|
蔡耀通. 2021. 洞庭湖湿地植被时空变化研究. 长沙: 中南林业科技大学.
|
|
Cai Y T. 2021. Research on spatiotemporal variation of vegetation in the Dongting Lake wetland. Changsha: Central South University of Forestry & Technology. [in Chinese]
|
|
江 来, 任树鹏, 郭 欣, 等. 生物炭基人工湿地的水体净化作用及其机制. 环境科学与技术, 2021, 44 (8): 47- 54.
|
|
Jiang L, Ren S P, Guo X, et al. Efficiency and mechanism of water purification in biochar-based constructed wetland: a review. Environmental Science & Technology, 2021, 44 (8): 47- 54.
|
|
刘惠良, 刘红峰. 洞庭湖湿地生物多样性保护的价值评估. 中南林业科技大学学报, 2021, 41 (10): 140- 147.
|
|
Liu H L, Liu H F. Value evaluation of biodiversity conservation in Dongting Lake wetland. Journal of Central South University of Forestry & Technology, 2021, 41 (10): 140- 147.
|
|
马 莉, 牟长城, 王 彪, 等. 排水造林对温带小兴安岭沼泽湿地碳源/汇的影响. 林业科学, 2017, 53 (10): 1- 12.
|
|
Ma L, Mu C C, Wang B, et al. Effects of wetland drainage for forestation on carbon source or sink of temperate marshes wetlands in Xiaoxing’an Mountains of China. Scientia Silvae Sinicae, 2017, 53 (10): 1- 12.
|
|
毛德华, 王宗明, 宋开山, 等. 东北多年冻土区植被NDVI变化及其对气候变化和土地覆被变化的响应. 中国环境科学, 2011, 31 (2): 283- 292.
|
|
Mao D H, Wang Z M, Song K S, et al. The vegetation NDVI variation and its responses to climate change and LUCC from 1982 to 2006 year in northeast permafrost region. China Environmental Science, 2011, 31 (2): 283- 292.
|
|
沈圣齐, 李贵波. 探究湿地在生态系统中的作用. 农业与技术, 2019, 39 (23): 124- 126.
|
|
Shen S Q, Li G B. Explore the role of wetlands in the ecosystem. Agriculture and Technology, 2019, 39 (23): 124- 126.
|
|
汪学华, 田 昆. 若尔盖湿地研究进展. 西南林业大学学报, 2015, 35 (6): 104- 110.
|
|
Wang X H, Tian K. Research progress on zoige wetland. Journal of Southwest Forestry University, 2015, 35 (6): 104- 110.
|
|
韦红波, 李 锐, 杨勤科. 我国植被水土保持功能研究进展. 植物生态学报, 2002, 26 (4): 489- 496.
|
|
Wei H B, Li R, Yang Q K. Research advances of vegetation effect on soil and water conservation in China. Acta Phytoecologica Sinica, 2002, 26 (4): 489- 496.
|
|
Cai Y T, Liu S T, Lin H. Monitoring the vegetation dynamics in the Dongting Lake wetland from 2000 to 2019 using the BEAST algorithm based on dense landsat time series. Applied Sciences, 2020, 10 (12): 4209.
doi: 10.3390/app10124209
|
|
Cai Y T, Lin H, Zhang M. Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data. Advances in Space Research, 2019, 64 (11): 2233- 2244.
doi: 10.1016/j.asr.2019.08.042
|
|
Chen C, Park T, Wang X H, et al. China and India lead in greening of the world through land-use management. Nature Sustainability, 2019, 2, 122- 129.
doi: 10.1038/s41893-019-0220-7
|
|
Du X D, Jin X B, Yang X L, et al. Spatial pattern of land use change and its driving force in Jiangsu Province. International Journal of Environmental Research and Public Health, 2014, 11 (3): 3215- 3232.
doi: 10.3390/ijerph110303215
|
|
Gao F, Masek J, Schwaller M, et al. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44 (8): 2207- 2218.
doi: 10.1109/TGRS.2006.872081
|
|
Gong Z N, Zhao S Y, Gu J Z. Correlation analysis between vegetation coverage and climate drought conditions in north China during 2001—2013. Journal of Geographical Sciences, 2017, 27 (2): 143- 160.
doi: 10.1007/s11442-017-1369-5
|
|
Huang S Z, Zheng X D, Ma L, et al. Quantitative contribution of climate change and human activities to vegetation cover variations based on GA-SVM model. Journal of Hydrology, 2020, 584, 124687.
doi: 10.1016/j.jhydrol.2020.124687
|
|
Jiang L L, Jiapaer G, Bao A M, et al. Vegetation dynamics and responses to climate change and human activities in central Asia. The Science of the Total Environment, 2017, 599/600, 967- 980.
doi: 10.1016/j.scitotenv.2017.05.012
|
|
Li X Y, Li X, Fan Z Y, et al. Civil war hinders crop production and threatens food security in Syria. Nature Food, 2022, 3, 38- 46.
doi: 10.1038/s43016-021-00432-4
|
|
Liu W B, Sun F B. Assessing estimates of evaporative demand in climate models using observed pan evaporation over China. Journal of Geophysical Research: Atmospheres, 2016, 121 (14): 8329- 8349.
doi: 10.1002/2016JD025166
|
|
Meng D J, Mo X G. Assessing the effect of climate change on mean annual runoff in the Songhua River Basin, China. Hydrological Processes, 2012, 26 (7): 1050- 1061.
doi: 10.1002/hyp.8180
|
|
Myers-Smith I H, Kerby J T, Phoenix G K, et al. Complexity revealed in the greening of the Arctic. Nature Climate Change, 2020, 10 (2): 106- 117.
doi: 10.1038/s41558-019-0688-1
|
|
Newman M E, McLaren K P, Wilson B S. 2014. Long-term socio-economic and spatial pattern drivers of land cover change in a Caribbean tropical moist forest, the Cockpit Country, Jamaica. Agriculture, Ecosystems & Environment, 186: 185−200.
|
|
Roderick M L, Rotstayn L D, Farquhar G D, et al. On the attribution of changing pan evaporation. Geophysical Research Letters, 2007, 34 (17): 17403.
|
|
Schweizer P E, Matlack G R. Factors driving land use change and forest distribution on the coastal plain of Mississippi, USA. Landscape and Urban Planning, 2014, 121, 55- 64.
doi: 10.1016/j.landurbplan.2013.09.003
|
|
Wang S H, Zhang Y G, Ju W M, et al. Temporally corrected long-term satellite solar-induced fluorescence leads to improved estimation of global trends in vegetation photosynthesis during 1995—2018. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 194, 222- 234.
doi: 10.1016/j.isprsjprs.2022.10.018
|
|
Xi Y, Peng S S, Liu G, et al. Trade-off between tree planting and wetland conservation in China. Nature Communications, 2022, 13, 1967.
doi: 10.1038/s41467-022-29616-7
|
|
Yan Y C, Liu X P, Wen Y Y, et al. Quantitative analysis of the contributions of climatic and human factors to grassland productivity in northern China. Ecological Indicators, 2019, 103, 542- 553.
doi: 10.1016/j.ecolind.2019.04.020
|
|
Yang H B, Yang D W. Climatic factors influencing changing pan evaporation across China from 1961 to 2001. Journal of Hydrology, 2012, 414/415, 184- 193.
doi: 10.1016/j.jhydrol.2011.10.043
|
|
You G Y, Zhang Y P, Liu Y H, et al. On the attribution of changing pan evaporation in a nature reserve in SW China. Hydrological Processes, 2013, 27 (18): 2676- 2682.
doi: 10.1002/hyp.9394
|
|
Zhang M, Lin H, Long X R, et al. Analyzing the spatiotemporal pattern and driving factors of wetland vegetation changes using 2000—2019 time-series Landsat data. The Science of the Total Environment, 2021, 780, 146615.
doi: 10.1016/j.scitotenv.2021.146615
|
|
Zhao J, Huang S Z, Huang Q, et al. Copula-based abrupt variations detection in the relationship of seasonal vegetation-climate in the Jing River Basin, China. Remote Sensing, 2019, 11 (13): 1628.
doi: 10.3390/rs11131628
|
|
Zhou W, Gang C C, Zhou L, et al. Dynamic of grassland vegetation degradation and its quantitative assessment in the northwest China. Acta Oecologica, 2014, 55, 86- 96.
doi: 10.1016/j.actao.2013.12.006
|
|
Zhu X L, Chen J, Gao F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 2010, 114 (11): 2610- 2623.
doi: 10.1016/j.rse.2010.05.032
|
|
Zhu X L, Helmer E H, Gao F, et al. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment, 2016, 172, 165- 177.
doi: 10.1016/j.rse.2015.11.016
|