林业科学 ›› 2024, Vol. 60 ›› Issue (12): 13-26.doi: 10.11707/j.1001-7488.LYKX20230469
张凡1,仇天昊1,李欣悦1,张姝茵1,*,徐超1,谢治国2
收稿日期:
2023-10-08
出版日期:
2024-12-25
发布日期:
2025-01-02
通讯作者:
张姝茵
基金资助:
Fan Zhang1,Tianhao Qiu1,Xinyue Li1,Shuyin Zhang1,*,Chao Xu1,Zhiguo Xie2
Received:
2023-10-08
Online:
2024-12-25
Published:
2025-01-02
Contact:
Shuyin Zhang
摘要:
目的: 引入DBSCAN聚类算法和QuickHull凸包检测算法,提出一种自适应端元特征值提取(AEEE)算法,解决像元三分模型中纯净像元指数结合二维散点图(PPI-2DSP)算法依赖人工圈选特征像元候选区的问题,利用AEEE算法评估神木市的光合植被覆盖度(fPV)、非光合植被覆盖度(fNPV)和裸土覆盖度(fBS),并分析其时空变化,验证算法的有效性,为该地区生态环境评价和植被覆盖度变化规律研究提供参考。方法: 以Landsat系列卫星遥感影像为数据源,首先对遥感数据进行预处理,然后计算像元的归一化植被指数(NDVI)和干枯燃料指数(DFI),通过以下4个步骤获取特征像元候选区:1) 应用随机采样模块减少数据规模;2) 采用DBSCAN算法聚类,去除离群数据,得到最大簇;3) 利用QuickHull算法计算凸包,构建特征三角形边界;4) 计算由凸包点集中3个点所构成的最大面积三角形顶点,分别以3个顶点为中心,取端点阈值(
中图分类号:
张凡,仇天昊,李欣悦,张姝茵,徐超,谢治国. 基于改进像元三分模型的植被覆盖度提取及时空变化分析[J]. 林业科学, 2024, 60(12): 13-26.
Fan Zhang,Tianhao Qiu,Xinyue Li,Shuyin Zhang,Chao Xu,Zhiguo Xie. Vegetation Fractional Cover Extraction and Spatiotemporal Variation Analysis Based on Improved Normalized Difference Vegetation Index (NDVI) and Dry Fuel Index (DFI) Model[J]. Scientia Silvae Sinicae, 2024, 60(12): 13-26.
表1
2000—2022年Landsat数据产品选取方案"
影像名称 Image name | 年份 Year | 选取原因 Reason for Selection |
Landsat 5/TM | 2000—2011 | 同期可选产品有Landsat 5和Landsat 7,但2003年起Landsat 7数据存在异常,故选择Landsat 5 Concurrently available products include Landsat 5 and Landsat 7, but Landsat 7 data has been abnormal since 2003, thus Landsat 5 was selected. |
Landsat 7/ETM+ | 2012 | Landsat系列影像只有Landsat 7有2012年影像数据,使用landsat_gapfill工具进行条带错误修复 Only Landsat 7 in the Landsat series has image data from 2012. The landsat_gapfill tool was used to repair stripe errors. |
Landsat 8/OLI | 2013—2022 | 2013年发射的新卫星,配备更先进的传感器,数据质量更好 A new satellite launched in 2013, equipped with more advanced sensors, providing better data quality. |
表2
参数组合率定结果"
minpts | 相对误差 Relative error(%) | minpts | 相对误差 Relative error(%) | minpts | 相对误差 Relative error(%) | |||||||||||
0.01 | 0.014 | 4 | 0.04 | 10.96 | 0.01 | 0.018 | 4 | 0.04 | 9.37 | 0.02 | 0.016 | 4 | 0.04 | 17.34 | ||
0.01 | 0.014 | 4 | 0.05 | 11.50 | 0.01 | 0.018 | 4 | 0.05 | 9.39 | 0.02 | 0.016 | 4 | 0.05 | 13.67 | ||
0.01 | 0.014 | 5 | 0.04 | 10.07 | 0.01 | 0.018 | 5 | 0.04 | 8.55 | 0.02 | 0.016 | 5 | 0.04 | 14.21 | ||
0.01 | 0.014 | 5 | 0.05 | 11.58 | 0.01 | 0.018 | 5 | 0.05 | 8.16 | 0.02 | 0.016 | 5 | 0.05 | 11.15 | ||
0.01 | 0.014 | 6 | 0.04 | 10.61 | 0.01 | 0.018 | 6 | 0.04 | 7.65 | 0.02 | 0.016 | 6 | 0.04 | 11.74 | ||
0.01 | 0.014 | 6 | 0.05 | 12.40 | 0.01 | 0.018 | 6 | 0.05 | 7.98 | 0.02 | 0.016 | 6 | 0.05 | 9.78 | ||
0.01 | 0.016 | 4 | 0.04 | 9.37 | 0.02 | 0.014 | 4 | 0.04 | 11.95 | 0.02 | 0.018 | 4 | 0.04 | 24.68 | ||
0.01 | 0.016 | 4 | 0.05 | 8.63 | 0.02 | 0.014 | 4 | 0.05 | 10.34 | 0.02 | 0.018 | 4 | 0.05 | 20.07 | ||
0.01 | 0.016 | 5 | 0.04 | 7.72 | 0.02 | 0.014 | 5 | 0.04 | 9.40 | 0.02 | 0.018 | 5 | 0.04 | 19.96 | ||
0.01 | 0.016 | 5 | 0.05 | 7.35 | 0.02 | 0.014 | 5 | 0.05 | 8.75 | 0.02 | 0.018 | 5 | 0.05 | 15.94 | ||
0.01 | 0.016 | 6 | 0.04 | 8.98 | 0.02 | 0.014 | 6 | 0.04 | 9.37 | 0.02 | 0.018 | 6 | 0.04 | 15.57 | ||
0.01 | 0.016 | 6 | 0.05 | 10.18 | 0.02 | 0.014 | 6 | 0.05 | 9.34 | 0.02 | 0.018 | 6 | 0.05 | 12.72 |
表3
2000—2022年PPI-2DSP算法与AEEE算法提取的端元特征值相对误差"
特征值类型 Type of eigenvalue | PPI-2DSP 算法提取 Extraction using the PPI-2DSP | AEEE算法 提取 Extraction using the AEEE | 相对误差 Relative error (%) |
BS端元的NDVI特征值 NDVI eigenvalue of the BS endmember | 0.070 | 0.073 | 9.56 |
PV端元的NDVI特征值 NDVI eigenvalue of the PV endmember | 0.354 | 0.363 | 4.42 |
NPV端元的NDVI特征值 NDVI eigenvalue of the NPV endmember | 0.124 | 0.129 | 9.59 |
BS端元的DFI特征值 DFI eigenvalue of the BS endmember | 2.660 | 3.079 | 14.62 |
PV端元的DFI特征值 DFI eigenvalue of the PV endmember | 10.856 | 10.867 | 2.06 |
NPV端元的DFI特征值 DFI eigenvalue of the NPV endmember | 12.221 | 11.818 | 3.86 |
图8
神木市2个阶段光合植被覆盖度变化趋势 根据fPV可以将覆盖度划分为5个等级:1) 低覆盖度$ f\mathrm{_{PV}}\in[0,0.05] $;2) 中低覆盖度$ f\mathrm{_{PV}}\in(0.05,0.15] $;3) 中覆盖度$ f_{\mathrm{PV}}\in(0.15,0.3] $;4) 中高覆盖度$ f\mathrm{_{PV}}\in(0.3,0.6] $;5) 高覆盖度$ f\mathrm{_{PV}}\in(0.6,1] $。根据植被覆盖度等级随时间的相互转化程度可将变化强度划分为5个等级:1) 显著退化$c < - 1$;2) 退化$c = - 1$;3) 基本不变$c = 0$;4) 增加$c = 1$;5) 显著增加$c > 1$,其中$c$表示结束状态与初始状态的覆盖度等级之差。总体来看,神木市fPV整体呈现出西北增长缓慢、东南增长迅速的特点。Based on the variable, the fractional cover is categorized into five levels: 1) Low coverage $ f\mathrm{_{PV}}\in[0,0.05] $; 2) Low to moderate coverage $ f\mathrm{_{PV}}\in(0.05,0.15] $; 3) Moderate coverage $ f_{\mathrm{PV}}\in(0.15,0.3] $; 4) Moderate to high coverage $ f\mathrm{_{PV}}\in(0.3,0.6] $; 5) High coverage $ f_{\mathrm{PV}}\in(0.6,1] $. The degree of change is classified into five levels based on the mutual transformation of fractional cover levels over time: 1) Significant degradation $c < - 1$; 2) Degradation $c = - 1$; 3) Basically unchanged $c = 0$; 4) Increase $c = 1$; 5) Significant increase $c > 1$, where $c$represents the difference between the final and initial states of fractional cover levels. In a comprehensive analysis, the fPV development in Shenmu city exhibits a gradual growth trend in the northwest, while experiencing rapid expansion in the southeast."
柴国奇, 王静璞, 王光镇, 等. 基于MODIS数据的典型草原非光合植被覆盖度估算. 国土资源遥感, 2019, 31 (3): 234- 241. | |
Chai G Q, Wang J P, Wang G Z, et al. Estimation of fractional cover of non-photosynthetic vegetation in typical steppe based on MODIS data. Remote Sensing for Land & Resources, 2019, 31 (3): 234- 241. | |
邓目丽, 蒋馥根, 孙 华, 等. 神木市植被覆盖度时空动态变化分析. 森林与环境学报, 2021, 41 (6): 611- 619. | |
Deng M L, Jiang F G, Sun H, et al. Spatial-temporal dynamic change analysis of vegetation coverage in Shenmu city. Journal of Forest and Environment, 2021, 41 (6): 611- 619. | |
冯正英, 王世东. 结合MNF变换和Canny算子的遥感影像变化检测. 计算机工程与应用, 2019, 55 (14): 266- 270.
doi: 10.3778/j.issn.1002-8331.1803-0452 |
|
Feng Z Y, Wang S D. Remote sensing image change detection based on MNF transform and canny operator. Computer Engineering and Applications, 2019, 55 (14): 266- 270.
doi: 10.3778/j.issn.1002-8331.1803-0452 |
|
侯春华, 李富平, 冯一帆, 等. 基于NDVI-DFI的矿业开发密集区地表热环境分异效应分析. 农业工程学报, 2020, 36 (3): 160- 168.
doi: 10.11975/j.issn.1002-6819.2020.03.020 |
|
Hou C H, Li F P, Feng Y F, et al. Analysis of differentiation effect of surface thermal environment in intensive mining areas based on NDVI-DFI model. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (3): 160- 168.
doi: 10.11975/j.issn.1002-6819.2020.03.020 |
|
黄健熙, 吴炳方, 曾 源, 等. 水平和垂直尺度乔、灌、草覆盖度遥感提取研究进展. 地球科学进展, 2005, 20 (8): 871- 881.
doi: 10.3321/j.issn:1001-8166.2005.08.008 |
|
Huang J X, Wu B F, Zeng Y, et al. Review of tree, shrub, grass cover of horizontal and vertical scale retrieval from remotely sensed data. Advance in Earth Sciences, 2005, 20 (8): 871- 881.
doi: 10.3321/j.issn:1001-8166.2005.08.008 |
|
刘逸滨, 刘宝元, 成 城, 等. 退耕还林草20年来榆林市植被覆盖度时空变化及影响因素分析. 水土保持学报, 2022, 36 (2): 197- 208,218. | |
Liu Y B, Liu B Y, Cheng C, et al. Spatio-temporal changes and influencing factors of vegetation coverage in Yulin city during the past 20 years since the implementation of the “grain for green” program. Journal of Soil and Water Conservation, 2022, 36 (2): 197- 208,218. | |
马 锋, 卓 静, 何慧娟, 等. 陕西省榆林市植被生态演变及其驱动机制. 水土保持通报, 2020, 40 (5): 257- 261,267,341. | |
Ma F, Zhuo J, He H J, et al. Ecological evolution and driving mechanism of vegetation in Yulin city, Shaanxi Province. Bulletin of Soil and Water Conservation, 2020, 40 (5): 257- 261,267,341. | |
马建明, 常晓晴, 邢艳秋, 等. 基于Landsat TM/OLI影像的哈尔滨市植被覆盖度与景观格局动态变化分析. 森林工程, 2023, 39 (5): 65- 73. | |
Ma J M, Chang X Q, Xing Y Q, et al. Analysis of dynamic changes of vegetation coverage and landscape pattern in Harbin based on Landsat TM/OLI images. Forest Engineering, 2023, 39 (5): 65- 73. | |
宋吉梅, 夏 楠, 海文月, 等. 基于NDVI-DFI分析新疆戈壁区植被的时空变化. 西南农业学报, 2022, 35 (12): 2867- 2875. | |
Song J M, Xia N, Hai W Y, et al. Spatial-temporal variation of vegetation in Gobi region of Xinjiang based on NDVI-DFI model. Southwest China Journal of Agricultural Sciences, 2022, 35 (12): 2867- 2875. | |
宋清洁, 崔 霞, 张瑶瑶, 等. 基于小型无人机与MODIS数据的草地植被覆盖度研究: 以甘南州为例. 草业科学, 2017, 34 (1): 40- 50. | |
Song Q J, Cui X, Zhang Y Y, et al. Grassland fractional vegetation cover analysis using small UVAs and MODIS: a case study in Gannan prefecture. Pratacultural Science, 2017, 34 (1): 40- 50. | |
王 升, 王全九, 董文财, 等. 黄土坡面不同植被覆盖度下产流产沙与养分流失规律. 水土保持学报, 2012, 26 (4): 23- 27. | |
Wang S, Wang Q J, Dong W C, et al. Runoff and sediment generations and nutrient losses under different vegetation coverage in loess slope. Journal of Soil and Water Conservation, 2012, 26 (4): 23- 27. | |
王光镇, 王静璞, 邹学勇, 等. 基于像元三分模型的锡林郭勒草原光合植被和非光合植被覆盖度估算. 生态学报, 2017, 37 (17): 5722- 5731. | |
Wang G Z, Wang J P, Zou X Y, et al. Estimation of fractional cover of photosynthetic and non-photosynthetic vegetation in the Xilingol steppe region using the NDVI-DFI model. Acta Ecologica Sinica, 2017, 37 (17): 5722- 5731. | |
王光镇. 2018. 锡林郭勒典型草原光合/非光合植被覆盖度遥感估算研究. 烟台: 鲁东大学. | |
Wang G Z. 2018. Estimating fractional cover of Photosynthetic/non-photosynthetic vegetation in the Xilinguole typical grassland region with remote sensing data. Yantai: Ludong University. [in Chinese] | |
卫新东, 林良国, 冯小龙, 等. 榆林市生态安全格局构建与生态问题定量诊断. 生态学报, 2023, 43 (1): 82- 94.
doi: 10.1016/j.chnaes.2021.09.017 |
|
Wei X D, Lin L G, Fen X L, et al. Construction of ecological security pattern and quantitative diagnosis of ecological problems in Yulin city. Acta Ecologica Sinica, 2023, 43 (1): 82- 94.
doi: 10.1016/j.chnaes.2021.09.017 |
|
吴莉娟. 2015. 基于阴影情况下的植被覆盖度模型研究. 西安: 西安科技大学. | |
Wu L J. 2015. The study of vegetation coverage model Based on of the shadow. Xi’an: Xi’an University of Science and Technology. [in Chinese] | |
余玉洋, 王银苹, 秦 奋, 等. 河南省植被覆盖指数变化及其对气候的响应. 森林与环境学报, 2019, 39 (3): 280- 286. | |
Yu Y Y, Wang Y P, Qin F, et al. Vegetation index change and its response to climate in Henan Province. Journal of Forest and Environment, 2019, 39 (3): 280- 286. | |
云增鑫. 2019. 森林立体分层的激光雷达研究. 南京: 南京大学. | |
Yun Z X. 2019. Stratifying forest vertical layers using three dimensional (3-D) point cloud data. Nanjing: Nanjing University. [in Chinese] | |
张丛凯, 于 颖. ICESat-2/ATLAS数据地面高程及植被冠层高度反演精度验证. 森林工程, 2023, 39 (3): 1- 11. | |
Zhang C K, Yu Y. Accuracy verification of ground elevation and vegetation canopy height inversion from ICESat-2/ATLAS data. Forest Engineering, 2023, 39 (3): 1- 11. | |
张含玉, 方怒放, 史志华. 黄土高原植被覆盖时空变化及其对气候因子的响应. 生态学报, 2016, 36 (13): 3960- 3968. | |
Zhang H Y, Fang N F, Shi Z H. Spatio-temporal patterns for the NDVI and its responses to climatic factors in the Loess Plateau, China. Acta Ecologica Sinica, 2016, 36 (13): 3960- 3968. | |
张兴昌, 刘国彬, 付会芳. 不同植被覆盖度对流域氮素径流流失的影响. 环境科学, 2000, 21 (6): 16- 19.
doi: 10.3321/j.issn:0250-3301.2000.06.004 |
|
Zhang X C, Liu G B, Fu H F. Soil nitrogen losses of catchment by water erosion as affected by vegetation coverage. Chinese Journal of Enviromental Science, 2000, 21 (6): 16- 19.
doi: 10.3321/j.issn:0250-3301.2000.06.004 |
|
祝 聪, 彭文甫, 张丽芳, 等. 2006—2016年岷江上游植被覆盖度时空变化及驱动力. 生态学报, 2019, 39 (5): 1583- 1594. | |
Zhu C, Peng W F, Zhang L F, et al. Study of temporal and spatial variation and driving force of fractional vegetation cover in upper reaches of Minjiang River from 2006 to 2016. Acta Ecologica Sinica, 2019, 39 (5): 1583- 1594. | |
朱燕香, 潘剑君, 白浩然, 等. 基于Sentinel-2A影像的OPTRAM模型及其改进模型的土壤水分估算研究. 南京农业大学学报, 2020, 43 (4): 682- 689.
doi: 10.7685/jnau.201910012 |
|
Zhu Y X, Pan J J, Bai H R, et al. Soil moisture estimation with the OPTRAM model and its improved model based on Sentinel-2A data. Journal of Nanjing Agricultural University, 2020, 43 (4): 682- 689.
doi: 10.7685/jnau.201910012 |
|
Cao X, Chen J, Matsushita B, et al. Developing a MODIS-based index to discriminate dead fuel from photosynthetic vegetation and soil background in the Asian steppe area. International Journal of Remote Sensing, 2010, 31 (6): 1589- 1604.
doi: 10.1080/01431160903475274 |
|
Daughtry C S T, Hunt E R, McMurtrey J E. Assessing crop residue cover using shortwave infrared reflectance. Remote Sensing of Environment, 2004, 90 (1): 126- 134.
doi: 10.1016/j.rse.2003.10.023 |
|
Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 2002, 80 (1): 76- 87.
doi: 10.1016/S0034-4257(01)00289-9 |
|
Gong P, Liu H, Zhang M N, et al. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Science Bulletin, 2019, 64 (6): 370- 373.
doi: 10.1016/j.scib.2019.03.002 |
|
Graham R L. An efficient algorith for determining the convex hull of a finite planar set. Information Processing Letters, 1972, 1 (4): 132- 133.
doi: 10.1016/0020-0190(72)90045-2 |
|
Guerschman J P, Hill M J, Renzullo L J, et al. Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 hyperion and MODIS sensors. Remote Sensing of Environment, 2009, 113 (5): 928- 945.
doi: 10.1016/j.rse.2009.01.006 |
|
Mele A, Vitiello A, Bonano M, et al. On the joint exploitation of satellite DInSAR measurements and DBSCAN-based techniques for preliminary identification and ranking of critical constructions in a built environment. Remote Sensing, 2022, 14 (8): 1872.
doi: 10.3390/rs14081872 |
|
Towers P C, Poblete-Echeverría C. Effect of the illumination angle on NDVI data composed of mixed surface values obtained over vertical-shoot-positioned vineyards. Remote Sensing, 2021, 13 (5): 855.
doi: 10.3390/rs13050855 |
|
Wang G Z, Wang J P, Zou X Y, et al. Estimating the fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil from MODIS data: assessing the applicability of the NDVI-DFI model in the typical Xilingol grasslands. International Journal of Applied Earth Observation and Geoinformation, 2019, 76, 154- 166.
doi: 10.1016/j.jag.2018.11.006 |
|
Yan K, Gao S, Chi H J, et al. Evaluation of the vegetation-index-based dimidiate pixel model for fractional vegetation cover estimation. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60, 4400514. | |
Zhao T, Bai H Y, Han H Z, et al. A quantitatively divided approach for the vertical belt of vegetation based on NDVI and DEM: an analysis of Taibai Mountain. Forests, 2023, 14 (10): 1981.
doi: 10.3390/f14101981 |
[1] | 李祎,单博文,杨丽,覃钧,石雷. 近20年来肥城市林地时空变化及其驱动因子[J]. 林业科学, 2024, 60(7): 40-46. |
[2] | 谭炳香,沈明潭,郄光发,戚瞾,贺晨瑞. 冬奥会崇礼生态核心区植被覆盖时空变化遥感监测[J]. 林业科学, 2022, 58(4): 141-151. |
[3] | 钟莉,陈芸芝,汪小钦. 基于Landsat时序数据的森林干扰监测[J]. 林业科学, 2020, 56(5): 80-88. |
[4] | 高文文, 曾源, 刘宇, 衣海燕, 吴炳方, 鞠洪波. 南水北调中线水源区2000—2015年森林动态变化遥感监测[J]. 林业科学, 2019, 55(4): 97-107. |
[5] | 毛学刚, 姚瑶, 范文义. 基于Landsat长时间序列的森林扰动参数提取与树高估算[J]. 林业科学, 2019, 55(3): 79-87. |
[6] | 李阳光, 杜华强, 毛方杰, 李雪建, 崔璐, 韩凝, 徐小军. 基于时序Landsat数据的浙江省竹林信息提取及时空演变[J]. 林业科学, 2019, 55(3): 88-96. |
[7] | 田静, 邢艳秋, 姚松涛, 曾旭婧, 焦义涛. 基于元胞自动机和BP神经网络算法的Landsat-TM遥感影像森林类型分类比较[J]. 林业科学, 2017, 53(2): 26-34. |
[8] | 欧朝蓉, 朱清科, 孙永玉. 元谋干热河谷旱季植被覆盖度的时空异质性[J]. 林业科学, 2017, 53(11): 20-28. |
[9] | 奚祯苑, 刘丽娟, 陆灯盛, 葛宏立, 陈耀亮. 基于线性混合像元分解技术提取山核桃空间分布[J]. 林业科学, 2015, 51(10): 43-52. |
[10] | 郭云, 李增元, 陈尔学, 田昕, 凌飞龙. 甘肃黑河流域上游森林地上生物量的多光谱遥感估测[J]. 林业科学, 2015, 51(1): 140-149. |
[11] | 张茂震, 王广兴, 葛宏立, 徐丽华. 基于空间仿真的仙居县森林碳分布估算[J]. 林业科学, 2014, 50(11): 13-22. |
[12] | 贾宝全;邱尔发;张红旗. 基于归一化植被指数的西安市域植被变化[J]. 林业科学, 2012, 48(10): 6-12. |
[13] | 吴昌广;周志翔;肖文发;王鹏程;汪涛;黄子杰. 基于MODISNDVI的三峡库区植被覆盖度动态监测[J]. 林业科学, 2012, 48(1): 22-28. |
[14] | 徐小军;周国模;杜华强;董德进;崔瑞蕊;周宇峰;沈振明. 基于Landsat TM数据估算雷竹林地上生物量[J]. 林业科学, 2011, 47(9): 1-6. |
[15] | 张飞;塔西甫拉提·特依拜;丁建丽;;何祺胜;田源;买买提·沙吾提;王宏;桂东伟;. 新疆典型盐渍区植被覆盖度遥感动态监测——以渭干河-库车河三角洲绿洲为例[J]. 林业科学, 2011, 47(7): 27-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||