|
李平昊, 申 鑫, 代劲松, 等. 机载激光雷达人工林单木分割方法比较和精度分析. 林业科学, 2018, 54 (12): 127- 136.
doi: 10.11707/j.1001-7488.20181214
|
|
Li P H, Shen X, Dai J S, et al. Comparisons and accuracy assessments of LiDAR-based tree segmentation approaches in planted forests. Scientia Silvae Sinicae, 2018, 54 (12): 127- 136.
doi: 10.11707/j.1001-7488.20181214
|
|
李 响, 甄 贞, 赵颖慧. 基于局域最大值法单木位置探测的适宜模型研究. 北京林业大学学报, 2015, 37 (3): 27- 33.
|
|
Li X, Zhen Z, Zhao Y H. Suitable model of detecting the position of individual treetop based on local maximum method. Journal of Beijing Forestry University, 2015, 37 (3): 27- 33.
|
|
李增元, 刘清旺, 庞 勇. 激光雷达森林参数反演研究进展. 遥感学报, 2016, 20 (5): 1138- 1150.
|
|
Li Z Y, Liu Q W, Pang Y. Review on forest parameters inversion using LiDAR. Journal of Remote Sensing, 2016, 20 (5): 1138- 1150.
|
|
王 欣, 陈传法. LiDAR森林冠层高度模型凹坑去除方法. 测绘科学, 2016, 41 (12): 157- 161.
|
|
Wang X, Chen C F. Method for removing pits of canopy height model from airborne LiDAR data. Science of Surveying and Mapping, 2016, 41 (12): 157- 161.
|
|
王鑫运, 黄 杨, 邢艳秋, 等. 基于无人机高密度LiDAR点云的人工针叶林单木分割算法. 中南林业科技大学学报, 2022, 42 (8): 66- 77.
|
|
Wang X Y, Huang Y, Xing Y Q, et al. The single tree segmentation of UAV high-density LiDAR point cloud data based on coniferous plantations. Journal of Central South University of Forestry & Technology, 2022, 42 (8): 66- 77.
|
|
甄 贞, 李 响, 修思玉, 等. 基于标记控制区域生长法的单木树冠提取. 东北林业大学学报, 2016, 44 (10): 22- 29.
doi: 10.3969/j.issn.1000-5382.2016.10.005
|
|
Zhen Z, Li X, Xiu S Y, et al. Individual tree crown delineation using maker-controlled region growing method. Journal of Northeast Forestry University, 2016, 44 (10): 22- 29.
doi: 10.3969/j.issn.1000-5382.2016.10.005
|
|
朱泊东, 罗洪斌, 金 京, 等. 高郁闭度人工林无人机激光雷达单木分割方法优化. 林业科学, 2022, 58 (9): 48- 59.
doi: 10.11707/j.1001-7488.20220905
|
|
Zhu B D, Luo H B, Jin J, et al. Optimization of individual tree segmentation methods for high canopy density plantation based on UAV LiDAR. Scientia Silvae Sinicae, 2022, 58 (9): 48- 59.
doi: 10.11707/j.1001-7488.20220905
|
|
Alexander C, Korstjens A H, Hill R A. Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models. International Journal of Applied Earth Observation and Geoinformation, 2018, 65, 105- 113.
doi: 10.1016/j.jag.2017.10.009
|
|
Kato A, Moskal L M, Schiess P, et al. Capturing tree crown formation through implicit surface reconstruction using airborne LiDAR data. Remote Sensing of Environment, 2009, 113 (6): 1148- 1162.
doi: 10.1016/j.rse.2009.02.010
|
|
Khosravipour A, Skidmore A K, Wang T J, et al. Effect of slope on treetop detection using a LiDAR Canopy Height Model. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 104, 44- 52.
doi: 10.1016/j.isprsjprs.2015.02.013
|
|
Lee H, Slatton K C, Roth B E, et al. Adaptive clustering of airborne LiDAR data to segment individual tree crowns in managed pine forests. International Journal of Remote Sensing, 2010, 31 (1): 117- 139.
doi: 10.1080/01431160902882561
|
|
Lindberg E, Holmgren J. Individual tree crown methods for 3D data from remote sensing. Current Forestry Reports, 2017, 3 (1): 19- 31.
doi: 10.1007/s40725-017-0051-6
|
|
Morsdorf F, Meier E, Kötz B, et al. LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sensing of Environment, 2004, 92 (3): 353- 362.
doi: 10.1016/j.rse.2004.05.013
|
|
Nie S, Wang C, Xi X H, et al. Assessing the impacts of various factors on treetop detection using LiDAR-derived canopy height models. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57 (12): 10099- 10115.
doi: 10.1109/TGRS.2019.2931408
|
|
Nuijten R J G, Coops N C, Goodbody T R H, et al. Examining the multi-seasonal consistency of individual tree segmentation on deciduous stands using digital aerial photogrammetry (DAP) and unmanned aerial systems (UAS). Remote Sensing, 2019, 11 (7): 739.
doi: 10.3390/rs11070739
|
|
Sokolova M, Japkowicz N, Szpakowicz S. Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. Advances in Artificial Intelligence, 2006, 4304, 1015- 1021.
|
|
Siepielski A M, Morrissey M B, Buoro M, et al. Precipitation drives global variation in natural selection. Science, 2017, 355 (6328): 959- 962.
doi: 10.1126/science.aag2773
|
|
Wulder M A, White J C, Stinson G, et al. Implications of differing input data sources and approaches upon forest carbon stock estimation. Environmental Monitoring and Assessment, 2010, 166 (1/2/3/4): 543- 561.
|
|
Zhao D, Pang Y, Li Z Y, et al. Isolating individual trees in a closed coniferous forest using small footprint LiDAR data. International Journal of Remote Sensing, 2014, 35 (20): 7199- 7218.
doi: 10.1080/01431161.2014.967886
|
|
Zhao K G, Suarez J C, Garcia M, et al. Utility of multitemporal LiDAR for forest and carbon monitoring: Tree growth, biomass dynamics, and carbon flux. Remote Sensing of Environment, 2018, 204, 883- 897.
doi: 10.1016/j.rse.2017.09.007
|
|
Zhen Z, Quackenbush L J, Stehman S V, et al. Agent-based region growing for individual tree crown delineation from airborne laser scanning (ALS) data. International Journal of Remote Sensing, 2015, 36 (7): 1965- 1993.
doi: 10.1080/01431161.2015.1030043
|