Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (8): 120-131.doi: 10.11707/j.1001-7488.LYKX20230322
• Research papers • Previous Articles Next Articles
Shuyang Wang1,Li Tian1,Shuntao Zhou2,Yuee Chu3,Di Mei1,Jiaqiu Yuan4,Yanhao Yu1,Xiangxiang Fu1,*()
Received:
2023-07-20
Online:
2024-08-25
Published:
2024-09-03
Contact:
Xiangxiang Fu
E-mail:xxfu@njfu.com.cn
CLC Number:
Shuyang Wang,Li Tian,Shuntao Zhou,Yuee Chu,Di Mei,Jiaqiu Yuan,Yanhao Yu,Xiangxiang Fu. Effects of Polyploidization on Leaf Morphology, Photosynthetic Performance and Accumulation of Secondary Metabolites in Cyclocarya paliurus[J]. Scientia Silvae Sinicae, 2024, 60(8): 120-131.
Table 1
Background of tested plants of C. paliurus"
种源Provenance | 二倍体Diploidy (2n) | 四倍体Tetraploidy (4n) | |||||
家系Family | 样株编号 Sample No | 海拔 Altitude/m | 家系Family | 编号 Number | 海拔 Altitude/m | ||
湖北鹤峰 Hefeng, Hubei (HF) | HF5# | NW19-8 | 1 400~1 600 | HF3# | NW16-2 | 830~1 400 | |
NW19-9 | NW16-6 | ||||||
HF11# | NW10-1 | HF8# | NW19-6 | ||||
NW10-2 | NW20-5 | ||||||
HF2# | NW3-15 | HF10# | NW3-1** | ||||
NW3-17** | NW3-2** | ||||||
NW3-16** | NW3-5** | ||||||
NW4-15** | NW4-1* | ||||||
NW4-16* | NW4-3 | ||||||
安徽清凉峰 Qingliangfeng, Anhui (QLF) | QLF2# | NW9-7* | 1 100~1 450 | QLF4# | NW19-11 | 650~1 100 | |
NW9-8* | NW19-12 | ||||||
NW9-10 | NW20-10* | ||||||
NW9-11 | NW20-11* | ||||||
NW10-10 | NW21-12 | ||||||
NW10-11* | NW21-13 | ||||||
NW10-12 | NW 22-11* | ||||||
NW10-13 | NW22-12* | ||||||
NW10-14* | NW22-13 |
Fig.1
Differences in leaf morphological characteristics between diploid and tetra-ploid C. paliurus Different uppercase letters indicate significant differences between different ploidy (P<0.05), and different lowercase letters indicate significant differences among different provenance (P<0.05)."
Fig.6
The differences in stomatal characteristics in leaves between diploid and tetraploid C. paliurus Different uppercase letters indicate significant differences between diploid and tetraploid C. paliurus (P<0.05), and different lowercase letters indicate significant differences among different provenance (P<0.05)."
Table 2
Differences in photosynthetic pigments between diploid and tetraploid C. paliurus"
种源Provenance | 倍性 Ploidy | 叶绿素a Chlorophyll a/(mg·g?1) | 叶绿素b Chlorophyll b/(mg·g?1) | 总叶绿素 Total chlorophyll/(mg·g?1) | 类胡萝卜素 Carotenoid/(mg·g?1) |
HF | 2n | 1.71±0.22Aa | 0.82±0.13Aa | 2.53±0.34Aa | 0.30±0.04Ba |
4n | 1.89±0.16Aa | 0.84±0.06Aa | 2.73±0.22Aa | 0.36±0.02Aa | |
QLF | 2n | 1.82±0.20Aa | 0.83±0.14Aa | 2.65±0.33Aa | 0.32±0.03Aa |
4n | 2.01±0.26Aa | 0.88±0.11Aa | 2.89±0.36Aa | 0.36±0.02Aa | |
Total | 2n | 1.76±0.22Aa | 0.82±0.14Aa | 2.59±0.34Aa | 0.31±0.04Ba |
4n | 1.95±0.23Aa | 0.86±0.09Aa | 2.81±0.31Aa | 0.36±0.02Aa |
Table 3
Difference of gas exchange parameters between diploid and tetraploid C. paliurus"
种源 Provenance | 倍性 Ploidy | 净光合速率 Pn/(μmol·m?2s?1) | 胞间CO2浓度 Ci/(μmol·mol?1) | 蒸腾速率 Tr/(mmol·m?2s?1) | 气孔导度 Gs/(mol·m?2s?1) | 蒸气压亏缺 VPD/kPa |
HF | 2n | 8.13±0.20Aa | 217.67±19.78Ba | 1.47±0.07Ba | 143.00±12.48Aa | 18.43±3.00Aa |
4n | 10.83±0.85Aa | 247.92±3.59Aa | 1.88±0.06Aa | 124.50±9.85Ab | 18.08±2.62Ab | |
QLF | 2n | 8.08±0.24Ba | 191.00±2.11Ba | 1.52±0.04Ba | 135.75±14.39Aa | 18.15±0.90Ba |
4n | 10.92±0.27Aa | 238.42±5.26Ab | 1.77±0.05Ab | 140.50±3.99Aa | 24.47±1.72Aa | |
Total | 2n | 8.11±0.22Ba | 204.33±20.15Ba | 1.49±0.06Ba | 139.38±13.95Aa | 18.29±2.22Aa |
4n | 10.88±0.63Aa | 243.17±6.55Aab | 1.82±0.08Aab | 132.50±10.98Aab | 21.28±3.88Aab |
Table 4
Difference of seasonal dynamics of polyphenol content in leaves of diploid from tetraploid C. paliurus mg·g?1"
种类Species | 5月 May | 6月 June | 7月 July | 8月 August | 9月 September |
2n HF | 12.88±1.12Ab | 12.41±0.94Abc | 11.73±1.02Ac | 12.64±0.93ABbc | 13.93±0.93ABa |
4n HF | 13.70±0.73Aa | 12.95±0.82Aab | 12.22±0.71Ab | 12.65±0.65ABb | 13.46±0.93Ba |
2n QLF | 12.73±1.54Aab | 12.08±1.48Abc | 11.38±1.03Ac | 11.84±1.12Bbc | 13.70±0.94ABa |
4n QLF | 13.57±1.46Aab | 12.76±1.15Abc | 12.05±0.73Ac | 12.89±0.90Abc | 14.47±0.86Aa |
Table 5
Difference in seasonal dynamics of flavonoid content in leaves of diploid from tetraploid C. paliurus mg·g?1"
种类Species | 5月 May | 6月 June | 7月 July | 8月 August | 9月 September |
2n HF | 16.26±1.58Ab | 15.11±1.65Abc | 14.34±1.10Ac | 16.08±1.10ABb | 18.35±1.28Aa |
4n HF | 15.80±1.24Ab | 14.38±1.57Ab | 14.41±1.53Ab | 15.08±1.20ABb | 17.21±1.55ABa |
2n QLF | 15.05±1.84Aa | 14.51±1.98Aa | 12.51±1.29Bb | 14.79±1.78Ba | 16.08±1.54Ba |
4n QLF | 15.58±0.81Abc | 15.68±0.83Abc | 14.64±1.63Ac | 16.47±1.38Ab | 17.85±0.80Aa |
Table 6
Difference in seasonal dynamics of triterpenoid content in leaves of diploid from tetraploid C. paliurus mg·g?1"
种类Species | 5月 May | 6月 June | 7月 July | 8月 August | 9月 September |
2n HF | 26.13±1.92Aa | 23.39±1.57ABb | 21.97±1.38ABb | 22.97±1.21ABb | 27.14±1.70Aa |
4n HF | 24.26±1.99Ba | 22.56±1.08ABb | 20.88±1.12Bc | 22.59±1.34Bb | 25.12±2.20Ba |
2n QLF | 23.10±1.67Bbc | 22.22±1.45Bc | 21.72±1.22ABc | 24.19±1.67Aab | 24.78±1.58Ba |
4n QLF | 26.89±2.00Aa | 23.86±1.02Ab | 22.75±0.71Ab | 23.06±1.14ABb | 28.23±2.18Aa |
Table 7
Difference of seasonal dynamics of polysaccharide content in leaves of diploid from tetraploid C. paliurus mg·g?1"
种类Species | 5月 May | 6月 June | 7月 July | 8月 Aug. | 9月 Sep. |
2n HF | 5.35±0.45Cb | 4.85±0.45Cc | 5.43±0.37Bb | 5.73±0.35Cb | 6.79±0.35Ba |
4n HF | 6.28±0.96Ba | 5.89±0.80Ba | 6.64±0.89Aab | 7.13±0.66Bb | 8.34±0.79Aa |
2n QLF | 4.43±0.34Dc | 3.90±0.38Dd | 4.43±0.31Cc | 4.82±0.32Db | 5.82±0.31Ca |
4n QLF | 7.32±1.03Abc | 6.68±0.85Ac | 7.18±0.71Abc | 7.69±0.76Ab | 8.81±0.70Aa |
邓 波, 曹燕妮, 方升佐, 等. 光照强度对青钱柳叶形态结构、光合特性和生长的影响. 东北林业大学学报, 2015, 43 (8): 1- 6.
doi: 10.3969/j.issn.1000-5382.2015.08.001 |
|
Deng B, Cao Y N, Fang S Z, et al. Influence of light intensity on leaf morphological structure, photosynthesis characteristics and growth of Cyclocarya paliurus. Journal of Northeast Forestry University, 2015, 43 (8): 1- 6.
doi: 10.3969/j.issn.1000-5382.2015.08.001 |
|
方升佐. 青钱柳产业发展历程及资源培育研究进展. 南京林业大学学报(自然科学版), 2022, 46 (6): 115- 126. | |
Fang S Z. A review on the development history and the resource siliviculture of Cyclocarya paliurus industry. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46 (6): 115- 126. | |
黄梅芬, 张美艳, 薛世明, 等. 喜马拉雅野生鸭茅二倍体及其同源四倍体的表型性状比较. 西南农业学报, 2021, 34 (2): 244- 249. | |
Huang M F, Zhang M Y, Xue S M, et al. Comparison of phenotypic traits between wild diploid and its autotetraploid in Dactylis glomerata subsp. Himalayensis. Southwest China Journal of Agricultural Sciences, 2021, 34 (2): 244- 249. | |
李秀宇, 董 黎, 孙宇涵, 等. 二倍体与四倍体刺槐组培苗形态和生理性状比较. 核农学报, 2021, 35 (3): 605- 612.
doi: 10.11869/j.issn.100-8551.2021.03.0605 |
|
Li X Y, Dong L, Sun Y H, et al. Comparison of morphological and physiological characteristics of tissue culture plantlets of diploid and tetraploid Robinia pseudoacacia. Journal of Nuclear Agricultural Sciences, 2021, 35 (3): 605- 612.
doi: 10.11869/j.issn.100-8551.2021.03.0605 |
|
刘金霞, 刘 盼, 米娜瓦尔·亚森, 等. 南疆地区枣二倍体及其同源四倍体表型性状比较. 西北农业学报, 2022, 31 (5): 595- 602.
doi: 10.7606/j.issn.1004-1389.2022.05.008 |
|
Liu J X, Liu P, Minavar Y, et al. Comparison of phenotypic characters between diploid and autotetraploid of Chinese jujube in southern Xinjiang. Acta Agriculturae Boreali-occidentalis Sinica, 2022, 31 (5): 595- 602.
doi: 10.7606/j.issn.1004-1389.2022.05.008 |
|
刘明秀, 王泓丁, 张宇娜, 等. 三倍体枇杷与其四倍体和二倍体亲本光系统活性差异. 园艺学报, 2021, 48 (1): 37- 48. | |
Liu M X, Wang H D, Zhang Y N, et al. Comparative analysis of the photosystem activity of triploid loquats and their tetraploid, diploid parents. Acta Horticulturae Sinica, 2021, 48 (1): 37- 48. | |
刘旻霞, 于瑞新, 穆若兰, 等. 兰州北山不同海拔3种典型绿化树种光合特性研究. 生态环境学报, 2021, 30 (10): 1943- 1951. | |
Liu W X, Yu R X, Mu R L, et al. Photosynthetic characteristics of three typical tree species at different altitudes in Beishan, Lanzhou. Ecology and Environmental Sciences, 2021, 30 (10): 1943- 1951. | |
商 静, 薛胤轩, 宋连君, 等. 青黑杨全同胞杂种功能叶片及气孔性状变异的倍性、基因型和性别效应解析. 北京林业大学学报, 2020, 42 (9): 11- 18.
doi: 10.12171/j.1000-1522.20200095 |
|
Shang J, Xue Y X, Song L J, et al. Ploidy, genotype and gender effects of functional leaf and stomatal traits on short branches in full-sib hybrids between section Tacamahaca and sect. Aigeiros of Populus. Journal of Beijing Forestry University, 2020, 42 (9): 11- 18.
doi: 10.12171/j.1000-1522.20200095 |
|
尚旭岚, 李琼琼, 邓 波, 等. 光照和施肥对青钱柳幼苗叶片性状与解剖结构的影响. 西南林业大学学报(自然科学版), 2014, 34 (6): 9- 15. | |
Shang X L, Li Q Q, Deng B, et al. Effects of light intensity and fertilization on leaf traits and anatomical structure of Cyclocarya paliurus. Journal of Southwest Forestry University (Natural Sciences Edition), 2014, 34 (6): 9- 15. | |
韦荣昌, 吴庆华, 马小军, 等. 植物多倍体的研究进展. 种子, 2013, 32 (7): 50- 52.
doi: 10.3969/j.issn.1001-4705.2013.07.012 |
|
Wei R C, Wu Q H, Ma X J, et al. Research progress of plant polypoid. Seed, 2013, 32 (7): 50- 52.
doi: 10.3969/j.issn.1001-4705.2013.07.012 |
|
韦婉羚, 黄珍玲, 陈会鲜, 等. 木薯二倍体及其同源四倍体叶片形态、生理及抗螨特征比较. 核农学报, 2022, 36 (11): 2115- 2123.
doi: 10.11869/j.issn.100-8551.2022.11.2115 |
|
Wei W L, Huang Z L, Chen H X, et al. Comparison of morphological, physiological and mite resistance characteristics of cassava diploid and its autotetraploid leaves. Journal of Nuclear Agricultural Sciences, 2022, 36 (11): 2115- 2123.
doi: 10.11869/j.issn.100-8551.2022.11.2115 |
|
吴红芝, 梅 琳, 郑思乡, 等. 灯盏花三倍体培育及生物性状的观察研究. 中草药, 2011, 42 (5): 991- 995. | |
Wu H Z, Mei L, Zheng S X, et al. Breeding of Erigeron breviscapus triploid and observation of biological properties. Chinese Traditional and Herbal Drugs, 2011, 42 (5): 991- 995. | |
岳喜良, 秦 健, 洑香香, 等. 氮素水平对青钱柳叶片主要次生代谢物含量和抗氧化能力的影响. 南京林业大学学报(自然科学版), 2020, 44 (2): 35- 42. | |
Yue X L, Qin J, Fu X X, et al. Effects of nitrogen fertilization on secondary metabolite accumulation and antioxidant capacity of Cycolcurya paliurus (Batal. ) Iljinskaja leaves. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44 (2): 35- 42. | |
张凌媛, 郭启高, 李晓林, 等. 枇杷气孔保卫细胞叶绿体数目与倍性相关性研究. 果树学报, 2005, 2005 (3): 229- 233.
doi: 10.3969/j.issn.1009-9980.2005.03.009 |
|
Zhang L Y, Guo Q G, Li X L, et al. Study on the relationship between the number of chloroplast in stomata guard cell and the ploidy of loguat cultivars. Journal of Fruit Science, 2005, 2005 (3): 229- 233.
doi: 10.3969/j.issn.1009-9980.2005.03.009 |
|
Bagheri M, Mansouri H. Effect of induced polyploidy on some biochemical parameters in Cannabis sativa L. Applied Biochemistry and Biotechnology, 2015, 175 (5): 2366- 2375.
doi: 10.1007/s12010-014-1435-8 |
|
Blasco M, Badenes M L, Naval M M. 2015. Colchicine-induced polyploidy in loquat (Eriobotrya japonica (Thunb. ) Lindl. ). Plant Cell, Tissue and Organ Culture (PCTOC), 120(2): 453-461. | |
Casson S A, Hetherington A M. Environmental regulation of stomatal development. Current Opinion in Plant Biology, 2010, 13 (1): 90- 95.
doi: 10.1016/j.pbi.2009.08.005 |
|
Du Z K, Lin W D, Yu B B, et al. Integrated metabolomic and transcriptomic analysis of the flavonoid accumulation in the leaves of Cyclocarya paliurus at different altitudes. Frontiers in Plant Science, 2022, 12, 794137.
doi: 10.3389/fpls.2021.794137 |
|
Fang S Z, Wang J Y, Wei Z Y, et al. Methods to break seed dormancy in Cyclocarya paliurus (Batal) Iljinskaja. Scientia Horticulturae, 2006, 110 (3): 305- 309.
doi: 10.1016/j.scienta.2006.06.031 |
|
Fu X X, Zhou X D, Deng B, et al. Seasonal and genotypic variation of water-soluble polysaccharide content in leaves of Cyclocarya paliurus. Southern Forests: a Journal of Forest Science, 2015, 77 (3): 231- 236.
doi: 10.2989/20702620.2015.1010698 |
|
Iannicelli J, Guariniello J, Tossi V E, et al. The "polyploid effect" in the breeding of aromatic and medicinal species. Scientia Horticulturae, 2020, 260, 108854.
doi: 10.1016/j.scienta.2019.108854 |
|
Islam M M, Deepo D M, Nasif S O, et al. Cytogenetics and consequences of polyploidization on different biotic-abiotic stress tolerance and the potential mechanisms involved. Plants, 2022, 11 (20): 2684.
doi: 10.3390/plants11202684 |
|
Jiao Y N, Wickett N J, Ayyampalayam S, et al. Ancestral polyploidy in seed plants and angiosperms. Nature, 2011, 473 (7345): 97- 100.
doi: 10.1038/nature09916 |
|
Kakar M U, Naveed M, Saeed M, et al. A review on structure, extraction, and biological activities of polysaccharides isolated from Cyclocarya paliurus (Batalin) Iljinskaja. International Journal of Biological Macromolecules, 2020, 156, 420- 429.
doi: 10.1016/j.ijbiomac.2020.04.022 |
|
Khezri M, Asghari-Zakaria R, Zare N, et al. Tetraploidy induction increases galegine content in Galega officinalis L. Journal of Applied Research on Medicinal and Aromatic Plants, 2022, 26, 100366.
doi: 10.1016/j.jarmap.2021.100366 |
|
Lawson T, Blatt M R. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology, 2014, 164 (4): 1556- 1570.
doi: 10.1104/pp.114.237107 |
|
Li Y, Yang J, Song L J, et al. Study of variation in the growth, photosynthesis, and content of secondary metabolites in Eucommia triploids. Trees, 2019, 33 (3): 817- 826.
doi: 10.1007/s00468-019-01818-5 |
|
Lin X Y, Zhou Y, Zhang J J, et al. Enhancement of artemisinin content in tetraploid Artemisia annua plants by modulating the expression of genes in artemisinin biosynthetic pathway. Biotechnology and Applied Biochemistry, 2011, 58 (1): 50- 57.
doi: 10.1002/bab.13 |
|
Parida B P, Misra B B. 2015. Is a plant's ploidy status reflected in its metabolome? Journal of Postdoctoral Research, 3(4): 1-11. | |
Qu Y Q, Shang X L, Zeng Z Y, et al. 2023. Whole-genome duplication reshaped adaptive evolution in a relict plant species, Cyclocarya paliurus. Genomics, Proteomics & Bioinformatics, 21(3): 455-469. | |
Ramsey J. Polyploidy and ecological adaptation in wild yarrow. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108 (17): 7096- 7101. | |
Shi Q H, Liu P, Liu M J, et al. In vivo fast induction of homogeneous autopolyploids via callus in sour jujube (Ziziphus acidojujuba Cheng et Liu). Horticultural Plant Journal, 2016, 2 (3): 147- 153.
doi: 10.1016/j.hpj.2016.08.002 |
|
Song Z H, Ni X B, Yao J, et al. Progress in studying heteromorphic leaves in Populus euphratica: leaf morphology, anatomical structure, development regulation and their ecological adaptation to arid environments. Plant Signaling & Behavior, 2021, 16 (4): 1870842. | |
Talei D, Nekouei M K, Mardi M, et al. Improving productivity of steviol glycosides in Stevia rebaudiana via induced polyploidy. Journal of Crop Science and Biotechnology, 2020, 23 (4): 301- 309.
doi: 10.1007/s12892-020-00038-5 |
|
Tu Y, Jiang A M, Gan L, et al. Genome duplication improves rice root resistance to salt stress. Rice, 2014, 7 (1): 1- 13.
doi: 10.1186/1939-8433-7-1 |
|
Vyas P, Bisht M S, Miyazawa S I, et al. Effects of polyploidy on photosynthetic properties and anatomy in leaves of Phlox drummondii. Functional Plant Biology, 2007, 34 (8): 673- 682.
doi: 10.1071/FP07020 |
|
Wang P F, Mu X P, Gao Y G, et al. Successful induction and the systematic characterization of tetraploids in Cerasus humilis for subsequent breeding. Scientia Horticulturae, 2020, 265, 109216.
doi: 10.1016/j.scienta.2020.109216 |
|
Xie J H, Liu X, Shen M Y, et al. Purification, physicochemical characterisation and anticancer activity of a polysaccharide from Cyclocarya paliurus leaves. Food Chemistry, 2013, 136 (3/4): 1453- 1460. | |
Yang X H, Cheng J, Yao B, et al. Polyploidy-promoted phenolic metabolism confers the increased competitive ability of Solidago canadensis. Oikos, 2021, 130 (6): 1014- 1025.
doi: 10.1111/oik.08280 |
|
Ye Z P. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica, 2007, 45 (4): 637- 640.
doi: 10.1007/s11099-007-0110-5 |
|
Yu X Q, Zhai Y F, Wang P Q, et al. Morphological, anatomical and photosynthetic consequences of artificial allopolyploidization in Cucumis. Euphytica, 2021, 217 (1): 1- 13.
doi: 10.1007/s10681-020-02732-5 |
[1] | Jingting Wang,Shouyin Li,Zhuang Zuo,Wenxuan Xu,Dejun Hao. Growth, Development and the Resistance Gene Transcriptional Expression of Pagiophloeus tsushimanus(Coleoptera: Curculionidae) Larvae after Feeding on Linalool and Eucalyptol [J]. Scientia Silvae Sinicae, 2023, 59(5): 109-120. |
[2] | Chang Meng,Yang Peng,Yang Zhao,Xiurong Wang,Feng Xiao. Morphological Structure and Photosynthetic Characteristics of Jatropha nigroviensrugosus cv. Yang and Jatropha curcas Seedlings with Different Leaf Types [J]. Scientia Silvae Sinicae, 2022, 58(12): 32-41. |
[3] | Ruijing Xu,Xuan Hu,Guanglu Liu,Wen Guo,Changqiang Liang,Xianghe Kong. Differences of Leaf Functional Traits Between Two Climbing Bamboo Species in Tropical Lowland Rainforest of Hainan Island [J]. Scientia Silvae Sinicae, 2021, 57(12): 155-166. |
[4] | Yanhui Liu,Yiju Hou,Deyuan Shu,Bing Yang,Yingchun Cui,Fangjun Ding. Properties and Spatio-Temporal Variation of Leaf Retained Particulate Matters of the Main Tree Species Planted in Guiyang City [J]. Scientia Silvae Sinicae, 2020, 56(6): 12-25. |
[5] | Zhou Jing, Yang Qi, Li Gang, Xu Jing. Advances in Endophytic Fungi Diversity and Secondary Metabolites in Rhizophora Plants [J]. Scientia Silvae Sinicae, 2019, 55(1): 89-102. |
[6] | Cao Ruizhi, Zhang Xinyu, Yang Dawei, Xia Guangdong, Dong Juan. Effects of Different Barking Treatments on Secondary Metabolites of Eucommia ulmoides and Its Ability of Repairing Injury [J]. Scientia Silvae Sinicae, 2017, 53(6): 151-158. |
[7] | Cao Yanchun, Cao Yabing, Zhao Zhenli, Zhai Xiaoqiao, Fan Guoqiang. A New Variety of Paulownia australis ‘Tetraploid Paulownia australis 1’ [J]. Scientia Silvae Sinicae, 2016, 52(8): 168-168. |
[8] | Li Yan, Wen Pengfei, Cui Lei, Lei Jiamin, Zhang Xing. Effects of Trace Elements on Adventitious Root Growth and Secondary Metabolites Content of Tripterygium wilfordii [J]. Scientia Silvae Sinicae, 2014, 50(2): 134-138. |
[9] | Zhao Zhenli, Fan Guoqiang. A New Variety of Paulownia fortunei ‘Tetraploid Paulownia fortunei 1’ [J]. Scientia Silvae Sinicae, 2014, 50(12): 168-168. |
[10] | Zhang Xiaoshen, Fan Guoqiang, Zhao Zhenli, Cao Xibing, Zhao Gaili, Deng Minjie, Dong Yanpeng. Analysis of Diploid and Its Autotetraploid Paulownia tomentosa×P. fortunei with AFLP and MSAP [J]. Scientia Silvae Sinicae, 2013, 49(10): 167-172. |
[11] | Lu Chao;Cui Binbin;Huang Lujun;Sun Peng;Zhang Guojun;Li Yun. Phenotypic Observation and Analysis of Inflorescence Variation of Autotetraploid Robinia pseudoacacia [J]. Scientia Silvae Sinicae, 2012, 48(2): 63-68. |
[12] | Jiang Jinzhong;Li Yun;He Jiayu;Hao Chen;Wang Shuqin;Wen Fugui. Ovule Abortion and Its Mechanism for Tetraploid Robinia pseudoacacia [J]. Scientia Silvae Sinicae, 2011, 47(5): 40-45. |
[13] | Li Yan;Yang Guangli;Feng Juntao;Huang Zhengqing;Zhang Xing. Effects of Carbon Sources and Plant Growth Regulators on Callus Growth and Secondary Metabolite Content of Tripterygium wilfordii [J]. Scientia Silvae Sinicae, 2010, 46(9): 34-39. |
[14] | Li Yan;Feng Juntao;Wang Yonghong;Li Yuping;Zhang Xing . Effects of Basic Media and Culture Conditions on Callus Growth and Secondary Metabolite Content of Tripterygium wilfordii [J]. Scientia Silvae Sinicae, 2010, 46(5): 64-69. |
[15] | Li Tiezhu;Tian Dalun;Wuyun Tana;Tan Xiaofeng;Xiang Wenhua;Yan Wende;. Identification and Variation of Tetraploid Camellia oleifera [J]. Scientia Silvae Sinicae, 2009, 12(3): 150-154. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||