1434206 |
|
Li S, Li X, Link R, et al. Influence of cambial age and axial height on the spatial patterns of xylem traits in Catalpa bungei, a ring-porous tree species native to China. Forests, 2019, 10 (8): 662- 678.
doi: 10.3390/f10080662 |
|
Lu Y F, Pignatello J J. History-dependent sorption in humic acids and a lignite in the context of a polymer model for natural organic matter. Environmental Science & Technology, 2004, 38 (22): 5853- 5862. | |
Ma E, Nakao T, Zhao G J, et al. Relation between moisture sorption and hygroexpansion of sitka spruce during adsorption processes. Wood and Fiber Science, 2010, 42 (3): 304- 309. | |
Ma Q, Rudolph V. Dimensional change behavior of Caribbean pine using an environmental scanning electron microscope. Drying Technology, 2006, 24 (11): 1397- 1403.
doi: 10.1080/07373930600952743 |
|
McIntosh D C. Shrinkage of red oak and beech. Forest Products Journal, 1955, 5 (10): 355- 359. | |
Morschauser C R. 1954. The effect of rays on differential shrinkage of red oak (Quercus borealis Michx. F. ). Mich: University of Michigan. | |
Nopens M, Riegler M, Hansmann C, et al. Simultaneous change of wood mass and dimension caused by moisture dynamics. Scientific Reports, 2019, 9 (1): 10309.
doi: 10.1038/s41598-019-46381-8 |
|
Olsson A M, Salmén L. 2003. The softening behavior of hemicelluloses related to moisture//Gatenholm P, Tenkanen M, eds. ACS Symposium Series. Washington, DC: American Chemical Society, 184−197. | |
Ouyang B, Yin F Y, Li Z, et al. Study on the moisture-induced swelling/shrinkage and hysteresis of Catalpa bungei wood across the growth ring. Holzforschung, 2022, 76 (8): 711- 721.
doi: 10.1515/hf-2021-0222 |
|
Pang S S, Herritsch A. Physical properties of earlywood and latewood of Pinus radiata D. Don: Anisotropic shrinkage, equilibrium moisture content and fibre saturation point. Holzforschung, 2005, 59 (6): 654- 661.
doi: 10.1515/HF.2005.105 |
|
Patera A, Bonnin A, Mokso R. Micro- and nano-scales three-dimensional characterisation of softwood. Journal of Imaging, 2021, 7 (12): 263- 280.
doi: 10.3390/jimaging7120263 |
|
Patera A, Derome D, Griffa M, et al. Hysteresis in swelling and in sorption of wood tissue. Journal of Structural Biology, 2013, 182 (3): 226- 234.
doi: 10.1016/j.jsb.2013.03.003 |
|
Patera A, Van den Bulcke J, Boone M N, et al. Swelling interactions of earlywood and latewood across a growth ring: global and local deformations. Wood Science and Technology, 2018, 52 (1): 91- 114.
doi: 10.1007/s00226-017-0960-3 |
|
Rafsanjani A, Derome D, Wittel F K, et al. Computational up-scaling of anisotropic swelling and mechanical behavior of hierarchical cellular materials. Composites Science and Technology, 2012, 72 (6): 744- 751.
doi: 10.1016/j.compscitech.2012.02.001 |
|
Redman A L, Bailleres H, Perré P. Characterization of viscoelastic, shrinkage and transverse anatomy properties of four Australian hardwood species. Wood Material Science and Engineering, 2011, 6 (3): 95- 104.
doi: 10.1080/17480272.2010.535014 |
|
Ritter G J, Mitchell R L. Fibers studies contributing to the differential shrinkage of cellulose. Paper Industries, 1952, 33, 1189- 1193. | |
Schulgasser K, Witztum A. How the relationship between density and shrinkage of wood depends on its microstructure. Wood Science and Technology, 2015, 49 (2): 389- 401.
doi: 10.1007/s00226-015-0699-7 |
|
Siau J F. 2012. Transport processes in wood. Cham: Springer. | |
Walker J C F. Primary wood processing: principles and practice. International Forestry Review, 2006, 9 (1): 97- 98. | |
Yang T T, Ma E N, Cao J Z. Effects of lignin in wood on moisture sorption and hygroexpansion tested under dynamic conditions. Holzforschung, 2018, 72 (11): 943- 950.
doi: 10.1515/hf-2017-0198 |
|
Zhan T Y, Lyu J X, Eder M. In situ observation of shrinking and swelling of normal and compression Chinese fir wood at the tissue, cell and cell wall level. Wood Science and Technology, 2021, 55 (5): 1359- 1377.
doi: 10.1007/s00226-021-01321-6 |
|
Zhang X X, Li J, Yu Y, et al. Investigating the water vapor sorption behavior of bamboo with two sorption models. Journal of Materials Science, 2018, 53 (11): 8241- 8249.
doi: 10.1007/s10853-018-2166-y |
|
Zhou H Z, Xu R, Ma E N. Effects of removal of chemical components on moisture adsorption by wood. BioResources, 2016, 11 (2): 3110- 3122. |
[1] | Fangyu Yin,Bai Ouyang,Jiali Jiang,Zhu Li,Jianxiong Lü. Research Development of Shrinkage and Swelling of Wood with Multi-Scale Structures [J]. Scientia Silvae Sinicae, 2023, 59(7): 145-154. |
[2] | Lin Weiqi;Xiao Yubai;Chen Li. STUDIES ON THE EQUILIBRIUM MOISTURE CONTENT AND MOISTURE ABSORPTION HYSTERESIS OF WOOD IN GUANGZHOU REGION [J]. , 1993, 29(2): 139-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||