Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (1): 58-67.doi: 10.11707/j.1001-7488.LYKX20230012
Previous Articles Next Articles
Yonglin Zheng1,2(),Yunqi Wang1,2,*,Xiaoxiao Xu1,2,Yujie Wang1,2,Yaoming Li1,2
Received:
2023-01-09
Online:
2024-01-25
Published:
2024-01-29
Contact:
Yunqi Wang
E-mail:zhengyonglin95@126.com
CLC Number:
Yonglin Zheng,Yunqi Wang,Xiaoxiao Xu,Yujie Wang,Yaoming Li. The Acid Rain Response of Radial Growth of Pinus massoniana and Machilus nanmu in Jinyun Mountains of Chongqing[J]. Scientia Silvae Sinicae, 2024, 60(1): 58-67.
Table 2
Statistical characteristics of the standard chronology of P. massoniana and M. nanmu"
统计特征 Statistic character | 马尾松 P. massoniana | 润楠 M. nanmu |
序列长度 Time span | 1949—2020 | 1971—2020 |
平均敏感度 Mean sensitivity | 0.157 | 0.149 |
标准差 Standard deviation | 0.207 | 0.240 |
信噪比 Signal-to-noise ration | 16.203 | 8.034 |
样本总体代表性 Express population signal | 0.942 | 0.889 |
第一主成分方差解释量 Variance in first eigenvector(%) | 34.71 | 29.40 |
一阶自相关系数 First order autocorrelation | 0.553 | 0.512 |
Fig.5
Correlation between BAI and meteorological factors of P. massoniana and M. nanmu p6-p12 represents the previous year from June to December, 1-10 represents the current year from January to October, PY represents the previous year, and Y represents the current year. * stands for significant correlation (P<0.05), ** stands for extremely significant correlation (P<0.01)."
陈 峰, 袁玉江, 魏文寿, 等. 福建沙县马尾松树轮宽度与夏季亚洲-太平洋涛动指数的关系. 第四纪研究, 2011, 31 (1): 96- 103.
doi: 10.3969/j.issn.1001-7410.2011.01.13 |
|
Chen F, Yuan Y J, Wei W S, et al. Correlations between the summer Asian Pacific oscillation index and the tree-ring width of Pinus massoniana from Sha County, Fujian Province. Quaternary Sciences, 2011, 31 (1): 96- 103.
doi: 10.3969/j.issn.1001-7410.2011.01.13 |
|
郭国洋. 2018. 福州树轮宽度和稳定同位素研究——以永泰马尾松为例. 福州: 福建师范大学. | |
Guo G Y. 2018. Investigations of tree-ring growths and stable isotopes in Fuzhou :taking the Pinus massoniana of Yongtai County as an example. Fuzhou: Fujian Normal University. [in Chinese] | |
李静茹, 彭剑峰, 杨 柳, 等. 川西高原两种针叶树径向生长对气候因子的响应. 应用生态学报, 2021, 32 (10): 3512- 3520. | |
Li J R, Peng J F, Yang L, et al. Responses of radial growth of two coniferous species to climate factors in western Sichuan Plateau, China. Chinese Journal of Applied Ecology, 2021, 32 (10): 3512- 3520. | |
李 轩, 彭剑峰, 李静茹, 等. 伏牛山龙池墁南坡油松径向生长对气候变化的响应. 生态学报, 2022, 42 (7): 2865- 2877. | |
Li X, Peng J F, Li J R, et al. Climate-growth response of Pinus tabulaeformis in the south slope of Longchiman, Mt. Funiu, central China. Acta Ecologica Sinica, 2022, 42 (7): 2865- 2877. | |
刘淑华. 重庆市酸雨严重必须高度重视. 重庆环境保护, 1983, (3): 56- 57. | |
Liu S H. Severe acid rain in Chongqing must be taken seriously. Chongqing Environmental Science, 1983, (3): 56- 57. | |
申佳艳, 李帅锋, 黄小波, 等. 金沙江流域不同海拔处云南松生态弹性及生长衰退过程. 林业科学, 2020, 56 (6): 1- 11. | |
Shen J Y, Li S F, Huang X B, et al. Ecological resilience and growth degradation of Pinus yunnanensis at different altitudes in Jinsha River Basin. Scientia Silvae Sinicae, 2020, 56 (6): 1- 11. | |
王水良, 王 平, 许建华. 酸沉降胁迫对不同家系马尾松幼苗耐酸性的影响. 林业科学, 2013, 49 (7): 158- 162. | |
Wang S L, Wang P, Xu J H. Assessment of acid-tolerant parameters of different Pinus massoniana families under acid deposition stress. Scientia Silvae Sinicae, 2013, 49 (7): 158- 162. | |
徐 渝, 骆启仁, 朱聿来, 等. 重庆市降雨酸度与空气污染的相关性. 环境化学, 1982, (3): 208- 214. | |
Xu Y, Luo Q R, Zhu J L, et al. Correlation between rainfall acidity and air pollution in Chongqing. Environmental Chemistry, 1982, (3): 208- 214. | |
杨 凤, 刘安芳, 王云琦, 等. 酸雨对三峡库区4种植物幼苗光合生理及根际土壤的影响. 西北植物学报, 2022, 42 (2): 280- 292. | |
Yang F, Liu A F, Wang Y Q, et al. Effects of acid rain on photosynthetic physiology and rhizosphere soil of four plant seedlings in the Three Gorges Reservoir area. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42 (2): 280- 292. | |
于 健, 陈佳佳, 周 光, 等. 横断山脉中部川滇冷杉和丽江云杉径向生长对气象因子的响应. 林业科学, 2020, 56 (12): 28- 38. | |
Yu J, Chen J J, Zhou G, et al. Response of radial growth of Abies forrestii and Picea likiangensis to climate factors in the central Hengduan Mountains, southwest China. Scientia Silvae Sinicae, 2020, 56 (12): 28- 38. | |
张 蓉. 2023. 亚热带典型树种径向生长与木质部特征对气候变化的响应. 长沙: 中南林业科技大学. | |
Zhang R. 2023. Response of radial growth and xylem characteristics of typical subtropical tree species to climate change. Changsha: Central South University of Forestry & Technology. [in Chinese] | |
张新民, 柴发合, 王淑兰, 等. 中国酸雨研究现状. 环境科学研究, 2010, 23 (5): 527- 532. | |
Zhang X M, Chai F H, Wang S L, et al. Research progress of acid precipitation in China. Research of Environmental Sciences, 2010, 23 (5): 527- 532. | |
张丽云, 邓湘雯, 雷相东, 等. 不同生长阶段马尾松生产力与气候因子的关系. 生态学杂志, 2013, 32 (5): 1104- 1110.
doi: 10.13292/j.1000-4890.2013.0197 |
|
Zhang L Y, Deng X W, Lei X D, et al. Pinus massoniana productivity at different age stages in relation to climatic factors. Chinese Journal of Ecology, 2013, 32 (5): 1104- 1110.
doi: 10.13292/j.1000-4890.2013.0197 |
|
赵文瑞, 刘 鑫, 张金池, 等. 添加酸雨酸度和硫氮比对麻栎林细根生长的影响. 林业科学, 2017, 53 (4): 158- 165.
doi: 10.11707/j.1001-7488.20170418 |
|
Zhao W R, Liu X, Zhang J C, et al. Effects of different acidities and sulfur to nitrogen ratios of added acid rain on the growth of fine roots of Quercus acutissima. Scientia Silvae Sinicae, 2017, 53 (4): 158- 165.
doi: 10.11707/j.1001-7488.20170418 |
|
周非飞. 2018. 我国东南地区典型树种树木年轮记录的环境变化研究. 福州: 福建师范大学. | |
Zhou F F. 2018. Environmental signals registered in annual rings of typical tree species over the Southeast China. Fuzhou: Fujian Normal University. [in Chinese] | |
Chen F, Yuan Y J, Wei W S, et al. Reconstructed temperature for Yong'an, Fujian, southeast China: linkages to the Pacific Ocean climate variability. Global and Planetary Change, 2012a, 86, 11- 19. | |
Chen F, Yuan Y J, Wei W S, et al. Tree ring-based winter temperature reconstruction for Changting, Fujian, subtropical region of Southeast China, since 1850: linkages to the Pacific Ocean. Theoretical and Applied Climatology, 2012b, 109 (1): 141- 151. | |
De Vries W, Dobbertin M H, Solberg S, et al. Impacts of acid deposition, ozone exposure and weather conditions on forest ecosystems in Europe: an overview. Plant and Soil, 2014, 380 (1): 1- 45. | |
Dong D, Du E Z, Sun Z Z, et al. Non-linear direct effects of acid rain on leaf photosynthetic rate of terrestrial plants. Environmental Pollution, 2017, 231, 1442- 1445.
doi: 10.1016/j.envpol.2017.09.005 |
|
Du E Z, Dong D, Zeng X T, et al. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China. Science of the Total Environment, 2017, 605/606, 764- 769.
doi: 10.1016/j.scitotenv.2017.06.044 |
|
Fauset S, Freitas H C, Galbraith D R, et al. 2018. Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. Plant, Cell & Environment, 41(7): 1618–1631. | |
Guan H, Xiao HY, Xiao H W, et al. The oxygen and sulfur isotopic compositions of soluble sulfate in the needles of Pinus massoniana Lamb : source discrimination and contribution estimation. Journal of Geochemical Exploration, 2020, 208, 106402.
doi: 10.1016/j.gexplo.2019.106402 |
|
Hu B, Wang Y, Wang B, et al. Impact of drying-wetting cycles on the soil aggregate stability of Alfisols in southwestern China. Journal of Soil and Water Conservation, 2018, 73 (4): 469- 478.
doi: 10.2489/jswc.73.4.469 |
|
Huang J, Wang H Y, Zhong Y D, et al. 2019. Growth and physiological response of an endangered tree, Horsfieldia hainanensis Merr. , to simulated sulfuric and nitric acid rain in southern China. Plant Physiology and Biochemistry, 144: 118–126. | |
Huang X, Dai D, Xiang Y, et al. Radial growth of Pinus massoniana is influenced by temperature, precipitation, and site conditions on the regional scale: a meta-analysis based on tree-ring width index. Ecological Indicators, 2021, 126, 107659.
doi: 10.1016/j.ecolind.2021.107659 |
|
Jia J S, Gong Z H, Gu Z Y, et al. 2018. Multi-perspective comparisons and mitigation implications of SO2 and NOx. Environmental Science and Pollution Research, 25(10): 9600–9614. | |
Johnson A H, Siccama T G. Acid deposition and forest decline. Environmental Science & Technology, 1983, 17 (7): 294A- 305A. | |
Kolář T, Čermák P, Oulehle F, et al. Pollution control enhanced spruce growth in the “Black Triangle” near the Czech-Polish border. Science of the Total Environment, 2015, 538, 703- 711.
doi: 10.1016/j.scitotenv.2015.08.105 |
|
Kuang Y W, Sun F F, Wen D Z, et al. Tree-ring growth patterns of Masson pine (Pinus massoniana L. ) during the recent decades in the acidification Pearl River Delta of China. Forest Ecology and Management, 2008, 255 (8/9): 3534- 3540. | |
Kwak J H, Lim S S, Park H J, et al. 2009. Relating tree ring chemistry of Pinus densiflora to precipitation acidity in an industrial area of south Korea. Water, Air, and Soil Pollution, 199(1): 95–106. | |
Li Y J, Dong Z P, Chen D L, et al. Growth decline of Pinus massoniana in response to warming induced drought and increasing intrinsic water use efficiency in humid subtropical China. Dendrochronologia, 2019, 57, 125609.
doi: 10.1016/j.dendro.2019.125609 |
|
Li D W, Fang K Y, Li Y J, et al. Climate, intrinsic water-use efficiency and tree growth over the past 150 years in humid subtropical China. Plos One, 2017, 12 (2): e0172045.
doi: 10.1371/journal.pone.0172045 |
|
Li Y F, Wang Y Q, Zhang W Q. Impact of simulated acid rain on the composition of soil microbial communities and soil respiration in typical subtropical forests in Southwest China. Ecotoxicology and Environmental Safety, 2021, 215, 112152.
doi: 10.1016/j.ecoenv.2021.112152 |
|
Ling D J, Huang Q C, Ouyang Y. Impacts of simulated acid rain on soil enzyme activities in a latosol. Ecotoxicology and Environmental Safety, 2010, 73 (8): 1914- 1918.
doi: 10.1016/j.ecoenv.2010.07.024 |
|
Mathias J M, Thomas R B. Disentangling the effects of acidic air pollution, atmospheric CO2, and climate change on recent growth of red spruce trees in the central Appalachian Mountains. Global Change Biology, 2018, 24 (9): 3938- 3953.
doi: 10.1111/gcb.14273 |
|
Shi Z J, Zhang J E, Xiao Z H, et al. Effects of acid rain on plant growth: a meta-analysis. Journal of Environmental Management, 2021, 297, 113213.
doi: 10.1016/j.jenvman.2021.113213 |
|
Smith K R, Mathias J M, McNeil B E, et al. Site-level importance of broadleaf deciduous trees outweighs the legacy of high nitrogen (N) deposition on ecosystem N status of central Appalachian red spruce forests. Plant and Soil, 2016, 408, 343- 356.
doi: 10.1007/s11104-016-2940-z |
|
Tian Y, Wang J, Zhou L, et al. Nitrogen budgets of a lower subtropical forest as affected by 6 years of over-canopy and understory nitrogen additions. Science of the Total Environment, 852: 158546. | |
Wang X, Wang B, Wang C Z, et al. Canopy processing of N deposition increases short-term leaf N uptake and photosynthesis, but not long-term N retention for aspen seedlings. New Phytologist, 2021, 229 (5): 2601- 2610.
doi: 10.1111/nph.17041 |
|
Wu F H, Chen J, Liu T W, et al. Differential responses of Abies fabri and Rhododendron calophytum at two sites with contrasting pollution deposition and available calcium in southwestern China. Plant Ecology, 2013, 214 (4): 557- 569.
doi: 10.1007/s11258-013-0189-7 |
|
Yang R Q, Fu P L, Fan Z X, et al. Growth-climate sensitivity of two pine species shows species-specific changes along temperature and moisture gradients in southwest China. Agricultural and Forest Meteorology, 2022, 318, 108907.
doi: 10.1016/j.agrformet.2022.108907 |
|
Zhang G X, Han J L, Su B. Contributions of cleaner production and end-of-pipe treatment to NOx emissions and intensity reductions in China, 1997—2018. Journal of Environmental Management, 2023, 326, 116822.
doi: 10.1016/j.jenvman.2022.116822 |
|
Zhang Z H, Teng Z Y, Wang N, et al. Responses of photosynthesis and antioxidants to simulated acid rain in mulberry seedlings. Physiologia Plantarum, 2021, 172 (1): 188- 200.
doi: 10.1111/ppl.13320 |
|
Zhao Z, Fang K Y, Cao C F, et al. Responses of the radial growth of the endangered species Keteleeria fortunei to climate change in southeastern China. Trees, 2019, 33 (4): 977- 985.
doi: 10.1007/s00468-019-01839-0 |
|
Zhou Y, Yi Y J, Liu H X, et al. Altitudinal trends in climate change result in radial growth variation of Pinus yunnanensis at an arid-hot valley of southwest China. Dendrochronologia, 2022, 71, 125914.
doi: 10.1016/j.dendro.2021.125914 |
[1] | Peidong Yan,Peng Li,Zhangqi Yang,Suili Huang,Yongbin Zhou,Tianwang Ling. Differentiation Characteristics and Their Effects on Productivity with Different Planting Densities of Pinus massoniana Plantations [J]. Scientia Silvae Sinicae, 2023, 59(10): 66-75. |
[2] | Sisheng Luo,Bizhen Luo,Shujing Wei,Haiqing Hu,Xiaochuan Li,Zhenshi Wang,Yufei Zhou,Zhao Song,Yingxia Zhong. Characteristics of Soil Carbon Pool in Pinus massoniana Forest One Year after Moderate Forest Fires [J]. Scientia Silvae Sinicae, 2022, 58(9): 25-35. |
[3] | Yanyan Ni,Zunji Jian,Jin Xu,Lixiong Zeng,Honghua Ruan,Lei Lei,Wenfa Xiao,Maihe Li. Latitudinal Variation of the Size and Allocation of Non-Structural Carbon in Pinus massoniana [J]. Scientia Silvae Sinicae, 2022, 58(8): 41-52. |
[4] | Min Li, Xizhou Zhao, Haoyun Wang, Zhongke Lu, Guijie Ding. Effects of Drought Stress and Ectomycorrhizal Fungi on the Root Morphology and Exudates of Pinus massoniana Seedlings [J]. Scientia Silvae Sinicae, 2022, 58(7): 63-72. |
[5] | Zijing Zhou,Fuhua Fan,Xianwen Shang,Huijuan Qin,Conghui Wang,Guijie Ding,Jianhui Tan. Effects of Exogenous IAA on Stem Secondary Growth of Pinus massoniana Seedlings [J]. Scientia Silvae Sinicae, 2021, 57(9): 42-51. |
[6] | Huanying Fang,Shengsheng Xiao,Xiaofang Yu,Yong Xiong,Xunzhi Ouyang,Xiaolei Qin. Responses of Soil Respiration and Its Components to Simulated Acid Rain in Pinus elliottii Plantation [J]. Scientia Silvae Sinicae, 2021, 57(7): 20-31. |
[7] | Haiyang Wang,Qianli Ma. Adsorption Properties and Mechanisms of Pinus massoniana Bark Nano-Lignocellulose Aerogel Adsorbent for Cr3+/Cu2+/Pb2+/Ni2+ [J]. Scientia Silvae Sinicae, 2021, 57(7): 166-174. |
[8] | Linfeng Ye,Yan Li,Zhongyuan Wang,Shitong Lu,Tiantian Pan,Sen Chen,Jiangbo Xie. Efficiency-Safety Relationships of Hydraulic Conducting System for Branch and Root of Three Pinus Species Growing in Humid Area [J]. Scientia Silvae Sinicae, 2021, 57(7): 194-204. |
[9] | Yunxing Bai,Yunchao Zhou,Xunyuan Zhang,Jiaojiao Du. Water Conservation Capacity of Litter and Soil in Mixed Plantation of Pinus massoniana and Broadleaved Trees [J]. Scientia Silvae Sinicae, 2021, 57(11): 24-36. |
[10] | Xiaosui Wen,Dunfu Song,Zhongqi Yang,Zhonghui Wang,Mingqing Shi. Relationships between the Emergence of Dastarcus helophoroides (Coleoptera: Bothrideridae) and the Emergence of the Host Monochamus alternatus (Coleoptera: Cerambycidae) in Pinus massoniana Forests [J]. Scientia Silvae Sinicae, 2020, 56(9): 193-200. |
[11] | Yin Wang,Ruiling Yao. Rooting Capacity of Pinus massoniana and the Correlations Endohormones Levels during Subcultur [J]. Scientia Silvae Sinicae, 2020, 56(8): 38-46. |
[12] | Lihua Zhu,Xinyue Zhang,Xinrui Xia,Yu Wan,Shanjun Dai,Jianren Ye. Pathogenicity of Aseptic Bursaphelenchus xylophilus on Pinus massoniana [J]. Scientia Silvae Sinicae, 2020, 56(7): 63-69. |
[13] | Xiaorong Wang,Lei Lei,Tian Fu,Lei Pan,Lixiong Zeng,Wenfa Xiao. Short-Term Effects of Selective Cutting for Tending on Leaf Litter Decomposition Rate and Nutrient Release in Pinus massoniana Forests [J]. Scientia Silvae Sinicae, 2020, 56(4): 12-21. |
[14] | Peihuang Zhu,Yu Chen,Lingzhi Zhu,Rong Li,Kongshu Ji. Codon Usage Bias and Its Influencing Factors in Pinus massoniana Transcriptome [J]. Scientia Silvae Sinicae, 2020, 56(4): 74-81. |
[15] | Xing Wu,Xingfeng Hu,Peizhen Chen,Xiaobo Sun,Fan Wu,Kongshu Ji. Cloning and Functional Analysis of PmPIN1 Gene from Pinus massoniana [J]. Scientia Silvae Sinicae, 2020, 56(3): 184-192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||