林业科学 ›› 2024, Vol. 60 ›› Issue (11): 63-74.doi: 10.11707/j.1001-7488.LYKX20230485
葛婉婷1,2,刘莹2,赵智佳2,张珅3,李洁3,杨桂娟2,曲冠证1,王军辉2,麻文俊2,*()
收稿日期:
2023-10-12
出版日期:
2024-11-25
发布日期:
2024-11-30
通讯作者:
麻文俊
E-mail:.mwjlx.163@163.com
基金资助:
Wanting Ge1,2,Ying Liu2,Zhijia Zhao2,Shen Zhang3,Jie Li3,Guijuan Yang2,Guanzheng Qu1,Junhui Wang2,Wenjun Ma2,*()
Received:
2023-10-12
Online:
2024-11-25
Published:
2024-11-30
Contact:
Wenjun Ma
E-mail:.mwjlx.163@163.com
摘要:
目的: 预测不同气候情景下黄心梓木在我国的分布情况及其自然群体可能的迁移路线,为黄心梓木的保护和可持续利用提供科学依据,为濒危植物的潜在适生区预测和保护提供参考。方法: 基于当前和未来(2030s、2050s、2070s)4个时期的环境变量数据以及黄心梓木分布数据,利用MaxEnt模型模拟预测不同气候情景下黄心梓木在我国的潜在地理分布,综合分析限制其扩散的环境因子,制定针对性保护措施。结果: 1) MaxEnt模型各组曲线下面积(AUC)均高于0.9,模型预测结果非常准确。2) 黄心梓木在我国的潜在适生区狭窄,当前适生区总面积为50 416 km2,其中高适生区面积2 309 km2,仅在黔南和黔西南部分地区分布,中适生区(面积14 288 km2)在其周围分布,低适生区面积33 819 km2,分布在贵州中部、广西、云南、四川等地;未来气候情景下,黄心梓木在我国的潜在适生区呈先扩张后收缩的变化趋势,其中高强迫(SSP5-8.5)情景下的2030s时期适生区总面积最大(70 313 km2),新增面积达当前适生区总面积的39%。3) 最干月降水量(bio14)、海拔(bio20)、等温性(bio3)、年降水量(bio12)是限制黄心梓木分布的主导环境因子。4) 未来气候情景下,黄心梓木潜在适生区的质心迁移方向总体为先向北移后向东南移。5) 基于黄心梓木现状提出在高适生区范围内就地划分保护区,在湖北西部、重庆东北部等潜在适生区开展相关育种试验扩大其种植面积以及建立种质资源库等相关保护措施。结论: 黄心梓木在我国的潜在适生区较为狭窄且中、高适生区相对集中,大多分布在贵州西南部,广西、云南、四川、重庆以及湖北部分地区也可能有分布;目前黄心梓木的潜在适生区未达到饱和,预计适生区面积会持续扩增至2030s;未来气候情景下,黄心梓木潜在适生区面积呈先扩大后缩小的趋势;基于黄心梓木现状,建议以人为方式开展协助恢复其生境以及快速促进其种群扩大等相关保护措施。
中图分类号:
葛婉婷,刘莹,赵智佳,张珅,李洁,杨桂娟,曲冠证,王军辉,麻文俊. 不同气候情景下黄心梓木在我国的潜在适生区预测[J]. 林业科学, 2024, 60(11): 63-74.
Wanting Ge,Ying Liu,Zhijia Zhao,Shen Zhang,Jie Li,Guijuan Yang,Guanzheng Qu,Junhui Wang,Wenjun Ma. Prediction of Potential Distribution for Huangxin (Catalpa) in China under Different Climate Scenarios[J]. Scientia Silvae Sinicae, 2024, 60(11): 63-74.
表1
获取的20个生物气候变量"
代码Code | 变量因子Variable | 单位Unit |
bio1 | 年平均气温Annual mean temperature | ℃ |
bio2 | 平均气温日较差Mean diurnal range | ℃ |
bio3 | 等温性Isothermality | ℃ |
bio4 | 气温季节性变动系数Temperature seasonality | — |
bio5 | 最热月最高温度Max temperature of warmest month | ℃ |
bio6 | 最冷月最高温度Min temperature of coldest month | ℃ |
bio7 | 气温年较差Temperature annual range | ℃ |
bio8 | 最湿季平均温度Mean temperature of wettest quarter | ℃ |
bio9 | 最干季平均温度Mean temperature of driest quarter | ℃ |
bio10 | 最暖季平均温度Mean temperature of warmest quarter | ℃ |
bio11 | 最冷季平均温度Mean temperature of coldest quarter | ℃ |
bio12 | 年降水量Annual precipitation | mm |
bio13 | 最湿月降水量Precipitation of wettest month | mm |
bio14 | 最干月降水量Precipitation of driest month | mm |
bio15 | 降水量季节性变化Precipitation seasonality | — |
bio16 | 最湿季降水量Precipitation of wettest quarter | mm |
bio17 | 最干季降水量Precipitation of driest quarter | mm |
bio18 | 最暖季降水量Precipitation of warmest quarter | mm |
bio19 | 最冷季降水量Precipitation of coldest quarter | mm |
bio20(ele) | 海拔Elevation | m |
表2
筛选后环境变量的贡献率与置换重要性"
代码 Code | 变量 Variable | 贡献率 Percent contribution (%) | 置换重要性 Permutation importance (%) |
bio14 | 最干月降水量 Precipitation of driest month | 51.1 | 79.1 |
bio20 | 海拔 Elevation | 30.2 | 6.6 |
bio3 | 等温性 Isothermality | 7.4 | 1.7 |
bio12 | 年降水量 Annual precipitation | 4.3 | 8.7 |
bio4 | 气温季节性变动系数 Temperature seasonality | 3.6 | 0.3 |
bio9 | 最干季平均温度 Mean temperature of driest quarter | 2.9 | 3.6 |
bio19 | 最冷季降水量 Precipitation of coldest quarter | 0.5 | 0 |
表3
不同时期黄心梓木适生区面积"
时期 Period | 当前 Current | SSP1-2.6 | SSP5-8.5 | |||||
2030s | 2050s | 2070s | 2030s | 2050s | 2070s | |||
高适生区 High suitable area | 2 309 | 2 431 | 2 674 | 2 031 | 2 431 | 2 622 | 2 083 | |
中适生区 Medium suitable area | 14 288 | 14 149 | 15 486 | 15 191 | 12 969 | 14 618 | 12 552 | |
低适生区 Low suitable area | 33 819 | 47 917 | 35 313 | 32 743 | 54 913 | 39 791 | 39 184 | |
总适生区 Total suitable area | 50 416 | 64 497 | 53 473 | 49 965 | 70 313 | 57 031 | 53 819 |
蔡云锋. 2021. 云贵高原表生铁氧化物富集分配过程及其气候构造意义研究. 重庆: 西南大学. | |
Cai Y F. 2021. Enrichment and distribution of pedogenic iron oxides and its climatic and tectonic significance in Yunnan-Guizhou Plateau. Chongqing: Southwest University. [in Chinese] | |
陈 存, 丁昌俊, 黄秦军, 等. 美洲黑杨表型核心种质库构建. 林业科学研究, 2021, 34 (2): 1- 11. | |
Chen C, Ding C J, Huang Q J, et al. Construction of phenotypic core germplasm bank of American black poplar. Forest Research, 2021, 34 (2): 1- 11. | |
戴旻峻. 2022. 柳杉不同地理种源遗传变异及其潜在适生区预测. 长沙: 中南林业科技大学. | |
Dai M J. 2022. Genetic variation of Cryptomeria japonica var. sinensis from different geographic provenance and its prediction of potential suitable areas. Changsha: Central South University of Forestry and Technology. [in Chinese] | |
段义忠, 王海涛, 王 驰, 等. 气候变化下濒危植物半日花在中国的潜在分布. 植物资源与环境学报, 2020, 29 (2): 55- 68.
doi: 10.3969/j.issn.1674-7895.2020.02.07 |
|
Duan Y Z, Wang H T, Wang C, et al. Potential distribution of endangered plant Helianthemum songaricum in China under climate change. Journal of Plant Resources and Environment, 2020, 29 (2): 55- 68.
doi: 10.3969/j.issn.1674-7895.2020.02.07 |
|
樊 涵. 2022. 贵州省自然保护区空间格局与保护优先性研究. 贵阳: 贵州大学. | |
Fan H. 2022. Study on the spatial pattern and protection priority of nature reserves in Guizhou Province. Guiyang: Guizhou University. [in Chinese] | |
甘小玲, 常亚鹏, 江 原, 等. 气候变化对祁连山蒙古扁桃潜在适生区的影响. 生态学报, 2023, 43 (2): 768- 776. | |
Gan X L, Chang Y P, Jiang Y, et al. Impact of climate change on potential distribution of Amygdalus mongolica in the Qilian Mountains. Acta Ecologica Sinica, 2023, 43 (2): 768- 776. | |
刘学琴, 白 明, 贺达汉, 等. 基于MaxEnt模型的草原步甲属潜在地理分布研究. 生态学报, 2022, 42 (10): 4217- 4224. | |
Liu X Q, Bai M, He D H, et al. Simulating potential distribution of Carabus beetle in the steppe based on MaxEnt model. Acta Ecologica Sinica, 2022, 42 (10): 4217- 4224. | |
骆敬新, 王 慧, 王爱梅, 等. 气候变暖背景下中国沿海降水变化特征. 海洋通报, 2023, 42 (2): 151- 158. | |
Luo J X, Wang H, Wang A M, et al. The precipitation changes in the coastal areas of China under the background of global climate warming. Marine Science Bulletin, 2023, 42 (2): 151- 158. | |
吕振江. 2021. 全球变暖背景下杜松适生区变化及主要化学成分对环境因子的响应. 杨凌: 西北农林科技大学. | |
Lü Z J. 2021. Distribution changes of Juniperus rigida Sieb. et Zucc. under global warming and the response of major chemical components to ecological factors. Yangling: Northwest Agriculture and Forestry University. [in Chinese] | |
麻文俊, 张守攻, 王军辉, 等. 楸树新无性系木材的物理力学性质. 林业科学, 2013, 49 (9): 126- 134. | |
Ma W J, Zhang S G, Wang J H, et al. Timber physical and mechanical properties of new Catalpa bungei clones. Scientia Silvae Sinicae, 2013, 49 (9): 126- 134. | |
宁 瑶, 雷金睿, 宋希强, 等. 石灰岩特有植物海南凤仙花潜在适宜生境分布模拟. 植物生态学报, 2018, 42 (9): 946- 954.
doi: 10.17521/cjpe.2018.0066 |
|
Ning Y, Lei J R, Song X Q, et al. Modeling the potential suitable habitat of Impatiens hainanensis, a limestone-endemic plant. Chinese Journal of Plant Ecology, 2018, 42 (9): 946- 954.
doi: 10.17521/cjpe.2018.0066 |
|
帕尔曼·帕哈尔丁, 楚光明, 常亚玲, 等. 基于最大熵(MaxEnt)模型对西北地区2种红砂属植物潜在适宜区预测分析. 西北林学院学报, 2020, 35 (4): 18- 25.
doi: 10.3969/j.issn.1001-7461.2020.04.04 |
|
Perlman P, Chu G M, Chang Y L, et al. Prediction and analysis of two potential suitable areas of Reaumuria plants in northwest China based on the maximum entropy (MaxEnt) model. Journal of Northwest Forestry University, 2020, 35 (4): 18- 25.
doi: 10.3969/j.issn.1001-7461.2020.04.04 |
|
任光前. 2022. 全球变暖背景下入侵植物加拿大一枝黄花对氮沉降的生态适应及其机制. 镇江: 江苏大学. | |
Ren G Q. 2022. Ecological adaptation and mechanisms of invasive species Solidago canadensis L. to nitrogen deposition under global warming. Zhenjiang: Jiangsu University. [in Chinese] | |
任 娟. 2021. 土壤多环境梯度铁氧化物相分异与磷的耦合响应研究. 重庆: 西南大学. | |
Ren J. 2021. Coupling response of iron oxide phase differentiation and phosphorus in soils with multi-environmental gradients. Chongqing: Southwest University. [in Chinese] | |
邵雅静. 2022. 气候变化和人类活动影响下的生态系统健康时空演变特征及分区管控——以黄河流域为例. 西安: 长安大学. | |
Shao Y J. 2022. Spatial and temporal evolution characteristics of ecosystem health under the influence of climate change and human activities and zoning management: take the Yellow River basin as an example. Xi'an: Chang'an University. [in Chinese] | |
王东升, 赵 伟, 程蓓蓓, 等. 基于MaxEnt模型的中国山楂潜在适生区. 林业科学, 2022, 58 (7): 43- 50.
doi: 10.11707/j.1001-7488.20220705 |
|
Wang D S, Zhao W, Cheng B B, et al. Potential suitable areas of Crataegus pinnatifida in China based on MaxEnt modeling. Scientia Silvae Sinicae, 2022, 58 (7): 43- 50.
doi: 10.11707/j.1001-7488.20220705 |
|
王露露, 伊力哈木·亚尔买买提. 未来气候情景下2种新疆特有树种潜在适生区预测. 北京林业大学学报, 2022, 44 (6): 10- 22.
doi: 10.12171/j.1000-1522.20210301 |
|
Wang L L, Yilihamu Y. Prediction of the potential distribution of two endemic tree species in Xinjiang of western China under future climate scenarios. Journal of Beijing Forestry University, 2022, 44 (6): 10- 22.
doi: 10.12171/j.1000-1522.20210301 |
|
王 绮, 樊保国, 赵光华. 气候变化下毛榛在中国的潜在适生区预测. 生态学杂志, 2020, 39 (11): 3774- 3784. | |
Wang Q, Fan B G, Zhao G H. Prediction of potential distribution area of Corylus mandshurica in China under climate change. Chinese Journal of Ecology, 2020, 39 (11): 3774- 3784. | |
王 卫, 杨俊杰, 罗晓莹, 等. 基于MaxEnt模型的丹霞山国家级自然保护区极小种群植物丹霞梧桐的潜在生境评价. 林业科学, 2019, 55 (8): 19- 27.
doi: 10.11707/j.1001-7488.20190803 |
|
Wang W, Yang J J, Luo X Y, et al. Potential suitable areas of Crataegus pinnatifida in China based on MaxEnt modeling. Scientia Silvae Sinicae, 2019, 55 (8): 19- 27.
doi: 10.11707/j.1001-7488.20190803 |
|
王晓帆, 段雨萱, 金露露, 等. 基于优化的MaxEnt模型预测中国高山栎组植物的历史、现状与未来分布变化. 生态学报, 2023, 43 (16): 1- 15. | |
Wang X F, Duan Y X, Jin L L, et al. Prediction of historical present and future distribution of Quercus sect. Heterobalanus based on the optimized MaxEnt model in China. Acta Ecologica Sinica, 2023, 43 (16): 1- 15. | |
王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用. 生物多样性, 2007, 15 (4): 365- 372.
doi: 10.3321/j.issn:1005-0094.2007.04.005 |
|
Wang Y S, Xie B Y, Wan F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Science, 2007, 15 (4): 365- 372.
doi: 10.3321/j.issn:1005-0094.2007.04.005 |
|
邢丁亮, 郝占庆. 最大熵原理及其在生态学研究中的应用. 生物多样性, 2011, 19 (3): 295- 302.
doi: 10.3724/SP.J.1003.2011.08318 |
|
Xing D L, Hao Z Q. The principle of maximum entropy and its applications in ecology. Biodiversity Science, 2011, 19 (3): 295- 302.
doi: 10.3724/SP.J.1003.2011.08318 |
|
徐四川, 马惜钰, 周天皓, 等. 碳排放CO2温室效应机制. 云南大学学报(自然科学版), 2023, 45 (2): 513- 522.
doi: 10.7540/j.ynu.20220373 |
|
Xu S C, Ma X Y, Zhou T H, et al. Carbon emissions CO2 greenhouse effect mechanism. Journal of Yunnan University (Natural Sciences Edition), 2023, 45 (2): 513- 522.
doi: 10.7540/j.ynu.20220373 |
|
薛惠芬, 于晓池, 付鹏跃, 等. 黄心梓木优良无性系评价与初选. 西北林学院学报, 2022, 37 (2): 108- 114.
doi: 10.3969/j.issn.1001-7461.2022.02.14 |
|
Xue H F, Yu X C, Fu P Y, et al. Evaluation and primary selection of excellent clones of Catalpa fargesii f. duclouxii. Journal of Northwest Forestry University, 2022, 37 (2): 108- 114.
doi: 10.3969/j.issn.1001-7461.2022.02.14 |
|
荀守华, 乔玉玲, 孙百友, 等. 刺槐无性系与多花刺槐杂交育种试验. 分子植物育种, 2018, 16 (5): 1660- 1667. | |
Xun S H, Qiao Y L, Sun B Y, et al. Artificial hybridization between Robinia pseudoacacia clones and Robinia neo-mexicana var. luxurians. Molecular Plant Breeding, 2018, 16 (5): 1660- 1667. | |
杨先武. 2021. 基于DEM的喀斯特峰林峰丛地形特征与空间分异研究. 南京: 南京师范大学. | |
Yang X W. 2021. DEM based research on the topographic characteristics and spatial variation of Fenglin and Fengcong Karst landforms. Nanjing: Nanjing Normal University. [in Chinese] | |
俞筱押. 2021. 喀斯特植物群落更新层繁殖体转换机制研究. 昆明: 云南师范大学. | |
Yu X Y. 2021. Trade-off between seedling and sprouting in the regeneration layer of karst plant communities. Kunming: Yunnan Normal University. [in Chinese] | |
张 超, 陈 磊, 田呈明, 等. 2016. 基于GARP和MaxEnt的云杉矮槲寄生分布区的预测. 北京林业大学学报, 38(5): 23−32. | |
Zhang C, Chen L, Tian C M, et al. 2016. Predicting the distribution of dwarf mistletoe (Arceuthobium sichuanense) with GARP and MaxEnt models, Journal of Beijing Forestry University, 38(5): 23−32. [in Chinese] | |
张彦静, 斯 琴, 胡 洁, 等. 气候变化情景下裸冠菊在中国的潜在适生区分布预测. 生态学报, 2023, 3 (21): 1- 14. | |
Zhang Y J, Si Q, Hu J, et al. Prediction of the potential geographical distribution of the invasive plant Gymnocoronis spilanthoides in China under climate change. Acta Ecologica Sinica, 2023, 3 (21): 1- 14. | |
张湛奇, 陈长霖. 全球变暖背景下南海动力海平面变化. 海洋通报, 2023, 42 (3): 241- 249. | |
Zhang Z Q, Chen C L. Dynamic sea level change in the south China Sea under global warming. Marine Science Bulletin, 2023, 42 (3): 241- 249. | |
赵宏亮, 程 昊, 谢沁宓, 等. 旱区6种灌木抗旱性评价及鉴定指标的筛选. 西北林学院学报, 2022, 37 (3): 24- 29.
doi: 10.3969/j.issn.1001-7461.2022.03.04 |
|
Zhao H L, Cheng H, Xie Q M, et al. Evaluation of drought resistance of six shrubs in arid area and selection of identification indexes. Journal of Northwest Forestry University, 2022, 37 (3): 24- 29.
doi: 10.3969/j.issn.1001-7461.2022.03.04 |
|
Adams J M. 2010. Vegetation-climate interaction: how plants make the global environment. 2nd ed. Germany: Springer. | |
Dai X S, Wu W, Ji L, et al. MaxEnt model-based prediction of potential distributions of Parnassia wightiana (Celastraceae) in China. Biodiversity Data Journal, 2022, 10, e81073.
doi: 10.3897/BDJ.10.e81073 |
|
Diffenbaugh N S, Field C B. Changes in ecologically critical terrestrial climate conditions. Science, 2013, 341 (6145): 486- 492.
doi: 10.1126/science.1237123 |
|
Elith J, Phillips S J, Hastie T, et al. A statistical explanation of MaxEnt for ecologists: statistical explanation of MaxEnt. Diversity and Distributions, 2011, 17 (1): 43- 57.
doi: 10.1111/j.1472-4642.2010.00725.x |
|
Ewers R M, Rodrigues A S L. Estimates of reserve effectiveness are confounded by leakage. Trends in Ecology & Evolution, 2008, 23 (3): 113- 116. | |
Fick S E, Hijmans R J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 2017, 37 (12): 4302- 4315.
doi: 10.1002/joc.5086 |
|
Gedan K B, Bertness M D. Experimental warming causes rapid loss of plant diversity in New England salt marshes. Ecology Letters, 2009, 12 (8): 842- 848.
doi: 10.1111/j.1461-0248.2009.01337.x |
|
He X J, Hou E Q, Liu Y, et al. Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China. Scientific Reports, 2016, 6, 24261.
doi: 10.1038/srep24261 |
|
Hurtt G C, Chini L, Sahajpal R, et al. Harmonization of global land use change and management for the period 850-2100 (LUH2) for CMIP6. Geoscientific Model Development, 2020, 13 (11): 5425- 5464.
doi: 10.5194/gmd-13-5425-2020 |
|
Jaynes E T. Information theory and statistical mechanics. II. Physical Review, 1957, 108 (2): 171- 190.
doi: 10.1103/PhysRev.108.171 |
|
Li J Y, Chang H, Liu T, et al. The potential geographical distribution of Haloxylon across Central Asia under climate change in the 21st century. Agricultural and Forest Meteorology, 2019, 275, 243- 254.
doi: 10.1016/j.agrformet.2019.05.027 |
|
Lin L L, He J, Lyu R D, et al. Targeted conservation management of white pines in China: integrating phylogeographic structure, niche modeling, and conservation gap analyses. Forest Ecology and Management, 2021, 492, 119- 211. | |
Moritz C, Agudo R. 2013. The future of species under climate change: resilience or decline? Science, 341(6145): 504–508. | |
Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 2006, 190 (3/4): 231- 259. | |
Pörtner H-O, Roberts D C, Tignor M, et al. 2022. IPCC, 2022 climate change 2022: impacts, adaptation, and vulnerability. Contribution of Working Group II (WG II) to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge and New York: Cambridge University Press. | |
Radosavljevic A, Anderson R P. Making better MaxEnt models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography, 2014, 41 (4): 629- 643.
doi: 10.1111/jbi.12227 |
|
Rahman W, Brehm J M, Maxted N, et al. Gap analyses of priority wild relatives of food crop in current ex situ and in situ conservation in Indonesia. Biodiversity and Conservation, 2021, 30 (10): 2827- 2855.
doi: 10.1007/s10531-021-02225-4 |
|
Root T L, Price J T, Hall K R, et al. Fingerprints of global warming on wild animals and plants. Nature, 2003, 421 (6918): 57- 60.
doi: 10.1038/nature01333 |
|
Stocker T F, Qin D, Plattner G-K, et al. 2013. IPCC, 2013: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press. | |
Sun Y Q, Dong S J, Liu Q G, et al. 2021. Selection of a core collection of Prunus sibirica L. germplasm by a stepwise clustering method using simple sequence repeat markers. PLoS One, 16(11): e0260097. | |
Swets J A. Measuring the accuracy of diagnostic systems. Science, 1988, 240 (4857): 1285- 1293.
doi: 10.1126/science.3287615 |
|
Thomas R K, Jerry M M, Thomas C P. 2009. Global climate change impacts in the United States. Cambridge: Cambridge University Press. | |
Vaz U L, Cunha H F, Nabout J C. 2015. Trends and biases in global scientific literature about ecological niche models. Brazilian Journal of Biology, 75(4 suppl 1): 17–24. | |
Walther G R, Post E, Convey P, et al. Ecological responses to recent climate change. Nature, 2002, 416 (6879): 389- 395.
doi: 10.1038/416389a |
|
Wang W, Li Z J, Zhang Y L, et al. Current situation, global potential distribution and evolution of six almond species in China. Frontiers in Plant Science, 2021, 12, 619883.
doi: 10.3389/fpls.2021.619883 |
|
Xiao Y, Ma W J, Lu N, et al. Genetic variation of growth traits and genotype-by-environment interactions in clones of Catalpa bungei and Catalpa fargesii f. duclouxii. Forests, 2019, 10 (1): 57.
doi: 10.3390/f10010057 |
|
Yan H Y, He J, Xu X C, et al. Prediction of potentially suitable distributions of Codonopsis pilosula in China based on an optimized MaxEnt model. Frontiers in Ecology and Evolution, 2021, 9, 773396.
doi: 10.3389/fevo.2021.773396 |
|
Yang F L, Hu J M, Wu R D. Combining endangered plants and animals as surrogates to identify priority conservation areas in Yunnan, China. Scientific Reports, 2016, 6 (1): 30753.
doi: 10.1038/srep30753 |
|
Yang J T, Huang Y, Jiang X, et al. Potential geographical distribution of the edangred plant Isoetes under human activities using MaxEnt and GARP. Global Ecology and Conservation, 2022, 38, e02186.
doi: 10.1016/j.gecco.2022.e02186 |
|
Yi Y J, Cheng X, Yang Z F, et al. MaxEnt modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecological Engineering, 2016, 92, 260- 269.
doi: 10.1016/j.ecoleng.2016.04.010 |
|
Zhao Y, Deng X W, Xiang W H, et al. Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on MaxEnt model. Ecological Informatics, 2021, 64, 101393.
doi: 10.1016/j.ecoinf.2021.101393 |
|
Zhao Z Y, Xiao N W, Shen M, et al. Comparison between optimized MaxEnt and random forest modeling in predicting potential distribution: a case study with Quasipaa boulengeri in China. Science of the Total Environment, 2022, 842, 156867.
doi: 10.1016/j.scitotenv.2022.156867 |
|
Zhu G P, Liu G P, Bu W J, et al. Ecological niche modeling and its applications in biodiversity conservation: ecological niche modeling and its applications in biodiversity conservation. Biodiversity Science, 2013, 21 (1): 90- 98.
doi: 10.3724/SP.J.1003.2013.09106 |
[1] | 张雨田,石军南,张怀清,吴炳伦. 洞庭湖湿地植被时空动态及其驱动力分析[J]. 林业科学, 2024, 60(8): 1-13. |
[2] | 朱教君,王高峰,张怀清,高添. 关于“气候智慧林业”研究的思考[J]. 林业科学, 2024, 60(7): 1-7. |
[3] | 赵杼祺, 胡振宏, 何鲜, 黄志群. 森林木质残体微生物群落构建机制研究进展[J]. 林业科学, 2024, 60(2): 106-117. |
[4] | 申佳艳,范泽鑫,张慧,彭新华,李金花,余潇,杨文雄,李云芳,李新宇,刘悦宁,苏建荣. 云南3种松树径向生长的气候因子响应异质性[J]. 林业科学, 2024, 60(11): 48-62. |
[5] | 刘磊,赵立娟,刘佳奇,张辉盛,张志伟,黄瑞芬,高瑞贺. 基于优化的MaxEnt模型预测气候变化下松褐天牛在我国的潜在适生区[J]. 林业科学, 2024, 60(11): 139-148. |
[6] | 薛盼盼,缪宁,岳喜明,陶琼,张远东,冯秋红,毛康珊. 青藏高原东缘岷江冷杉径向生长对升温响应分异的坡向和海拔差异[J]. 林业科学, 2023, 59(7): 65-77. |
[7] | 韦雪蕾,张国钢,贾茹,姬云瑞,徐红英,杨泽玉,刘化金,刘宇霖,杨培宇. 黑龙江兴凯湖水鸟多样性变化及其影响因素[J]. 林业科学, 2023, 59(6): 118-129. |
[8] | 王亚,王军辉,王福德,刘逸夫,谭灿灿,袁艳超,聂稳,刘建锋,常二梅,贾子瑞. 末次间冰期以来及未来气候情景下红皮云杉适生分布区模拟[J]. 林业科学, 2023, 59(12): 1-12. |
[9] | 张淑宁,陈俊兴,敖敦,红梅,张雅茜,包福海,王淋,乌云塔娜,白玉娥,包文泉. 气候变化背景下我国长柄扁桃潜在适生区预测[J]. 林业科学, 2023, 59(12): 25-36. |
[10] | 司莉青,王明玉,陈锋,舒立福,赵凤君,李伟克. 雷电分布特征与雷击森林火预警[J]. 林业科学, 2023, 59(10): 1-8. |
[11] | 张宇凡,党英侨,王小艺. 基于气候和寄主因素的栗山天牛中国成灾和扩散风险评估[J]. 林业科学, 2022, 58(6): 95-109. |
[12] | 王爱君,路东晔,张国盛,黄海广,王颖,呼斯楞,敖民. 基于MaxEnt模拟欧亚大陆气候变化下叉子圆柏的潜在分布[J]. 林业科学, 2021, 57(8): 43-55. |
[13] | 白蕤,李宁,刘少军,陈小敏,邹海平,吕润. 未来气候变化背景下橡胶树白根病在中国的风险分析[J]. 林业科学, 2021, 57(6): 37-45. |
[14] | 赵光华,崔馨月,王智,荆红利,樊保国. 气候变化背景下我国酸枣潜在适生区预测[J]. 林业科学, 2021, 57(6): 158-168. |
[15] | 李宏群,韩培士,牛常会,袁晓青,邢立刚. 气候变化对我国特有濒危动物褐马鸡潜在生境的影响[J]. 林业科学, 2021, 57(10): 102-110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||