林业科学 ›› 2024, Vol. 60 ›› Issue (12): 35-46.doi: 10.11707/j.1001-7488.LYKX20240283
杨梦佳1,2(),邹显花1,*,郭志娟1,彭钊1,何妍1,彭志远1,姚必达1,黄国敏1,朱丽琴1,黄荣珍1
收稿日期:
2024-05-19
出版日期:
2024-12-25
发布日期:
2025-01-02
通讯作者:
邹显花
E-mail:yangmengjia0903@163.com
基金资助:
Mengjia Yang1,2(),Xianhua Zou1,*,Zhijuan Guo1,Zhao Peng1,Yan He1,Zhiyuan Peng1,Bida Yao1,Guomin Huang1,Liqin Zhu1,Rongzhen Huang1
Received:
2024-05-19
Online:
2024-12-25
Published:
2025-01-02
Contact:
Xianhua Zou
E-mail:yangmengjia0903@163.com
摘要:
目的: 探究2个杉木家系幼苗在不同CO2浓度下对外源碳的固定及其光合碳在不同器官中的运输与分配规律,为揭示杉木固碳及光合碳分配策略对CO2浓度升高的响应机制提供理论依据。方法: 以南方林区广泛种植的洋口No.020和No.061杉木幼苗为对象,设置对照CO2浓度(400±50) μmol·mol?1(C400)及CO2浓度分别升高到(800±50) μmol·mol?1(C800)和(1 000±50) μmol·mol?1(C1 000)这3个CO2浓度梯度,利用13C标记法对不同浓度CO2进行标记,量化示踪标记后不同阶段各杉木家系幼苗固定的光合碳在各组织器官的流向和分配,分析幼苗净光合速率、各器官生物量分配比例及生长差异,阐明不同CO2浓度条件下各杉木家系幼苗的固碳能力及光合碳的体内分配规律差异。结果: 在不同CO2浓度处理下,各杉木家系幼苗的各组织器官的13C分配和生物量分配比例均大致呈现叶>茎>根的规律。随着CO2浓度增加,各杉木家系幼苗的净光合速率与各器官δ13C值总体上随之增加;No.020加快对根的13C运输,表现为处理1天后,C800与C1 000处理下根的13C分配比例分别较C400处理增加50.40%和109.63%。CO2处理浓度亦影响各杉木家系幼苗的光合碳分配策略,进而改变生物量分配。30 天后,相较C400处理:C800与C1 000处理下的No.020地上部13C分配比例分别增加了6.23%和6.03%,No.020茎的13C分配比例分别增加了39.50%和50.31%(P<0.05),No.061根系13C分配比例分别增加了22.40%和70.26%(P<0.05),No.061茎的13C分配比例分别减少了2.45%和15.10%(P<0.05);C1 000处理下No.061茎的生物量分配比例减少12.44%,根的生物量分配比例增加5.22%。结论: 正常大气CO2浓度下,No.020杉木幼苗具有更强的代谢转运能力。CO2浓度升高促进2个杉木家系幼苗提高净光合速率,增加光合碳合成,促进No.020杉木幼苗加快对光合碳的向下运输,并影响2个基因型杉木的光合碳分配策略,其中,No.020倾向于向地上部尤其是茎中储存光合碳,而No.061倾向牺牲茎的光合碳分配以增加根系光合碳供给。
中图分类号:
杨梦佳,邹显花,郭志娟,彭钊,何妍,彭志远,姚必达,黄国敏,朱丽琴,黄荣珍. 基于13C示踪的2个杉木家系幼苗光合碳分配动态[J]. 林业科学, 2024, 60(12): 35-46.
Mengjia Yang,Xianhua Zou,Zhijuan Guo,Zhao Peng,Yan He,Zhiyuan Peng,Bida Yao,Guomin Huang,Liqin Zhu,Rongzhen Huang. Dynamics of Photosynthetic Carbon Allocation in Seedlings of Two Chinese Fir Families Based on 13C Tracing[J]. Scientia Silvae Sinicae, 2024, 60(12): 35-46.
表1
标记后不同阶段2个杉木家系幼苗的净光合速率比较①"
标记处理 Labeling treatment | 取样时间 Sampling time/d | 净光合速率Net photosynthetic rate/(μmol·m?2s?1) | |
No.020 | No.061 | ||
C400 | 1 | 0.63±0.3Bb | 0.83±0.09Cb |
5 | 1.02±0.26Bb | 0.99±0.02Cb | |
15 | 1.81±0.48ABc | 3.75±0.25Ba | |
30 | 2.78±1.39Ab | 4.91±0.96Ab | |
C800 | 1 | 1.07±0.32Cb | 1.86±0.25Cab |
5 | 1.15±0.27Cb | 1.52±0.5Cab | |
15 | 3.17±0.17Bb | 3.87±0.15Ba | |
30 | 5.76±1.5Aa | 5.56±0.07Ab | |
C1 000 | 1 | 3.66±0.74BCa | 2.73±1.15Ca |
5 | 2.57±0.64Ca | 2.50±1.10Ca | |
15 | 4.75±0.76Ba | 4.91±0.96Ba | |
30 | 6.9±0.38Aa | 7.57±0.65Aa |
表2
标记后不同阶段2个杉木家系幼苗各器官δ13C值①"
无性系号 Clone number | 标记处理 Labeling treatment | 取样时间 Sampling time/d | δ13C值 δ13C value (‰) | ||
叶Leaf | 茎Stem | 根Root | |||
No.020 | No | 标记前 Before labeling | ?28.80±0.36 | ?28.63±0.26 | ?27.61±0.99 |
C400 | 1 | 79.69±21.62Ac | 1.77±4.11BCc | ?14.06±0.67Bb | |
5 | 75.38±38.25Ab | 76.61±8.83Ab | 33.59±12.27Ab | ||
15 | 19.1±11.63ABb | 21.68±7.52Bb | 27.43±13.07Ab | ||
30 | ?15.74±6.09Bb | ?10.97±7.48Cb | ?11.05±4.68Bc | ||
C800 | 1 | 224.00±3.83Ab | 66.72±22.87Bb | 4.61±3.54Bb | |
5 | 31.36±23.89Bb | 190.07±25.92Ab | 31.21±7.31ABb | ||
15 | 41.57±21.33Bb | 73.68±33.82Bb | 41.02±16.14ABb | ||
30 | 54.38±28.21Bb | 82.02±41.79Bb | 47.77±15.14Ab | ||
C1 000 | 1 | 372.23±57.74Aa | 127.68±6.98Ba | 35.81±12.31Ba | |
5 | 340.89±76.98Aa | 375.9±159.84Aa | 322.47±100.14Aa | ||
15 | 249.22±68.6Aa | 333.81±91.01Aa | 241.84±45.88Aa | ||
30 | 234.02±64.84Aa | 361.43±151.77Aa | 280.57±112.19Aa | ||
No.061 | No | 标记前 Before labeling | ?28.93±0.62 | ?27.21±0.57 | ?27.08±1.53 |
C400 | 1 | 82.65±9.13Ac | 24.69±9.01Ab | ?1.19±1.69Ba | |
5 | 27.82±4.1Bc | 39.59±2.97Aa | 26.28±8.31Aa | ||
15 | 23.28±1.11Bc | 26.07±7.12Aa | 15.78±6.31ABa | ||
30 | 21.82±1.77Bb | 44.56±3.69Ab | 12.70±3.98ABc | ||
C800 | 1 | 194.83±8.11Ab | ?5.20±3.77Bb | ?9.43±16.15Ba | |
5 | 177.92±13.97Ab | 174.70±10.36Aa | 152.39±9.24Aa | ||
15 | 139.13±20.46Ab | 150.96±81.12ABa | 116.11±73.73ABa | ||
30 | 137.74±35.94Aa | 211.19±61.86Ab | 131.78±35.01ABb | ||
C1 000 | 1 | 389.79±3.71Aa | 100.76±34.68Aa | 21.78±18.46Ba | |
5 | 214.40±24.16Ba | 290.04±233.43Aa | 244.60±143.58Aa | ||
15 | 156.22±17.49Ba | 169.63±96.83Aa | 115.24±63.57Aa | ||
30 | 150.13±28.45Ca | 192.71±74.88Aa | 136.09±42.31Aa |
蔡章林, 赵厚本, 蔡继醇, 等. 2023. 用13C标记法研究光合碳在枫香和山乌桕幼苗体内的留存及分配动态. 应用与环境生物学报, 29(2): 408−413. | |
Cai Z L, Zhao H B, Cai J C, et al. 2023. Retention and distribution dynamics of photosynthetic carbon in Liquidambar formosana and Sapium discolar seedlings by 13C labeling. Chinese Journal of Applied and Environmental Biology, 29(2): 408−413. [in Chinese] | |
曹宏杰, 倪红伟. 大气CO2升高对土壤碳循环影响的研究进展. 生态环境学报, 2013, 22 (11): 1846- 1852. | |
Cao H J, Ni H W. Research progress on the effects of elevated CO2 concentration on carbon cycling. Ecology and Environmental Sciences, 2013, 22 (11): 1846- 1852. | |
曹云冰. 2023. 野生欧洲李叶片形态结构及光合特性研究. 乌鲁木齐: 新疆农业大学. | |
Cao Y B. 2023. Study on leaf morphological structure and photosynthetic. characteristics of wild European Plum. Urumqi: Xinjiang Agricultural University. [in Chinese] | |
陈俊伟, 倪竹如, 刘智宏, 等. 利用14C示踪法研究杉木光合碳分配和杉木根系分泌物. 核农学报, 1994, 8 (3): 167- 171. | |
Chen J L, Ni Z R, Liu Z H, et al. Studies on photosynthate distribution and root exudates of cinesische by 14C tracer technique. Journal of Nuclear Agricultural Sciences, 1994, 8 (3): 167- 171. | |
邓秀秀, 肖文发, 曾立雄, 等. 马尾松幼苗光合产物的运输与分配特征. 林业科学, 2019, 55 (7): 27- 34. | |
Deng X X, Xiao W F, Zeng L X, et al. Transport and distribution characteristics of photosynthates of pinus massoniana seedlings. Scientia Silvae Sinicae, 2019, 55 (7): 27- 34. | |
杜屹原, 孟宪菁, 杨 斌, 等. 进样量和信号强度对气相色谱-燃烧-同位素比值质谱测定δ13C和δ15N的影响. 质谱学报, 2022, 43 (4): 512- 521. | |
Du Y Y, Meng X J, Yang B, et al. Effect of sample size and signal intensity on 13C and 15N measurements by GC-C-IRMS. Journal of Chinese Mass Spectrometry Society, 2022, 43 (4): 512- 521. | |
房 蕊. 2021. 大气CO2浓度和温度升高对玉米光合碳分配及根际细菌群落的影响. 长春: 中国科学院大学(中国科学院东北地理与农业生态研究所). | |
Fang R. 2021. Effects of elevated CO2 concentration and warming on maize photosynthetic carbon distribution and community of rhizosphere bacterial. Changchun: University of Chinese Academy of Sciences(Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences). [in Chinese] | |
高唤唤, 王姣娇, 周丕生, 等. 利用13C和15N示踪碳、氮在栓皮栎幼苗各器官中的分配. 上海交通大学学报(农业科学版), 2017, 35 (6): 67- 73. | |
Gao H H, Wang J J, Zhou P S, et al. Carbon and Nitrogen Allocation in Organs of Quercus variabilis Seedlings by 13C and 15N Tracer Technique. Journal of Shanghai Jiaotong University(Agricultural Science), 2017, 35 (6): 67- 73. | |
谷淑波, 代兴龙, 樊广华, 等. 稳定性同位素13C标记小麦植株δ13C值的检测方法研究. 核农学报, 2016, 30 (4): 770- 775. | |
Gu S B, Dai X L, Fan G H. et al. Study on the determination method of δ13C values of the stable isotope 13C-labeled wheat plant. Journal of Nuclear Agricultural Sciences, 2016, 30 (4): 770- 775. | |
谷淑波, 宋雪皎, 王树芸, 等. 同位素质谱仪测定小麦植株各器官δ15N值的考察. 分析测试技术与仪器, 2018, 24 (3): 129- 135. | |
Gu S B, Song X J, Wang S Y, et al. δ15N values of wheat plant analysis by istope ratio mass spectrometry. Analysis and Testing Technology and Instruments, 2018, 24 (3): 129- 135. | |
郭芳芸, 哈 蓉, 马亚平, 等. CO2浓度升高对宁夏枸杞苗木光合特性及生物量分配影响. 西北植物学报, 2019, 39 (2): 302- 309. | |
Guo F Y, Ha R, Ma Y P, et al. Effects of elevated CO2 concentration on photosynthesis characteristics and biomass allocation of Lycium barbarum seedlings. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39 (2): 302- 309. | |
韩 义, 韩 彪, 鲁仪增, 等. 2016. 5个引种美国红枫品种的光合特性比较. 山东农业科学, 48(12): 48−53. | |
Han Y, Han B, Lu Y Z, et al. 2016. Comparative study on photosynthetic characteristics of five introduced varieties of Acer rubrum. Shandong Agricultural Sciences, 48(12): 48−53. [in Chinese] | |
郝蕴彰, 李 萍, 宗毓铮, 等. 大气CO2浓度和气温升高对藜麦生长及碳氮代谢的影响. 核农学报, 2023, 37 (6): 1279- 1287. | |
Hao Y Z, Li P, Zong Y Z, et al. Effects of elevated CO2 concentration and increased air temperature on growth and the metabolism of carbon and nitrogen in quinoa(Chenopodium quinoa willd). Journal of Nuclear Agricultural Sciences, 2023, 37 (6): 1279- 1287. | |
贺 江, 丁 颖, 娄向弟, 等. 水稻分蘖期干物质积累对大气CO2浓度升高和氮素营养的综合响应差异及其生理机制. 中国农业科学, 2023, 56 (6): 1045- 1060. | |
He J, Ding Y, Lou X D, et al. Difference in the comprehensive response of dry matter accumulation of rice at tillering stage to rising atmospheric CO2 concentration and nitrogen nutrition and its physiological mechanism. Scientia Agricultura Sinica, 2023, 56 (6): 1045- 1060. | |
洪 凯, 李 茂, 许珊珊, 等. CO2浓度升高对杉木幼苗生长及其光合特性和养分含量的影响. 西北植物学报, 2020, 40 (6): 1011- 1021. | |
Hong K, Li M, Xu S S, et al. Effect of elevated CO2 on growth, photosynthetic characteristics and nutrient concentration of Cunninghamia lanceolata seedlings. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40 (6): 1011- 1021. | |
贾 茹, 孙海燕, 王玉荣, 等. 杉木无性系新品种‘洋020’和‘洋061’10年生幼龄材微观结构与力学性能的相关性. 林业科学, 2021, 57 (5): 165- 175. | |
Jia R, Sun H Y, Wang Y R, et al. Relativity of microstructures and mechanical properties of juvenile woods of 10-year-old new Chinese fir clones ‘Yang 020’ and ‘Yang 061’. Scientia Silvae Sinicae, 2021, 57 (5): 165- 175. | |
鞠雅莉. 2023. 兴安落叶松树干呼吸和叶片光合能力及其对气候变暖的响应. 哈尔滨:东北林业大学. | |
Ju Y L. 2023. Stem respiration and leaf photosynthetic capacity of Larix gmelinii and their responses to climate warming. Harbin:Northeast Forestry University. [in Chinese] | |
李林鑫, 郑姗姗, 许建伟, 等. 林木根系生物量分配影响机制研究进展. 世界林业研究, 2022, 35 (2): 15- 20. | |
Li L X, Zheng S S, Xu J W, et al. Research advance in influence mechanism of tree root biomass allocation. World Forestry Research, 2022, 35 (2): 15- 20. | |
李林源, 连华萍, 许鲁平. 杉木种子园良种与优良无性系造林试验. 林业科技开发, 2015, 29 (1): 30- 32. | |
Li L Y, Lian H P, Xu L P. One forestation experiment by improved varieties and superior clone of Cunninghamia plantation. Journal of Forestry Engineering, 2015, 29 (1): 30- 32. | |
李向义, 鲁 艳, 张爱林. 不同玫瑰品种叶绿素荧光参数对比研究. 安徽农业科学, 2022, 50 (1): 50- 54. | |
Li X Y, Lu Y, Zhang A L. Comparision of chlorophyll fluorescence parameters among different rosa rugosa varieties. Journal of Anhui Agricultural Sciences, 2022, 50 (1): 50- 54. | |
李亚麒, 孙继伟, 李江飞, 等. 云南松不同家系苗木生物量分配及其异速生长. 北京林业大学学报, 2021, 43 (8): 18- 28. | |
Li Y Q, Sun J W, Li J F, et al. Biomass allocation and its allometric growth of Pinus yunnanensis seedlings of different families. Journal of Beijing Forestry University, 2021, 43 (8): 18- 28. | |
柳妍娣, 赵宝平, 张 宇, 等. 不同基因型燕麦内源激素与灌浆期生理特性之间的关系. 中国农业大学学报, 2023, 28 (6): 124- 134.
doi: 10.11841/j.issn.1007-4333.2023.06.11 |
|
Liu Y D, Zhao B P, Zhang Y, et al. Relationship between endogenous hormones and physiological characteristics of different genotype oats at filling stage. Journal of China Agricultural University, 2023, 28 (6): 124- 134.
doi: 10.11841/j.issn.1007-4333.2023.06.11 |
|
马亚平. 2023. 宁夏枸杞果实重要品质形成及其对CO2浓度升高响应的分子机制. 南京: 南京林业大学. | |
Ma Y P. 2023. Fruit important quality formation and the molecular mechanisms in response to elevated CO2 in Lycium barbarum. Nanjing : Nanjing Forestry University. [in Chinese] | |
马正岩. 2023. 旱地苹果园人工干预自然生草技术与采前不同时期施钾的效果研究. 杨凌: 西北农林科技大学. | |
Ma Z Y. 2023. Artificial intervention of natural grass growing technology in dryland apple orchard and effect of potassium applicationin different periods before mining. Yangling: Northwest A&F University. [in Chinese] | |
孟 猛, 徐永艳. 植物光合碳在不同器官-土壤系统的动态分布特征13C示踪. 水土保持研究, 2021, 28 (1): 331- 336,344. | |
Meng M, Xu Y Y. 13C traces the dynamic distribution characteristics of photosynthetic carbon of different plants in different organ-soil systems. Research of Soil and Water Conservation, 2021, 28 (1): 331- 336,344. | |
孟宪菁, 杨 斌, 马 潇, 等. 基于程序升温GC的EA-IRMS联机系统在氮、碳和硫同位素组成测定中的应用. 质谱学报, 2018, 39 (5): 630- 638. | |
Meng X J, Yang B, Ma X, et al. Application of temperature-ramped GC on δ15N, δ13C and δ34S measurements using EA-IRMS system. Journal of Chinese Mass Spectrometry Society, 2018, 39 (5): 630- 638. | |
平晓燕, 周广胜, 孙敬松, 等. 基于功能平衡假说的玉米光合产物分配动态模拟. 应用生态学报, 2010, 21 (1): 129- 135. | |
Ping X Y, Zhou G S, Sun J S, et al. Dynamic simulation of photosynthate allocation in maize organs based on functional equilibrium hypothesis. Chinese Journal of Applied Ecology, 2010, 21 (1): 129- 135. | |
盛阳阳, 徐秀美, 张巧红, 等. 光合作用碳同化的合成生物学研究进展. 合成生物学, 2022, 3 (5): 870- 883. | |
Sheng Y Y, Xu X M, Zhang Q H, et al. Advances in synthetic biology for photosynthetic carbon assimilation. Synthetic Biology Journal, 2022, 3 (5): 870- 883. | |
石元豹, 曹 兵, 宋丽华, 等. 用13C示踪研究CO2浓度倍增对枸杞光合产物积累的影响. 农业工程学报, 2016, 32 (10): 201- 206. | |
Shi Y B, Cao B, Song L H, et al. Effect of doubled CO2 concentration on accumulation of photosynthate in Lycium barbarum by 13C isotope tracer technique. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32 (10): 201- 206. | |
宋柏权. 2010. 不同基因型大豆产质量形成及其氮素调控. 哈尔滨: 东北农业大学. | |
Song B Q. 2010. Differences between yieid and quality of different genotypes soybean and its adjustment of nitrogen. Harbin: Northeast Agricultural University. [in Chinese] | |
宋纯鹏, 王学路, 周 云, 等. 2015. 植物生理. 北京: 科学出版社, 179−234. | |
Song C P, Wang X L Zhou Y, et al. 2015. Plant physiology. Bejing: Science Press, 179−234. [in Chinese] | |
孙昭安, 张保仁, 何敏毅, 等. 利用13C标记和自然丰度三源区分玉米根际CO2释放. 土壤学报, 2021, 58 (5): 1256- 1266.
doi: 10.11766/trxb202005070111 |
|
Sun Z A, Zhang B R, He M Y, et al. Three-source partitioning of CO2 emissions from maize-planted soil using 13C labeling and natural abundance. Acta Pedologica Sinica, 2021, 58 (5): 1256- 1266.
doi: 10.11766/trxb202005070111 |
|
王 兵, 魏文俊, 李少宁, 等. 中国杉木林生态系统碳储量研究. 中山大学学报(自然科学版), 2008, 47 (2): 93- 98. | |
Wang B, Wei W J, Li S N, et al. Carbon storage of Chinese fir forest ecosystem in China. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2008, 47 (2): 93- 98. | |
王 琪, 徐程扬. 氮磷对植物光合作用及碳分配的影响. 山东林业科技, 2005, (5): 63- 66.
doi: 10.3969/j.issn.1002-2724.2005.05.041 |
|
Wang Q, Xu C Y. Affects of nitrogen and phosphorus on plant lcaf photosynthcsis and carbon partitioning. Journal of Shandong Forestry Science and Technology, 2005, (5): 63- 66.
doi: 10.3969/j.issn.1002-2724.2005.05.041 |
|
王艺丹. 2023. 不同遮荫强度对紫肉甘薯生长发育及花色苷合成的影响. 海口: 海南大学. | |
Wang Y D. 2023. Effects of different shading intensities on the growth and anthocyanin synthesis of purple-fleshed sweet potatoes. Haikou: Hainan University. [in Chinese] | |
王莹莹. 2021. 水分管理对水稻光合碳的分配及其根际激发效应的影响. 沈阳: 沈阳农业大学. | |
Wang Y Y. 2021. Effects of water management on rice photosynthetic carbon and its rhizosphere stimulating effect. Shenyang: Shenyang Agricultural University. [in Chinese] | |
肖和艾, 吴金水, 李 玲, 等. 采用14C同位素标记植物的装置与方法. 核农学报, 2007, 21 (6): 630- 632,629.
doi: 10.3969/j.issn.1000-8551.2007.06.020 |
|
Xiao H A, Wu J S, Li L, et al. Method for production of plant labeling with 14C isotope. Journal of Nuclear Agricultural Sciences, 2007, 21 (6): 630- 632,629.
doi: 10.3969/j.issn.1000-8551.2007.06.020 |
|
许文斌. 2021. 亚热带典型人工林幼树光合碳分配及其对土壤养分和水分耦合因子的响应. 福州: 福建农林大学. | |
Xu W B. 2021. Photosynthetic carbon allocation and their responses to coupling factors of soil nutrient and water in typical plantation saplings in sub-tropical region. Fuzhou: Fujian Agriculture and Forestry University. [in Chinese] | |
杨玉婷, 杨红艳, 刘金超, 等. 应用脉冲标记粗枝云杉和四川红杉幼苗的13C分配特征研究. 四川农业大学学报, 2023, 41 (2): 225- 229,274. | |
Yang Y T, Yang H Y, Liu J C, et al. Study on 13C distribution characteristics of Picea asperata and Larix masteriana seedlings using pulse labeling. Journal of Sichuan Agricultural University, 2023, 41 (2): 225- 229,274. | |
于晓燕, 池丽娟, 毛艳玲. 应用脉冲标记法对杉木富集13C技术的初步研究. 核农学报, 2014, 28 (8): 1473- 1477. | |
Yu X Y, Chi L J, Mao Y L. A preliminary study on 13C enrichment of in Cunninghamia lanceolata using pulse labeling technique. Journal of Nuclear Agricultural Sciences, 2014, 28 (8): 1473- 1477. | |
俞新妥, 傅瑞树. 不同种源杉木光合性状的比较研究. 福建林学院学报, 1989, 9 (3): 223- 237. | |
Yu X T, Fu R S. A comparative study on photosynthetic characters of different provenances of Chinese fir. Journal of Fujian College of Forestry, 1989, 9 (3): 223- 237. | |
张 豆. 2019. 氮添加对油松幼苗不同器官非结构性碳水化合物含量及δ13C的影响. 咸阳: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心). | |
Zhang D. 2019. Effects of nitrogen addition on non-structural carbohydrate content and δ13C in different organs of Pinus tabulaeformis seedlings. Xianyang: University of Chinese Academy of Sciences(Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education) [in Chinese] | |
张丽霞, 曹光球, 林开敏, 等. 5种杉木幼林不同龄期生长特性比较. 福建农业学报, 2022, 37 (7): 904- 911. | |
Zhang L X, Cao G Q, Lin K M, et al. Growth of young Chinese fir forests in years of cultivation. Fujian Journal of Agricultural Sciences, 2022, 37 (7): 904- 911. | |
张林海, 曾从盛, 胡伟芳. 氮输入对植物光合固碳的影响研究进展. 生态学报, 2017, 37 (1): 147- 155. | |
Zhang L H, Zeng C S, Hu W F. Reviews on effects of nitrogen addition on plant photosynthetic carbon fixation. Acta Ecologica Sinica, 2017, 37 (1): 147- 155. | |
张 蕊, 赵 钰, 何红波, 等. 基于稳定碳同位素技术研究大气CO2浓度升高对植物-土壤系统碳循环的影响. 应用生态学报, 2017, 28 (7): 2379- 2388. | |
Zhang R, Zhao Y, He H B, et al. lnvestigation on effects of elevated atmospheric CO2 concentration on plant-soil system carbon cycling: based on stable isotopic technique. Chinese Journal of Applied Ecology, 2017, 28 (7): 2379- 2388. | |
张天霖, 蔡章林, 赵厚本, 等. 13C脉冲标记法研究非正常凋落物对土壤有机碳的激发效应. 生态环境学报, 2021, 30 (9): 1797- 1804. | |
Zhang T L, Cai Z L, Zhao H B, et al. Priming effect on soil organic carbon by abnormal litter following 13C pulse-labeling. Ecology and Environmental Sciences, 2021, 30 (9): 1797- 1804. | |
赵 广, 张扬建. 大气CO2浓度升高对土壤碳库稳定性的影响. 生态学报, 2023, 43 (20): 8493- 8503. | |
Zhao G, Zhang Y J. Effect of elevated CO2 on the persistence of soil carbon pool. Acta Ecologica Sinica, 2023, 43 (20): 8493- 8503. | |
郑云普, 李 菲, 侯毅凯, 等. 大气CO2浓度增加对作物光合性能及叶片水分利用效率的影响. 农业工程学报, 2019, 35 (10): 91- 98.
doi: 10.11975/j.issn.1002-6819.2019.10.012 |
|
Zheng Y P, Li F, Hou Y K, et al. Effect of increasing CO2 concentration on photosynthesis and leaf water use efficiency of crops. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35 (10): 91- 98.
doi: 10.11975/j.issn.1002-6819.2019.10.012 |
|
钟海秀, 伍一宁, 许 楠, 等. 大气CO2浓度升高对三江平原湿地小叶章叶片稳定碳同位素组成的影响. 国土与自然资源研究, 2018, (1): 88- 90.
doi: 10.3969/j.issn.1003-7853.2018.01.027 |
|
Zhong H X, Wu Y N, Xu N, et al. Effects of elevated atmospheric CO2 on the leaf stable carbon isotope composition of Deyeuxia angustifolia in sanjiang plain. Territory & Natural Resources Study, 2018, (1): 88- 90.
doi: 10.3969/j.issn.1003-7853.2018.01.027 |
|
Blessing C H, Werner R A, Siegwolf R, et al. Allocation dynamics of recently fixed carbon in beech saplings in response to increased temperatures and drought. Tree Physiology, 2015, 35 (6): 585- 598.
doi: 10.1093/treephys/tpv024 |
|
Dror D, Klein T. The effect of elevated CO2 on aboveground and belowground carbon allocation and eco-physiology of four species of angiosperm and gymnosperm forest trees. Tree Physiology, 2022, 42 (4): 831- 847.
doi: 10.1093/treephys/tpab136 |
|
Hartmann H, Bahn M, Carbone M, et al. Plant carbon allocation in a changing world–challenges and progress. The New Phytologist, 2020, 227 (4): 981- 988.
doi: 10.1111/nph.16757 |
|
Lacointe A. Carbon allocation among tree organs: a review of basicprocesses and representation in functional-structural tree models. Annals of Forest Science, 2000, 57 (5): 521- 533.
doi: 10.1051/forest:2000139 |
|
Lu Y H, Watanabe A, Kimura M. Carbon dynamics of rhizodeposits, root-and shoot-residues in a rice soil. Soil Biology and Biochemistry, 2003, 35 (9): 1223- 1230.
doi: 10.1016/S0038-0717(03)00184-6 |
|
Reich P B, Hobbie S E, Lee T D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nature Geoscience, 2014, 7 (12): 920- 924.
doi: 10.1038/ngeo2284 |
|
Rog I, Jakoby G, Klein T. Carbon allocation dynamics in conifers and broadleaved tree species revealed by pulse labeling and mass balance. Forest Ecology and Management, 2021, 493, 119258.
doi: 10.1016/j.foreco.2021.119258 |
|
Sharkey T D. The end game(s) of photosynthetic carbon metabolism. Plant Physiology, 2024, 195 (1): 67- 78.
doi: 10.1093/plphys/kiad601 |
|
Studer M, Siegwolf R T W, Abiven S. Carbon transfer, partitioning and residence time in the plant-soil system: a comparison of two 13CO2 labelling techniques. Biogeosciences, 2014, 11 (6): 1637- 1648.
doi: 10.5194/bg-11-1637-2014 |
|
Wang G, Liu F. Carbon allocation of Chinese pine seedlings along a nitrogen addition gradient. Forest Ecology and Management, 2014, 334, 114- 121.
doi: 10.1016/j.foreco.2014.09.004 |
|
Yang J Y, Sun J S, Wang X H, et al. Light intensity affects growth and nutrient value of hydroponic barley fodder. Agronomy, 2024, 14 (6): 1099.
doi: 10.3390/agronomy14061099 |
|
Zheng H, Wang X, Chen L, et al. Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation. Plant Cell & Environment, 2018, 41 (3): 517- 532. |
[1] | 杨淑雅,王镜如,朱滢滢,伊力塔,刘美华. 杉木与浙江楠混交对根系分泌物和丛枝菌根真菌群落结构的影响[J]. 林业科学, 2024, 60(9): 59-68. |
[2] | 都亚敏,李珠,蒋佳荔,殷方宇,吕建雄. 吸湿解吸循环过程中木材水分吸附特性[J]. 林业科学, 2024, 60(9): 150-158. |
[3] | 李林鑫,杨贵云,郭昊澜,董强,李明,马祥庆,吴鹏飞. 繁殖方式对杉木幼苗根系不同序级生物量、形态性状和碳氮含量的影响[J]. 林业科学, 2024, 60(7): 47-55. |
[4] | 阮颖超,苏比·热西塔洪,林熙,李明,范少辉,冯随起,陈志云,马祥庆,何宗明. 修枝强度对杉木人工林无节材形成及质量的影响[J]. 林业科学, 2024, 60(6): 50-59. |
[5] | 马亚平,冯学瑞,高捍东,宋丽华,曹兵. 模拟CO2浓度和温度升高对宁夏枸杞果实品质形成的影响[J]. 林业科学, 2024, 60(3): 1-9. |
[6] | 吕梓晴, 段爱国. 不同产区杉木生物量与碳储量模型[J]. 林业科学, 2024, 60(2): 1-11. |
[7] | 贾辉,朱敏,余再鹏,万晓华,傅彦榕,王思荣,邹秉章,黄志群. 亚热带树种在未成林造林地的凋落物量和周转与叶片性状的关系[J]. 林业科学, 2024, 60(1): 12-18. |
[8] | 李晓燕,段爱国,张建国. 不同产区杉木人工林初植密度对优势高生长的影响[J]. 林业科学, 2023, 59(8): 22-29. |
[9] | 屈彦成,江怡航,姜彦妍,张建国,罗安利,张雄清. 基于胸高处边材面积、胸径和冠基部直径的杉木单木叶生物量预测模型[J]. 林业科学, 2023, 59(7): 106-114. |
[10] | 赵文菲,曹小玉,谢政锠,庞一凡,孙亚萍,李际平,莫永俊,袁达. 基于结构方程模型的杉木公益林林分空间结构评价[J]. 林业科学, 2022, 58(8): 76-88. |
[11] | 李舟阳,陆文玲,钱旺,黄奕孜,林二培,黄华宏,童再康. 杉木根边缘细胞生物学特性及其对铝胁迫的响应[J]. 林业科学, 2022, 58(7): 73-81. |
[12] | 陈嘉琪,赵光宇,李仰龙,董玉红,厚凌宇,焦如珍. 杉木人工林土壤磷素形态及含量的林龄变化[J]. 林业科学, 2022, 58(5): 10-17. |
[13] | 史月冬,郑宏,叶代全,施季森,边黎明. 杉木生长性状的空间与竞争效应及其对遗传参数估计的影响[J]. 林业科学, 2022, 58(5): 75-84. |
[14] | 王淑真,梁晶晶,包明琢,潘菲,周垂帆. 不同林龄杉木林土壤磷形态与解磷菌变化[J]. 林业科学, 2022, 58(2): 58-69. |
[15] | 陈敏,赖华燕,郑姗姗,李明,马祥庆,吴鹏飞. 磷胁迫下外源乙烯对杉木幼苗生长及磷素利用的影响[J]. 林业科学, 2021, 57(7): 43-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||