Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (8): 79-94.doi: 10.11707/j.1001-7488.LYKX20220699
• Research papers • Previous Articles Next Articles
Anqi Mei1,2,Zhengyang Hou1,2,*,Qing Xu3,4,Fangting Chen1,2,Yuanhao Qi1,2,Dongjin Jia5
Received:
2022-10-19
Online:
2024-08-25
Published:
2024-09-03
Contact:
Zhengyang Hou
CLC Number:
Anqi Mei,Zhengyang Hou,Qing Xu,Fangting Chen,Yuanhao Qi,Dongjin Jia. Rejuvenating the Shelf-Life of Outdated Model and Auxiliary Data for Remote Sensing-Assisted Forest Inventory:Taking Forest Volume as an Example[J]. Scientia Silvae Sinicae, 2024, 60(8): 79-94.
Table 2
Vegetation index"
植被指数Vegetation index | 计算公式Formula | 参考文献Reference |
增强型植被指数Enhanced vegetation index (EVI) | 2.5 (NIR ? R)/(NIR + 6R ? 7.5B + 1) | |
广义差分植被指数Generalized difference vegetation index (GDVI) | (NIR2 ? R2)/(NIR2 + R2) | |
归一化差值植被指数Normalized difference vegetation index (NDVI) | (NIR ? R)/(NIR + R) | |
归一化差值水体指数Normalized difference water index (NDWI) | (NIR ? SWIR2)/(NIR+SWIR) | |
有效叶面积指数Specific leaf area vegetation indexm (SLAVI) | NIR/(R + SWIR2) | |
比值植被指数Simple ratio (SR) | NIR/R |
Table 3
Summary of models"
遥感数据 Remote sensing data ( | 遥感模型 Remote sensing model | 均方根误差 RMSE/(m3·hm?2) | RMSE (%) | 自变量 Independent variable | 模型参数估计值 Parameter estimate | 模型参数 估计误Std. error |
Landsat 8-A | 线性回归模型A Linear regression model A | 4.480 | 66.141 | 截距项 Intercept | ?6.086 | 0.707 |
EVI | 11.615 | 0.829 | ||||
度量误差模型A Error-in-variable model A | 4.478 | 66.114 | 截距项 Intercept | ?6.125 | 0.691 | |
EVI | 11.664 | 0.816 | ||||
Landsat 8-B | 线性回归模型B Linear regression model B | 4.361 | 64.379 | 截距项 Intercept | -6.026 | 0.566 |
EVI | 14.722 | 0.942 | ||||
度量误差模型B Error-in-variable model B | 4.357 | 64.326 | 截距项 Intercept | ?6.096 | 0.536 | |
EVI | 14.845 | 0.917 |
Table 4
Design-based estimates, model-based estimates and model-assisted estimates"
估计值 Estimates | 抽样设计 Sampling design | 遥感自变量 Independent variable ( | 遥感模型 Remote sensing model | 均值 Mean ( | 方差 Variance [ | 变异系数 Coefficient of variation(CV)(%) |
基于设计的估计值 Design-based estimates | 二阶抽样 Two-stage sampling | — | — | 6.774 | 0.965 | 14.502 |
基于模型的估计值 Model-based estimates | — | Landsat 8-A | 线性回归模型A Linear regression model A | 6.495 | 0.121 | — |
度量误差模型A Error-in-variable model A | 6.509 | 0.119 | — | |||
Landsat 8-B | 线性回归模型B Linear regression model B | 6.516 | 0.114 | — | ||
度量误差模型B Error-in-variable model B | 6.551 | 0.112 | — | |||
基于模型辅助的估计值 Model-assisted estimates | 二阶抽样 Two-stage sampling | Landsat 8-A | 线性回归模型A Linear regression model A | 6.571 | 0.297 | 8.293 |
度量误差模型A Error-in-variable model A | 6.570 | 0.296 | 8.283 | |||
Landsat 8-B | 线性回归模型B Linear regression model B | 6.591 | 0.261 | 7.743 | ||
度量误差模型B Error-in-variable model B | 6.590 | 0.259 | 7.724 |
Table 5
Model-based estimates applied to remotely sensed data obtained at different times"
遥感自变量 Independent variable( | 线性回归模型A Linear regression model A | 度量误差模型A Error-in-variable model A | 线性回归模型B Linear regression model B | 度量误差模型B Error-in-variable model B | |||||||
均值 Mean ( | 方差Variance [ | 均值 Mean ( | 方差Variance [ | 均值 Mean ( | 方差Variance [ | 均值 Mean ( | 方差Variance [ | ||||
Landsat 8-A | 6.495 | 0.121 | 6.509 | 0.119 | 9.920 | 0.280 | 9.984 | 0.276 | |||
Landsat 8-B | 3.809 | 0.067 | 3.811 | 0.064 | 6.516 | 0.114 | 6.551 | 0.113 | |||
Landsat 8-C | 2.492 | 0.067 | 2.489 | 0.064 | 4.847 | 0.067 | 4.868 | 0.066 | |||
Landsat 8-D | 0.768 | 0.094 | 0.758 | 0.089 | 2.662 | 0.040 | 2.665 | 0.036 | |||
Landsat 8-E | 0.464 | 0.102 | 0.452 | 0.096 | 2.276 | 0.040 | 2.276 | 0.035 | |||
Landsat 8-F | ?0.305 | 0.126 | ?0.320 | 0.119 | 1.301 | 0.043 | 1.293 | 0.037 | |||
Landsat 8-G | 1.452 | 0.079 | 1.445 | 0.075 | 3.529 | 0.046 | 3.539 | 0.044 | |||
Landsat 8-H | ?0.287 | 0.125 | ?0.302 | 0.118 | 1.324 | 0.043 | 1.316 | 0.037 |
Table 6
Model-assisted estimates applied to remotely sensed data obtained at different times"
遥感自 变量 Independent variable ( | 线性回归模型A Linear regression model A | 度量误差模型A Error-in-variable model A | 线性回归模型B Linear regression model B | 度量误差模型B Error-in-variable model B | |||||||||||
均值 Mean ( | 方差 Variance [ | 变异系数 Coefficient of variation (CV)(%) | 均值 Mean ( | 方差 Variance [ | 变异系数 Coefficient of variation (CV)(%) | 均值 Mean ( | 方差 Variance [ | 变异系数 Coefficient of variation (CV)(%) | 均值 Mean ( | 方差 Variance [ | 变异系数 Coefficient of variation (CV)(%) | ||||
Landsat 8-A | 6.571 | 0.297 | 8.293 | 6.570 | 0.296 | 8.283 | 6.517 | 0.279 | 8.099 | 6.514 | 0.279 | 8.112 | |||
Landsat 8-B | 6.630 | 0.320 | 8.535 | 6.630 | 0.319 | 8.518 | 6.592 | 0.261 | 7.743 | 6.590 | 0.259 | 7.724 | |||
Landsat 8-C | 6.649 | 0.393 | 9.424 | 6.648 | 0.391 | 9.405 | 6.616 | 0.306 | 8.360 | 6.614 | 0.303 | 8.323 | |||
Landsat 8-D | 6.717 | 0.587 | 11.401 | 6.717 | 0.585 | 11.389 | 6.702 | 0.507 | 10.628 | 6.701 | 0.504 | 10.598 | |||
Landsat 8-E | 6.617 | 0.557 | 11.274 | 6.616 | 0.555 | 11.261 | 6.575 | 0.473 | 10.455 | 6.573 | 0.469 | 10.423 | |||
Landsat 8-F | 6.653 | 0.631 | 11.943 | 6.652 | 0.630 | 11.934 | 6.620 | 0.565 | 11.353 | 6.619 | 0.562 | 11.330 | |||
Landsat 8-G | 6.606 | 0.474 | 10.426 | 6.605 | 0.473 | 10.415 | 6.561 | 0.412 | 9.784 | 6.559 | 0.410 | 9.763 | |||
Landsat 8-H | 6.794 | 0.619 | 11.582 | 6.794 | 0.618 | 11.573 | 6.799 | 0.562 | 11.024 | 6.799 | 0.560 | 11.004 |
Table 7
Model-assisted estimates using Landsat 8-G and Landsat 8-H datasets at different sample sizes"
模型Model | 遥感数据 Independent Variable ( | 重抽样次数 Number of repeated sampling | 20 | 40 | 60 | 80 | 100 | |||||
线性回归模型A Linear regression model A | Landsat 8-G | 6.597 | 1.245 | 6.608 | 0.618 | 6.610 | 0.413 | 6.613 | 0.310 | 6.604 | 0.247 | |
6.612 | 1.241 | 6.608 | 0.620 | 6.604 | 0.414 | 6.612 | 0.310 | 6.608 | 0.248 | |||
Landsat 8-H | 6.788 | 1.484 | 6.795 | 0.736 | 6.799 | 0.492 | 6.803 | 0.369 | 6.792 | 0.295 | ||
6.803 | 1.479 | 6.798 | 0.739 | 6.790 | 0.492 | 6.800 | 0.369 | 6.796 | 0.295 | |||
度量误差模型A Error-in-variable model A | Landsat 8-G | 6.596 | 1.243 | 6.607 | 0.617 | 6.609 | 0.413 | 6.613 | 0.310 | 6.603 | 0.247 | |
6.611 | 1.239 | 6.608 | 0.619 | 6.603 | 0.413 | 6.611 | 0.309 | 6.607 | 0.247 | |||
Landsat 8-H | 6.788 | 1.483 | 6.795 | 0.735 | 6.799 | 0.492 | 6.803 | 0.369 | 6.792 | 0.294 | ||
6.803 | 1.478 | 6.798 | 0.738 | 6.791 | 0.492 | 6.800 | 0.368 | 6.796 | 0.295 |
黄华国. 林业定量遥感研究进展和展望. 北京林业大学学报, 2019, 41 (12): 1- 14.
doi: 10.12171/j.1000-1522.20190326 |
|
Huang H G. Progress and perspective of quantitative remote sensing of forestry. Journal of Beijing Forestry University, 2019, 41 (12): 1- 14.
doi: 10.12171/j.1000-1522.20190326 |
|
李好奇. 2007. 度量误差模型参数估计及其统计性质. 长沙: 湖南大学. | |
Li H Q. 2007. Parameter estimation of measurement error model and its statistical properties. Changsha: Hunan University. [in Chinese] | |
王雪军, 张煜星, 黄国胜, 等. 全国森林面积和森林蓄积年度出数方法探讨. 江西农业大学学报, 2016, 38 (1): 9- 18. | |
Wang X J, Zhang Y X, Huang G S, et al. Discussion on methods for annual national producing estimates of forest area and forest stock in China. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38 (1): 9- 18. | |
曾伟生. 遥感技术在森林资源清查中的应用问题探讨. 中南林业调查规划, 2004, 23 (1): 47- 49. | |
Zeng W S. Discussion on application of remote sensing in forest inventories. Central South Forest Inventory and Planning, 2004, 23 (1): 47- 49. | |
曾伟生, 黄国胜, 党永峰, 等. 全国森林资源宏观监测的抽样设计与估计方法探索. 林业资源管理, 2016, (3): 1- 6. | |
Zeng W S, Huang G S, Dang Y F, et al. Discussion on sampling design and estimation methods of national forest resources macro-monitoring. Forest Resources Management, 2016, (3): 1- 6. | |
曾伟生, 易善军, 蒲 莹. 森林资源调查监测年度数据产出方法研究. 中南林业调查规划, 2022, 41 (3): 1- 6,11. | |
Zeng W S, Yi S J, Pu Y. Study on producing annual data in forest inventory and monitoring. Central South Forest Inventory and Planning, 2022, 41 (3): 1- 6,11. | |
郑冬梅, 智长贵, 黄国胜, 等. 遥感大样地点面判读方法在森林资源宏观监测中的应用分析. 林业资源管理, 2017, (6): 137- 142, 148. | |
Zheng D M, Zhi C G, Huang G S, et al. Analysis of forest resources monitoring by zoning interpretation and point interpretation of remote sensing large plot. Forest Resources Management, 2017, (6): 137- 142, 148. | |
Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 1974, 19 (6): 716- 723.
doi: 10.1109/TAC.1974.1100705 |
|
Battauz M, Bellio R. Structural modeling of measurement error in generalized linear models with rasch measures as covariates. Psychometrika, 2011, 76 (1): 40- 56.
doi: 10.1007/s11336-010-9195-z |
|
Birth G S, McVey G R. Measuring the color of growing turf with a reflectance Spectrophotometer. Agronomy Journal, 1968, 60 (6): 640- 643.
doi: 10.2134/agronj1968.00021962006000060016x |
|
Carroll R J, Ruppert D, Stefanski L A, et al. 2006. Measurement error in nonlinear models. New York: Chapman and Hall/CRC. | |
Carroll R J, Ruppert D. 1988. Transformation and weighting in regression. New York: Chapman and Hall/CRC. | |
Cassel C M, Särndal C E, Wretman J H. 1977. Foundations of inference in survey sampling. New York: John Wiley & Sons. | |
Chave J, Andalo C, Brown S, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 2005, 145 (1): 87- 99.
doi: 10.1007/s00442-005-0100-x |
|
Cochran W G. 1977. Sampling techniques. 3rd ed. NJ: John Wiley & Sons. | |
Cook J R, Stefanski L A. Simulation-extrapolation estimation in parametric measurement error models. Journal of the American Statistical Association, 1994, 89 (428): 1314- 1328.
doi: 10.1080/01621459.1994.10476871 |
|
Curran P J, Hay A M. The importance of measurement error for certain procedures in remote sensing at optical wavelengths. Photogrammetric Engineering and Remote Sensing, 1986, 52, 229- 241. | |
Fischer C, Kleinn C, Fehrmann L, et al. A national level forest resource assessment for Burkina Faso–A field based forest inventory in a semiarid environment combining small sample size with large observation plots. Forest Ecology and Management, 2011, 262 (8): 1532- 1540.
doi: 10.1016/j.foreco.2011.07.001 |
|
Fu L Y, Liu Q W, Sun H, et al. Development of a system of compatible individual tree diameter and aboveground biomass prediction models using error-In-variable regression and airborne LiDAR data. Remote Sensing, 2018, 10 (2): 325.
doi: 10.3390/rs10020325 |
|
Fu L Y, Zeng W S, Tang S Z. Individual tree biomass models to estimate forest biomass for large spatial regions developed using four pine species in China. Forest Science, 2017, 63 (3): 241- 249.
doi: 10.5849/FS-2016-055 |
|
Fuller W A. 2009. Sampling statistics. New York: John Wiley & Sons. | |
Ganse R A, Amemiya Y, Fuller W A. Prediction when both variables are subject to error, with application to earthquake magnitudes. Journal of the American Statistical Association, 1983, 78 (384): 761- 765.
doi: 10.1080/01621459.1983.10477016 |
|
Gao B C. NDWI: a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 1996, 58 (3): 257- 266.
doi: 10.1016/S0034-4257(96)00067-3 |
|
Gasparri N I, Parmuchi M G, Bono J, et al. Assessing multi-temporal Landsat 7 ETM+ images for estimating above-ground biomass in subtropical dry forests of Argentina. Journal of Arid Environments, 2010, 74 (10): 1262- 1270.
doi: 10.1016/j.jaridenv.2010.04.007 |
|
Goelz J C G, Burk T E. Development of a well-behaved site index equation: jack pine in north central Ontario. Canadian Journal of Forest Research, 1992, 22 (6): 776- 784.
doi: 10.1139/x92-106 |
|
Goelz J C G, Burk T E. Measurement error causes bias in site index equations. Canadian Journal of Forest Research, 1996, 26 (9): 1585- 1593.
doi: 10.1139/x26-178 |
|
Hansen M H, Madow W G, Tepping B J. An evaluation of model-dependent and probability-sampling inferences in sample surveys. Journal of the American Statistical Association, 1983, 78 (384): 776- 793.
doi: 10.1080/01621459.1983.10477018 |
|
Haralick R M, Shanmugam K, Dinstein I. 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6): 610-621. | |
Harrell F E Jr. 2001. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. New York, NY: Springer. | |
Hou Z Y, Xu Q, McRoberts R E, et al. Effects of temporally external auxiliary data on model-based inference. Remote Sensing of Environment, 2017, 198, 150- 159.
doi: 10.1016/j.rse.2017.06.013 |
|
Hou Z Y, Xu Q, Nuutinen T, et al. Extraction of remote sensing-based forest management units in tropical forests. Remote Sensing of Environment, 2013, 130, 1- 10.
doi: 10.1016/j.rse.2012.11.006 |
|
Hou Z Y, Xu Q, Tokola T. Use of ALS, Airborne CIR and ALOS AVNIR-2 data for estimating tropical forest attributes in Lao PDR. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66 (6): 776- 786.
doi: 10.1016/j.isprsjprs.2011.09.005 |
|
Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 2002, 83 (1/2): 195- 213. | |
Jonsson K, Ong C K, Odongo J C W. Influence of scattered néré and karité trees on microclimate, soil fertility and millet yield in Burkina Faso. Experimental Agriculture, 1999, 35 (1): 39- 53.
doi: 10.1017/S0014479799001039 |
|
Kangas A S. Effect of errors-in-variables on coefficients of a growth model and on prediction of growth. Forest Ecology and Management, 1998, 102 (2/3): 203- 212. | |
Kangas A S, Maltamo M. 2006. Forest inventory: methodology and applications. Dordrecht: Springer, 179−194. | |
Kvålseth T O. Cautionary note about R2. The American Statistician, 1985, 39, 279- 285. | |
Lehmann E L, Casella G. 1998. Theory of point estimation. 2nd ed. New York: Springer. | |
Lindley D V. Regression lines and the linear functional relationship. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1947, 9 (2): 218- 244.
doi: 10.2307/2984115 |
|
Lockwood J R, McCaffrey D F. Correcting for test score measurement error in ANCOVA models for estimating treatment effects. Journal of Educational and Behavioral Statistics, 2014, 39 (1): 22- 52.
doi: 10.3102/1076998613509405 |
|
Lymburner L, Beggs P J, Jacobson C R. Estimation of canopy-average surface-specific leaf area using Landsat TM data. Photogrammetric Engineering and Remote Sensing, 2000, 66 (2): 183- 191. | |
McRoberts R E, Næsset E, Gobakken T. The effects of temporal differences between map and ground data on map-assisted estimates of forest area and biomass. Annals of Forest Science, 2016a, 73 (4): 839- 847.
doi: 10.1007/s13595-015-0485-6 |
|
McRoberts R E, Chen Q, Domke G M, et al. Hybrid estimators for mean aboveground carbon per unit area. Forest Ecology and Management, 2016b, 378, 44- 56.
doi: 10.1016/j.foreco.2016.07.007 |
|
McRoberts R E, Chen Q, Walters B F, et al. The effects of global positioning system receiver accuracy on airborne laser scanning-assisted estimates of aboveground biomass. Remote Sensing of Environment, 2018a, 207, 42- 49.
doi: 10.1016/j.rse.2017.09.036 |
|
McRoberts R E, Chen Q, Gormanson D D, et al. The shelf-life of airborne laser scanning data for enhancing forest inventory inferences. Remote Sensing of Environment, 2018b, 206, 254- 259.
doi: 10.1016/j.rse.2017.12.017 |
|
McRoberts R E, Tomppo E O, Næsset E. Advances and emerging issues in national forest inventories. Scandinavian Journal of Forest Research, 2010, 25 (4): 368- 381.
doi: 10.1080/02827581.2010.496739 |
|
McRoberts R E, Tomppo E O, Vibrans A C, et al. Design considerations for tropical forest inventories. Pesquisa Florestal Brasileira, 2013, 33 (74): 189- 202.
doi: 10.4336/2013.pfb.33.74.430 |
|
Næsset E, Gobakken T, Solberg S, et al. Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: a case study from a boreal forest area. Remote Sensing of Environment, 2011, 115 (12): 3599- 3614.
doi: 10.1016/j.rse.2011.08.021 |
|
Nicholson S E. A revised picture of the structure of the “monsoon” and land ITCZ over west Africa. Climate Dynamics, 2009, 32 (7): 1155- 1171. | |
Peel M C, Finlayson B L, McMahon T A. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 2007, 11 (5): 1633- 1644.
doi: 10.5194/hess-11-1633-2007 |
|
Rizopoulos D. 2009. Bootstrap stepAIC. https://CRAN.R-project.org/package= bootStepAIC (accessed 22.10.1). | |
Rouse J W, Haas R H, Schell J A, et al. 1973. Monitoring vegetation systems in the great plains with ERST. Third ERTS Symposium, NASA SP-351, 309–317. | |
Royall R M, Herson J. Robust estimation in finite populations II: stratification on a size variable. Journal of the American Statistical Association, 1973, 68 (344): 890.
doi: 10.1080/01621459.1973.10481441 |
|
Saarela S, Schnell S, Tuominen S, et al. Effects of positional errors in model-assisted and model-based estimation of growing stock volume. Remote Sensing of Environment, 2016, 172, 101- 108.
doi: 10.1016/j.rse.2015.11.002 |
|
Särndal C E, Swensson B, Wretman J. 1992. Model assisted survey sampling. New York, NY: Springer, 323. | |
Särndal C E, Thomsen I, Hoem J M, et al. Design-based and model-based inference in survey sampling with discussion and reply. Scandinavian Journal of Statistics, 1978, 5 (1): 27- 52. | |
Sawadogo L, Nygård R, Pallo F. Effects of livestock and prescribed fireon coppice growth after selective cutting of Sudanian savannah in Burkina Faso. Annals of Forest Science, 2002, 59 (2): 185- 195.
doi: 10.1051/forest:2002005 |
|
Tomppo E, Gschwantner T, Lawrence M, et al. 2010. National forest inventories. pathways for common reporting. Dordrecht: Springer. | |
Vågen T G, Winowiecki L A, Tamene Desta L, et al. 2015. The land degradation surveillance framework (LDSF) - Field Guide v 4.1. Nairobi: World Agroforestry Centre. | |
Valliant R, Dorfman A, Royall R. 2000. Finite population sampling and inference: a prediction approach. New York: John Wiley & Sons. | |
Willett J B, Singer J D. Another cautionary note about R2: its use in weighted least-squares regression analysis. The American Statistician, 1988, 42 (3): 236. | |
Wu W C, de Pauw E, Helldén U. Assessing woody biomass in African tropical savannahs by multiscale remote sensing. International Journal of Remote Sensing, 2013, 34 (13): 4525- 4549.
doi: 10.1080/01431161.2013.777487 |
|
Zhang W H, Ke Y H, Quackenbush L J, et al. Using error-in-variable regression to predict tree diameter and crown width from remotely sensed imagery. Canadian Journal of Forest Research, 2010, 40 (6): 1095- 1108.
doi: 10.1139/X10-073 |
[1] | Yuxing Zhang,Xuejun Wang. Productivity and Carbon Sink Capacity of Eucalyptus Plantations in China from 1973 to 2018 [J]. Scientia Silvae Sinicae, 2023, 59(3): 54-64. |
[2] | Zexin Guo,Zhongyue Hu,Cong Cao,Ping Liu. Stand-Level Models of Biomass and Carbon Stock for Major Forest Types in Guangdong [J]. Scientia Silvae Sinicae, 2023, 59(12): 37-50. |
[3] | Xiao Fu,Yuxing Zhang,Xuejun Wang. Prediction of Forest Biomass Carbon Pool and Carbon Sink Potential in China before 2060 [J]. Scientia Silvae Sinicae, 2022, 58(2): 32-41. |
[4] | Huiru Zhang,Xiangdong Lei,Fengri Li. Research Progress and Prospects of Forest Management Science in China [J]. Scientia Silvae Sinicae, 2020, 56(9): 130-142. |
[5] | Liu Dan, Li Yutang, Hong Lingxia, Guo Hong, Xie Yangsheng, Zhang Zhuoli, Lei Xiangdong, Tang Shouzheng. The Suitability of Potential Geographic Distribution of Natural Forest Types in Jilin Province Based on Maximum Entropy Models [J]. Scientia Silvae Sinicae, 2018, 54(7): 1-15. |
[6] | Huang Guosheng, Ma Wei, Wang Xuejun, Xia Chaozong, Dang Yongfeng. Carbon Storage Measurement of Larch Forest in Northeastern China [J]. Scientia Silvae Sinicae, 2014, 50(6): 167-174. |
[7] | Li Haikui;Lei Yuancai;Zeng Weisheng. Forest Carbon Storage in China Estimated Using Forestry Inventory Data [J]. Scientia Silvae Sinicae, 2011, 47(7): 7-12. |
[8] | Zhang Maozhen;Wang Guangxing;Liu Anxing. Estimation of Forest Biomass and Net Primary Production for Zhejiang Province Based on Continuous Forest Resources Inventory [J]. Scientia Silvae Sinicae, 2009, 12(9): 13-17. |
[9] | Guo Xiurong;Lu Huaimin;Du Danfeng. Automatic Measurement Technology for Standing Tree Volume Based on Laser Scanner [J]. Scientia Silvae Sinicae, 2008, 44(9): 72-75. |
[10] | Ge Hongli;Zhou Guomo;Zhang Guojiang;Du Qun;Xu Da. RS-Land Three-Phase Sampling Technique and Its Application to Area Estimation in Annual Forest Inventory [J]. Scientia Silvae Sinicae, 2007, 43(6): 77-82. |
[11] | Wang Xuefeng;Zhang Chao;Tang Shouzheng. A Technology of Gathering Forest Diameter Based on Image Understanding [J]. Scientia Silvae Sinicae, 2005, 41(2): 16-20. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||