|  | 鲍士旦.  土壤农化分析. 3版 北京: 中国农业出版社, 2005. | 
																													
																						|  | Bao S D .  Soil agrochemical analysis. 3rd edition Beijing: China Agriculture Press, 2005. | 
																													
																						|  | 曹娟, 闫文德, 项文化, 等.  湖南会同不同年龄杉木人工林土壤磷素特征. 生态学报, 2014, 34 (22): 6519- 6527. | 
																													
																						|  | Cao J ,  Yan W D ,  Xiang W H , et al.  Characteristics of soil phosphorus in different aged stands of Chinese fir plantations in Huitong, Hunan Province. Acta Ecologica Sinica, 2014, 34 (22): 6519- 6527. | 
																													
																						|  | 邓飘云. 2016. 不同年龄杉木人工林土壤磷素形态特征及土壤供磷机制. 长沙: 中南林业科技大学. | 
																													
																						|  | Deng P Y. 2016. Characteristics and supplying mechanism of soil phosphorus in different aged Chinese fir plantations. Changsha: Central South University of Forestry & Technology. [in Chinese] | 
																													
																						|  | 韩晓飞, 高明, 谢德体, 等.  长期定位施肥条件下紫色土无机磷形态演变研究. 草业学报, 2016, 25 (4): 63- 72. | 
																													
																						|  | Han X F ,  Gao M ,  Xie D T , et al.  Inorganic phosphorus in a regosol(purple)soil under long-term phosphorus fertilization. Acta Prataculturae Sinica, 2016, 25 (4): 63- 72. | 
																													
																						|  | 黄彬彬. 2017. 不同母岩和林龄杉木人工林土壤磷素形态特征研究. 福州: 福建农林大学. | 
																													
																						|  | Huang B B. 2017. Soil phosphorus characteristics analysis of Chinese fir plantation in different soil forming rock. Fuzhou: Fujian Agriculture and Forestry University. [in Chinese] | 
																													
																						|  | 李东海, 杨小波, 邓运武, 等.  桉树人工林林下植被、地面覆盖物与土壤物理性质的关系. 生态学杂志, 2006, 25 (6): 607- 611. doi: 10.3321/j.issn:1000-4890.2006.06.003
 | 
																													
																						|  | Li D H ,  Yang X B ,  Deng Y W , et al.  Soil physical properties under effects of Eucalyptus understory vegetation and litter. Chinese Journal of Ecology, 2006, 25 (6): 607- 611. doi: 10.3321/j.issn:1000-4890.2006.06.003
 | 
																													
																						|  | 李惠通, 张芸, 魏志超, 等.  不同发育阶段杉木人工林土壤肥力分析. 林业科学研究, 2017, 30 (2): 322- 328. | 
																													
																						|  | Li H T ,  Zhang Y ,  Wei Z C , et al.  Evaluation on soil fertility of Chinese fir plantations in different development stages. Forest Research, 2017, 30 (2): 322- 328. | 
																													
																						|  | 林利红, 韩晓日, 刘小虎, 等.  长期轮作施肥对棕壤磷素形态及转化的影响. 土壤通报, 2006, 37 (1): 80- 83. doi: 10.3321/j.issn:0564-3945.2006.01.018
 | 
																													
																						|  | Lin L H ,  Han X R ,  Liu X H , et al.  Effects of long-term fertilization on phosphorus forms and transformation in brown soil. Chinese Journal of Soil Science, 2006, 37 (1): 80- 83. doi: 10.3321/j.issn:0564-3945.2006.01.018
 | 
																													
																						|  | 史顺增, 熊德成, 冯建新, 等.  模拟氮沉降对杉木幼苗细根的生理生态影响. 生态学报, 2017, 37 (1): 74- 83. | 
																													
																						|  | Shi S Z ,  Xiong D C ,  Feng J X , et al.  Ecophysiological effects of simulated nitrogen deposition on fine roots of Chinese fir (Cunninghamia lanceolata) seedlings. Acta Ecologica Sinica, 2017, 37 (1): 74- 83. | 
																													
																						|  | 文亦芾, 艾有群.  南方红壤磷素化学研究进展和展望. 云南农业大学学报, 2005, 20 (4): 534- 538.534-538, 547 doi: 10.3969/j.issn.1004-390X.2005.04.017
 | 
																													
																						|  | Wen Y F ,  Ai Y Q .  Research and expectation on phosphorus transformation in southern red soils. Journal of Yunnan Agricultural University, 2005, 20 (4): 534- 538.534-538, 547 doi: 10.3969/j.issn.1004-390X.2005.04.017
 | 
																													
																						|  | 吴永铃, 王兵, 赵超, 等.  杉木人工林不同发育阶段土壤肥力综合评价研究. 西北农林科技大学学报(自然科学版), 2011, 39 (1): 69- 75. | 
																													
																						|  | Wu Y L ,  Wang B ,  Zhao C , et al.  Comprehensive evaluation of soil fertility in different developing stages of Chinese Fir Plantations. Journal of Northwest A & F University (Natural Science Edition), 2011, 39 (1): 69- 75. | 
																													
																						|  | 张鼎华, 林开淼, 李宝福.  杉木、马尾松及其混交林根际土壤磷素特征. 应用生态学报, 2011, 22 (11): 2815- 2821. | 
																													
																						|  | Zhang D H ,  Lin K M ,  Li B F .  Phosphorus characteristics in rhizosphere soil of Cunninghamia lanceolata, Pinus massoniana and their mixed plantations. Chinese Journal of Applied Ecology, 2011, 22 (11): 2815- 2821. | 
																													
																						|  | 张虹, 于姣妲, 李海洋, 等.  不同栽植代数杉木人工林土壤磷素特征研究. 林业科学研究, 2021, 34 (1): 10- 18. | 
																													
																						|  | Zhang H ,  Yu J D ,  Li H Y , et al.  Characteristics of soil phosphorus in Cunninghamia lanceolata plantations with different planting rotations. Forest Research, 2021, 34 (1): 10- 18. | 
																													
																						|  | 赵均嵘. 2012. 杉木林生态系统转换对土壤磷形态的影响及其机制. 福州: 福建农林大学. | 
																													
																						|  | Zhao J R. 2012. The influence of Chinese fir ecosystem conversion on the soil phosphorus forms and its mechanism. Fuzhou: Fujian Agriculture and Forestry University. [in Chinese] | 
																													
																						|  | 赵其国, 黄国勤, 马艳芹.  中国南方红壤生态系统面临的问题及对策. 生态学报, 2013, 33 (24): 7615- 7622. | 
																													
																						|  | Zhao Q G ,  Huang G Q ,  Ma Y Q .  The problems in red soil ecosystem in southern of China and its countermeasures. Acta Ecologica Sinica, 2013, 33 (24): 7615- 7622. | 
																													
																						|  | Al-Enazy A A ,  Al-Barakah F ,  Al-Oud S , et al.  Effect of phosphogypsum application and bacteria co-inoculation on biochemical properties and nutrient availability to maize plants in a saline soil. Archives of Agronomy and Soil Science, 2018, 64 (10): 1394- 1406. doi: 10.1080/03650340.2018.1437909
 | 
																													
																						|  | Bai J H ,  Ye X F ,  Jia J , et al.  Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions. Chemosphere, 2017, 188, 677- 688. doi: 10.1016/j.chemosphere.2017.08.117
 | 
																													
																						|  | Bononi L ,  Chiaramonte J B ,  Pansa C C , et al.  Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Scientific Reports, 2020, 10 (1): 2858. | 
																													
																						|  | Chang S C ,  Jackson M L .  Fractionation of soil phosphorus. Soil Science, 1957, 84 (2): 133- 144. | 
																													
																						|  | Escudey M ,  Galindo G ,  Förster J E , et al.  Chemical forms of phosphorus of volcanic ash-derived soils in Chile. Communications in Soil Science and Plant Analysis, 2001, 32 (5/6): 601- 616. | 
																													
																						|  | Hedley M J ,  White R E ,  Nye P H .  Plant-induced changes in the rhizosphere of rape (Brassica napus var. emerald) seedlings. iii. changes in l value, soil phosphate fractions and phosphatase activity. New Phytologist, 1982, 91 (1): 45- 56. | 
																													
																						|  | Kochian L V .  Plant nutrition: rooting for more phosphorus. Nature, 2012, 488 (7412): 466- 467. | 
																													
																						|  | Li L ,  Tilman D ,  Lambers H , et al.  Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytologist, 2014, 203 (1): 63- 69. | 
																													
																						|  | Liu J ,  Hu Y F ,  Yang J J , et al.  Investigation of soil legacy phosphorus transformation in long-term agricultural fields using sequential fractionation, P K-edge XANES and solution P NMR spectroscopy. Environmental Science & Technology, 2015, 49 (1): 168- 176. | 
																													
																						|  | Luo L ,  Ma Y B ,  Sanders R L , et al.  Phosphorus speciation and transformation in long-term fertilized soil: evidence from chemical fractionation and P K-edge XANES spectroscopy. Nutrient Cycling in Agroecosystems, 2017, 107 (2): 215- 226. | 
																													
																						|  | Richardson A E ,  Barea J M ,  McNeill A M , et al.  Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 2009, 321 (1/2): 305- 339. | 
																													
																						|  | Sarikhani M ,  Aliasgharzad N ,  Khoshru B .  P solubilizing potential of some plant growth promoting bacteria used as ingredient in phosphatic biofertilizers with emphasis on growth promotion of Zea mays L. Geomicrobiology Journal, 2020, 37 (4): 327- 335. | 
																													
																						|  | Sattari S Z ,  Bouwman A F ,  Giller K E , et al.  Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. PNAS, 2012, 109 (16): 6348- 6353. | 
																													
																						|  | Turner B L ,  Brenes-Arguedas T ,  Condit R .  Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature, 2018, 555 (7696): 367- 370. | 
																													
																						|  | Yang X ,  Post W M .  Phosphorus transformations as a function of pedogenesis: a synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences, 2011, 8 (10): 2907- 2916. | 
																													
																						|  | Zeng Y L ,  Fang X ,  Xiang W H , et al.  Stoichiometric and nutrient resorption characteristics of dominant tree species in subtropical Chinese forests. Ecology and Evolution, 2017, 7 (24): 11033- 11043. |