欢迎访问林业科学,今天是

林业科学 ›› 2024, Vol. 60 ›› Issue (12): 35-46.doi: 10.11707/j.1001-7488.LYKX20240283

• • 上一篇    下一篇

基于13C示踪的2个杉木家系幼苗光合碳分配动态

杨梦佳1,2(),邹显花1,*,郭志娟1,彭钊1,何妍1,彭志远1,姚必达1,黄国敏1,朱丽琴1,黄荣珍1   

  1. 1. 南昌工程学院 流域生态智能监测与综合治理江西省重点实验室 南昌 330099
    2. 深圳世源工程技术有限公司 深圳 518103
  • 收稿日期:2024-05-19 出版日期:2024-12-25 发布日期:2025-01-02
  • 通讯作者: 邹显花 E-mail:yangmengjia0903@163.com
  • 基金资助:
    国家自然科学基金地区基金项目(32160361);赣鄱俊才支持计划-主要学科学术和技术带头人培养项目——青年人才(20232BCJ23043);南昌工程学院大学生创新创业训练计划项目(S202411319009,省级);南昌工程学院2021年引进高层次人才科研启动项目(2021kyqd002)。

Dynamics of Photosynthetic Carbon Allocation in Seedlings of Two Chinese Fir Families Based on 13C Tracing

Mengjia Yang1,2(),Xianhua Zou1,*,Zhijuan Guo1,Zhao Peng1,Yan He1,Zhiyuan Peng1,Bida Yao1,Guomin Huang1,Liqin Zhu1,Rongzhen Huang1   

  1. 1. Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem Nanchang University of Technology Nanchang 330099
    2. Shenzhen Shiyuan Engineering Technology Co., Ltd. Shenzhen 518103
  • Received:2024-05-19 Online:2024-12-25 Published:2025-01-02
  • Contact: Xianhua Zou E-mail:yangmengjia0903@163.com

摘要:

目的: 探究2个杉木家系幼苗在不同CO2浓度下对外源碳的固定及其光合碳在不同器官中的运输与分配规律,为揭示杉木固碳及光合碳分配策略对CO2浓度升高的响应机制提供理论依据。方法: 以南方林区广泛种植的洋口No.020和No.061杉木幼苗为对象,设置对照CO2浓度(400±50) μmol·mol?1(C400)及CO2浓度分别升高到(800±50) μmol·mol?1(C800)和(1 000±50) μmol·mol?1(C1 000)这3个CO2浓度梯度,利用13C标记法对不同浓度CO2进行标记,量化示踪标记后不同阶段各杉木家系幼苗固定的光合碳在各组织器官的流向和分配,分析幼苗净光合速率、各器官生物量分配比例及生长差异,阐明不同CO2浓度条件下各杉木家系幼苗的固碳能力及光合碳的体内分配规律差异。结果: 在不同CO2浓度处理下,各杉木家系幼苗的各组织器官的13C分配和生物量分配比例均大致呈现叶>茎>根的规律。随着CO2浓度增加,各杉木家系幼苗的净光合速率与各器官δ13C值总体上随之增加;No.020加快对根的13C运输,表现为处理1天后,C800与C1 000处理下根的13C分配比例分别较C400处理增加50.40%和109.63%。CO2处理浓度亦影响各杉木家系幼苗的光合碳分配策略,进而改变生物量分配。30 天后,相较C400处理:C800与C1 000处理下的No.020地上部13C分配比例分别增加了6.23%和6.03%,No.020茎的13C分配比例分别增加了39.50%和50.31%(P<0.05),No.061根系13C分配比例分别增加了22.40%和70.26%(P<0.05),No.061茎的13C分配比例分别减少了2.45%和15.10%(P<0.05);C1 000处理下No.061茎的生物量分配比例减少12.44%,根的生物量分配比例增加5.22%。结论: 正常大气CO2浓度下,No.020杉木幼苗具有更强的代谢转运能力。CO2浓度升高促进2个杉木家系幼苗提高净光合速率,增加光合碳合成,促进No.020杉木幼苗加快对光合碳的向下运输,并影响2个基因型杉木的光合碳分配策略,其中,No.020倾向于向地上部尤其是茎中储存光合碳,而No.061倾向牺牲茎的光合碳分配以增加根系光合碳供给。

关键词: 13C标记, 杉木, 不同家系, CO2浓度升高, 光合碳分配

Abstract:

Objective: To investigate the exogenous carbon fixation and photosynthetic carbon transport and allocation in different organs of seedlings of two Chinese fir families under different CO2 concentrations, and to provide a theoretical basis for revealing the response mechanism of carbon fixation and photosynthetic carbon allocation strategy to the increase of CO2 concentration. Method: Three CO2 concentration gradients were established: a control concentration of (400±50) μmol·mol?1 (C400) and two elevated concentrations of (800±50) μmol·mol?1 (C800) and (1 000±50) μmol·mol?1(C1 000) were established in the seedlings of No.020 and No.061 Chinese fir, which are extensively cultivated in the southern forest region, with the objective of quantifying the flow and distribution of fixed photosynthetic carbon in diverse tissues and organs at varying stages following tracer labeling, employing the 13C labeling method. The 13C labeling method was employed to label varying concentrations of CO2, quantify the flow and distribution of fixed photosynthetic carbon in each tissue and organ at different stages of the tracer labelling process, and analyse the net photosynthetic rate. The objective is to ascertain the proportion of biomass distributed to each organ and to elucidate the growth differences. Furthermore, the aim is to determine the differences in carbon fixation capacity and the in vivo distribution of photosynthetic carbon in seedlings of each Chinese fir family under different CO2 concentration conditions. Result: The 13C allocation and biomass allocation ratios of all tissue organs in seedlings of each Chinese fir family exhibited a pattern of leaf > stem > root under different CO2 concentration treatments. As the CO2 labelling concentration increased, the net photosynthetic rate and δ13C value of each organ in seedlings of each Chinese fir family generally increased subsequently. No.020 facilitated the transfer of 13C to the roots, as evidenced by an increase in the latter. Following a 1 d treatment, the C800 and C1 000 treatments resulted in 50.40% and 109.63% of the 13C allocation to the roots, respectively, in comparison to the C400 treatment. Following 30 d, the 13C allocation ratio of No.020 aboveground exhibited an increase of 6.23% and 6.03% in comparison to the C400 treatment, while the 13C allocation ratio of stems demonstrated a rise of 39.50% and 50.31%, respectively. The C800 and C1 000 treatments yielded statistically significant results (P<0.05) with the 13C allocation ratio of No.061 root system increasing by 22.40% and 70.26%, respectively. Additionally, the 13C allocation proportion of stems decreased by 2.45% and 15.10%(P<0.05), respectively, while the biomass allocation proportion of No.061 stems decreased by 12.44%. Conversely, the biomass allocation proportion of roots increased by 5.22% under the C1 000 treatment. Conclusion: In conditions of normal atmospheric CO2 concentration, No.020 fir seedlings demonstrate a greater capacity for metabolic translocation. The elevated CO2 concentrations promoted higher net photosynthetic rates and increased photosynthetic carbon synthesis in the seedlings of the two Chinese fir. Furthermore, the accelerated downward transport of photosynthetic carbon in the No.020 fir seedlings was observed, as well as the impact of elevated CO2 on the photosynthetic carbon allocation strategies in the two genotypes of the species. The fir, with No.020 tending to store photosynthetic carbon in the aboveground parts, particularly in the stems, and No.061 tending to allocate photosynthetic carbon at the expense of the stems in order to increase root photosynthetic carbon supply.

Key words: 13C marker, Chinese fir, different families, elevated CO2 concentration, photosynthetic carbon allocation

中图分类号: