林业科学 ›› 2024, Vol. 60 ›› Issue (11): 48-62.doi: 10.11707/j.1001-7488.LYKX20230540
申佳艳1,2,3,4,范泽鑫2,张慧2,彭新华2,李金花5,余潇5,杨文雄5,李云芳6,李新宇7,刘悦宁7,苏建荣1,3,4,*()
收稿日期:
2023-11-13
出版日期:
2024-11-25
发布日期:
2024-11-30
通讯作者:
苏建荣
E-mail:.jianrongsu@vip.sina.com
基金资助:
Jiayan Shen1,2,3,4,Zexin Fan2,Hui Zhang2,Xinhua Peng2,Jinhua Li5,Xiao Yu5,Wenxiong Yang5,Yunfang Li6,Xinyu Li7,Yuening Liu7,Jianrong Su1,3,4,*()
Received:
2023-11-13
Online:
2024-11-25
Published:
2024-11-30
Contact:
Jianrong Su
E-mail:.jianrongsu@vip.sina.com
摘要:
目的: 探究云南高原高山松、云南松和思茅松3种松树径向生长对区域气候因子的响应和适应性特征,为预测气候变化背景下西南林区树木生长动态及各树种地理分布区变化提供指导,为区域森林保护和管理提供理论依据。方法: 根据树木年轮学方法,采集各树种分布区内树轮样本,构建树轮宽度年表,结合各采样点1958—2018年的气温、降水、帕尔默干旱指数等气象资料,利用响应分析、多元回归分析和滑动相关分析等方法,确定影响3种松树径向生长的关键气候因子及其对气候变化的响应差异。结果: 3种松树采样点的气候均呈暖干化特征。限制松树径向生长的关键因子对高山松为当年5月降水量和1月平均气温,其对回归模型方差解释率的贡献分别达59.8%和27.5%;对云南松为上一年10月、12月和当年1月降水量,其对回归模型方差解释率的贡献分别达38.8%、15.4%和25.4%;对思茅松为当年生长季(7月)、上一年和当年生长季后期(9月)降水量,其对回归模型方差解释率的贡献分别达53.8%、30.9%和15.3%。云南松径向生长对干旱的敏感性高于高山松和思茅松。气候暖干化使高山松对生长季初期(5月)气温和降水量的敏感性增强;使云南松对生长季初期(5月)降水量的敏感性减弱,对生长季(8月)气温的敏感性增强;使思茅松对7月平均气温、平均最高温度的敏感性减弱,对上一年生长季后期(9月)降水量的敏感性增强。气候变暖使3种松树径向生长与气候因子的响应关系变得不稳定,主要发生在各采样点气候突变时间段,与区域气候波动同步,且不同树种具有一致性。结论: 高山松和思茅松对干旱的适应性强于云南松。气候变暖使气温对高海拔区高山松径向生长的促进效应减弱,使云南松对生长季初期低降水敏感转变为对生长季低温敏感;气候变暖抑制思茅松生长季充足水分条件的促生长作用,增强气候因子对径向生长影响的滞后效应,使3种松树对气候因子响应的敏感性变得不稳定。
中图分类号:
申佳艳,范泽鑫,张慧,彭新华,李金花,余潇,杨文雄,李云芳,李新宇,刘悦宁,苏建荣. 云南3种松树径向生长的气候因子响应异质性[J]. 林业科学, 2024, 60(11): 48-62.
Jiayan Shen,Zexin Fan,Hui Zhang,Xinhua Peng,Jinhua Li,Xiao Yu,Wenxiong Yang,Yunfang Li,Xinyu Li,Yuening Liu,Jianrong Su. Response Heterogeneity of Radial Growth of the Three Pine Species to Climate Factors in Yunnan Province[J]. Scientia Silvae Sinicae, 2024, 60(11): 48-62.
表1
3种松树树轮采样点及最近气象站位置信息"
采样点 Sampling sites | 物种 Species | 采样点信息 Sampling sites information | 气象站信息 Meteorological stations information | |||||
纬度 Latitude(°N) | 经度 Longitude(°E) | 海拔 Elevation/m | 纬度 Latitude(°N) | 经度 Longitude(°E) | 海拔 Elevation/m | |||
德钦Deqin | 高山松 Pinus densata | 28.369 | 99.132 | 28.29 | 98.55 | 3 319 | ||
云龙Yunlong | 云南松 Pinus yunnanensis | 25.865 | 99.288 | 25.54 | 99.22 | 1 659 | ||
景谷Jinggu | 思茅松 Pinus kesiya | 23.189 | 100.512 | 23.30 | 100.42 | 914 | ||
var. langbianensis |
表2
各树种树木年轮宽度标准年表统计特征及公共区间统计量"
统计特征 Statistic characters | 高山松 Pinus densata | 云南松 Pinus yunnanensis | 思茅松 Pinus kesiya var. langbianensis |
样本量(树/样芯)Sample size (trees/cores) | 30/50 | 51/86 | 32/56 |
年表时段 Chronology span/year | 1898—2022 | 1940—2021 | 1956—2020 |
平均生长速率 Average growth rate/(mm·a?1) | 1.440 | 3.021 | 2.458 |
平均敏感度 Mean sensitivity | 0.293 | 0.229 | 0.283 |
公共区间 Common period/year | 1954—2019 | 1968—2018 | 1973—2017 |
第一特征向量百分比 Variance in first eigenvector (%) | 21.58 | 25.57 | 33.73 |
标准差 Standard deviation | 0.163 | 0.165 | 0.249 |
一阶自相关系数 First order autocorrelation | 0.413 | 0.578 | 0.198 |
信噪比 Signal-to-noise ratio | 10.29 | 27.04 | 26.93 |
样本总体代表性 Expressed population signal | 0.911 | 0.964 | 0.964 |
图4
各树种采样点气候突变前后年均气温和年降水量变化(1958—2018年) 德钦气象站气候突变前后时间区间为1958—2000年、2001—2018年。Time interval before and after climate mutation at Deqin meteorological station is 1958—2000, 2001—2018;云龙气象站气候突变前后时间区间为1958—1997年、1998—2018年。Time interval before and after climate mutation at Yunlong meteorological station is 1958—1997, 1998—2018;景谷气象站气候突变前后时间区间为1958—1993年、1994—2018年。Time interval before and after climate mutation at Jinggu meteorological station is 1958—1993, 1994—2018."
图7
各树种对气候因子响应的简化回归模型参数估计 Tmean:月平均气温Monthly mean temperature;Pre:月降水量Monthly precipitation;p:上一年气候因子The climate factors in previous year;字母后的下标数字代表月份The subscript digit after the letter represents the month. *、**、***代表气候因子对生长的影响分别达0.05显著水平、0.01极显著水平、0.001极显著水平The *, **, and *** indicate the influence of climate factors on tree growth at 0.05 significant level (P<0.05), 0.01 extremely significant level (P<0.01), and 0.001 extremely significant level (P<0.001) respectively."
图9
各树种树轮宽度年表与气候突变前后逐月气候因子的响应关系 a:高山松Pinus densata;b:云南松Pinus yunnanensis;c:思茅松Pinus kesiya var. langbianensis;Pre:月降水量Monthly precipitation;Tmin:月均最低温度Monthly mean minimum temperature;Tmean:月均温度Monthly mean temperature;Tmax:月均最高温度Monthly mean maximum temperature;p:上一年气候因子The climate factors in previous year. *代表树木径向生长对气候因子的响应达0.05显著水平。* represents the response of tree radial growth to climate factors at the 0.05 significant level (P<0.05)."
邓喜庆, 皇宝林, 温庆忠, 等. 云南松林在云南的分布研究. 云南大学学报(自然科学版), 2013, 35 (6): 843- 848. | |
Deng X Q, Huang B L, Wen Q Z, et al. Distribution of Pinus yunnanensis forest in Yunnan. Journal of Yunnan University (Natural Science Edition), 2013, 35 (6): 843- 848. | |
邓喜庆, 皇宝林, 温庆忠, 等. 云南松林资源动态研究. 自然资源学报, 2014, 29 (8): 1411- 1419. | |
Deng X Q, Huang B L, Wen Q Z, et al. Dynamics of Pinus yunnanensis forest resources. Journal of Natural Resources, 2014, 29 (8): 1411- 1419. | |
金振洲, 彭 鉴. 1986. 云南松. 昆明: 云南科技出版社. | |
Jin Z Z, Peng J. 1986. Pinus yunnanensi. Kunming: Yunnan Science and Technology Press. [in Chinese] | |
李卫英, 章正仁, 辛雅萱, 等. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异. 植物生态学报, 2023, 47 (6): 833- 846. | |
Li W Y, Zhang Z R, Xin Y X, et al. Needle phenotype variation among natural populations of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya. Chinese Journal of Plant Ecology, 2023, 47 (6): 833- 846. | |
刘世荣, 王 晖, 李海奎, 等. 碳中和目标下中国森林碳储量、碳汇变化预估与潜力提升途径. 林业科学, 2024, 60 (4): 157- 172. | |
Liu S R, Wang H, Li H K, et al. Projections of China’s forest carbon storage and sequestration and ways of their potential capacity enhancement. Scientia Silvae Sinicae, 2024, 60 (4): 157- 172. | |
毛建丰, 李 悦, 刘玉军, 等. 高山松种实性状与生殖适应性. 植物生态学报, 2007, 31 (2): 29- 299. | |
Mao J F, Li Y, Liu Y J, et al. Cone and seed characteristics of Pinus densata and their adaptive fitness implications. Chinese Journal of Plant Ecology, 2007, 31 (2): 29- 299. | |
彭新华, 杨绕琼, 尹云丽, 等. 滇西北白马雪山高山松(Pinus densata)径向生长对气候因子的响应. 生态学报, 2023, 43 (21): 8884- 8893. | |
Peng X H, Yang R Q, Yin Y L, et al. Radial growth response of Pinus densata to climate factors in Baima Snow Mountain, northwest Yunnan. Acta Ecologica Sinica, 2023, 43 (21): 8884- 8893. | |
申佳艳, 李帅锋, 黄小波, 等. 南盘江流域云南松径向生长对气候暖干化的响应. 植物生态学报, 2020, 43 (11): 946- 958. | |
Shen J Y, Li S F, Huang X B, et al. Radial growth responses to climate warming and drying in Pinus yunnanensis in Nanpan River Basin. Chinese Journal of Plant Ecology, 2020, 43 (11): 946- 958. | |
申佳艳. 2021. 西南干旱对云南松径向生长的影响. 北京: 中国林业科学研究院. | |
Shen J Y. 2021. Effects of drought on radial growth of Pinus yunnanensis in southwest China. Beijing: Chinese Academy of Forestry. [in Chinese] | |
温庆忠, 赵远藩, 陈晓鸣, 等. 中国思茅松林生态服务功能价值动态研究. 林业科学研究, 2010, 23 (5): 671- 677. | |
Wen Q Z, Zhao Y P, Chen X M, et al. Dynamic study on the values for ecological service function of Pinus kesiya forest in China. Forest Research, 2010, 23 (5): 671- 677. | |
吴祥定, 邵雪梅. 中国树木年轮气候学研究动态与展望. 地球科学进展, 1993, 8 (6): 31- 35. | |
Wu X D, Shao X M. Trends and prospects of Chinese tree ring climatology research. Advances in Earth Science, 1993, 8 (6): 31- 35. | |
吴祥定. 树木年轮分析在环境变化研究中的应用. 第四纪研究, 1990, 10 (2): 188- 196. | |
Wu X D. Application of tree ring analysis to the study on environment variation. Quaternary Sciences, 1990, 10 (2): 188- 196. | |
吴兆录. 云南松、高山松、思茅松相互关系的初步分析. 山西师大学报(自然科学版), 1993, (S2): 45- 49. | |
Wu Z L. A preliminary analysis of the relationship among Pinus yunnanensis, Pinus densata and Pinus kesiya var. langbianensis. Journal of Shanxi Normal University (Natural Science Edition), 1993, (S2): 45- 49. | |
吴兆录. 思茅松研究现状的探讨. 林业科学, 1994, 30 (2): 151- 157. | |
Wu Z L. Discussion on the research status of Pinus kesiya var. langbianensis. Scientia Silvae Sinicae, 1994, 30 (2): 151- 157. | |
吴征镒, 陈 介, 陈书坤. 1986. 云南植物志. 4卷. 北京: 科学出版社. | |
Wu Z Y, Chen J, Chen S K. 1986. Flora of Yunnan. Vol. 4. Beijing: Science Press. [in Chinese] | |
许玉兰, 蔡年辉, 陈 诗, 等. 云南松天然群体球果表型变异研究. 种子, 2018, 37 (1): 62- 67. | |
Xu Y L, Cai N H, Chen S, et al. Study on the phenotypic differentiation of cone traits among Pinus yunnanensis Franch. natural populations. Seed, 2018, 37 (1): 62- 67. | |
杨绕琼, 范泽鑫, 李宗善, 等. 滇西北玉龙雪山不同海拔云南松(Pinus yunnanensis)径向生长对气候因子的响应. 生态学报, 2018, 38 (24): 8983- 8991. | |
Yang R Q, Fan Z X, Li Z S, et al. Radial growth of Pinus yunnanensis at different elevations and their responses to climatic factors in the Yulong Snow Mountain, northwest Yunnan Province. Acta Ecologica Sinica, 2018, 38 (24): 8983- 8991. | |
张菊梅, 范泽鑫, 付培立, 等. 普达措国家公园四种针叶树径向生长对气候因子的响应. 应用生态学报, 2021, 32 (10): 3548- 3556. | |
Zhang J M, Fan Z X, Fu P L, et al. Radial growth responses of four coniferous species to climate change in the Potatso National Park, China. Chinese Journal of Applied Ecology, 2021, 32 (10): 3548- 3556. | |
张 赟, 尹定财, 田 昆, 等. 玉龙雪山不同海拔丽江云杉径向生长对气候变异的响应. 植物生态学报, 2018, 42 (6): 629- 639.
doi: 10.17521/cjpe.2018.0003 |
|
Zhang Y, Yin D C, Tian K, et al. Radial growth responses of Picea likiangensis to climate variabilities at different altitudes in Yulong Snow Mountain, southwest China. Chinese Journal of Plant Ecology, 2018, 42 (6): 629- 639.
doi: 10.17521/cjpe.2018.0003 |
|
Adams H D, Zeppel M J B, Anderegg W R L, et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution, 2017, 1 (9): 1285- 1291. | |
Anderegg W R L, Trugman A T, Badgley G, et al. Divergent forest sensitivity to repeated extreme droughts. Nature Climate Change, 2020, 10, 1091- 1095.
doi: 10.1038/s41558-020-00919-1 |
|
Binks O, Bryant C, Rowland L, et al. Vapour pressure deficit modulates hydraulic function and structure of tropical rainforests under nonlimiting soil water supply. New Phytologist, 2023, 240 (4): 1405- 1420.
doi: 10.1111/nph.19257 |
|
Björklund J, Seftigen K, Stoffel M, et al. Fennoscandian tree-ring anatomy shows a warmer modern than medieval climate. Nature, 2023, 620 (7972): 97- 103.
doi: 10.1038/s41586-023-06176-4 |
|
Brodribb T J, Powers J, Cochard H, et al. Hanging by a thread? forests and drought. Science, 2020, 368 (6488): 261- 266.
doi: 10.1126/science.aat7631 |
|
Bunn A G. A dendrochronology program library in R (dplR). 2008. Dendrochronologia, 26(2): 115–124. | |
Cabon A, Kannenberg S A, Arain A, et al. Cross-biome synthesis of source versus sink limits to tree growth. Science, 2022, 376 (6594): 758- 761.
doi: 10.1126/science.abm4875 |
|
Choat B, Brodribb T J, Brodersen C R, et al. Triggers of tree mortality under drought. Nature, 2018, 558 (7711): 531- 539.
doi: 10.1038/s41586-018-0240-x |
|
Choat B, Jansen S, Brodribb T J, et al. Global convergence in the vulnerability of forests to drought. Nature, 2012, 491 (7426): 752- 755.
doi: 10.1038/nature11688 |
|
Conlisk B E, Castanha C, Germino M J, et al. Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with warming. Journal of Ecology, 2017, 105 (15): 1347- 1357. | |
Cuny H E, Rathgeber C B K, Frank D, et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature Plants, 2015, 1 (11): 15160.
doi: 10.1038/nplants.2015.160 |
|
D’Arrigo R, Wilson R, Liepert B, et al. On the ‘Divergence Problem’ in northern forests: a review of the tree-ring evidence and possible causes. Global and Planetary Change, 2008, 60 (3/4): 289- 305. | |
DeSoto L, Cailleret M, Sterck F, et al. Low growth resilience to drought is related to future mortality risk in trees. Nature Communications, 2020, 11, 545.
doi: 10.1038/s41467-020-14300-5 |
|
Dolezal J, Altman J, Jandova V, et al. Climate warming drives Himalayan alpine plant growth and recruitment dynamics. Journal of Ecology, 2020, 109 (1): 179- 190. | |
Dow C, Kim A Y, D’Orangeville L, et al. Warm springs alter timing but not total growth of temperate deciduous trees. Nature, 2022, 608 (7923): 552- 557.
doi: 10.1038/s41586-022-05092-3 |
|
Dudney J, Latimer A M, van Mantgem P J, et al. The energy–water limitation threshold explains divergent drought responses in tree growth, needle length, and stable isotope ratios. Global Change Biology, 2023, 29 (15): 4368- 4382.
doi: 10.1111/gcb.16740 |
|
Fan Z X, Bräuning A, Fu P L, et al. Intra-annual radial growth of Pinus kesiya var. langbianensis is mainly controlled by moisture availability in the Ailao Mountains, southwestern China. Forests, 2019, 10 (10): 899.
doi: 10.3390/f10100899 |
|
Fritts H C, Smith D G, Stokes M A. The biological model for paleoclimatic interpretation of Mesa Verde tree-ring series. Memoirs of the Society for American Archaeology, 1965, (19): 101- 121. | |
Fritts H C. Growth-rings of trees: their correlation with climate. Science, 1966, 154 (3752): 973- 979.
doi: 10.1126/science.154.3752.973 |
|
Fritts H C. 1976. Tree rings and climate. New York: Elsevier. | |
Forzieri G, Girardello M, Ceccherini G, et al. Emergent vulnerability to climate-driven disturbances in European forests. Nature Communications, 2021, 12, 1081.
doi: 10.1038/s41467-021-21399-7 |
|
Gaire N P, Bhuju D R, Koirala M, et al. Tree-ring based spring precipitation reconstruction in western Nepal Himalaya since AD 1840. Dendrochronologia, 2017, 42, 21- 30.
doi: 10.1016/j.dendro.2016.12.004 |
|
Gao S, Liu R S, Zhou T, et al. Dynamic responses of tree-ring growth to multiple dimensions of drought. Global Change Biology, 2018, 24 (11): 5380- 5390.
doi: 10.1111/gcb.14367 |
|
Gao S, Liang E Y, Liu R S, et al. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nature Ecology and Evalution, 2022, 6 (4): 397- 404.
doi: 10.1038/s41559-022-01668-4 |
|
Hammond W M, Williams A P, Abatzoglou J T, et al. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nature Communications, 2022, 13, 1761.
doi: 10.1038/s41467-022-29289-2 |
|
Harvey J E, Smiljanić M, Scharnweber T, et al. Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Global Change Biology, 2019, 26 (4): 2505- 2518. | |
Holmes R L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull, 1983, 43, 51- 67. | |
Huang Y J, Mao J F, Chen Z Q, et al. Genetic structure of needle morphological and anatomical traits of Pinus yunnanensis. Journal of Forestry Research, 2016, 27 (1): 13- 25.
doi: 10.1007/s11676-015-0133-x |
|
IPCC, 2021: Summary for policymakers//Masson-Delmotte V P, Zhai A, Pirani S L, et al. eds. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 3−32. | |
Jankowski A, Wyka T P, Zytkowiak R, et al. Does climate-related in situ variability of Scots pine (Pinus sylvestris L.) needles have a genetic basis? evidence from common garden experiments. Tree Physiology, 2019, 39 (4): 573- 589.
doi: 10.1093/treephys/tpy145 |
|
Liang E Y, Dawadi B, Pederson N, et al. 2014. Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature? Ecology, 95(9): 2453–2465. | |
Ma F, Zhang X W, Chen L T, et al. The alpine homoploid hybrid Pinus densata has greater cold photosynthesis tolerance than its progenitors. Environmental and Experimental Botany, 2013, 85, 85- 91.
doi: 10.1016/j.envexpbot.2012.08.005 |
|
Maher C, Nelson C R, Larson A J. Winter damage is more important than summer temperature for maintaining the krummholz growth form above alpine treeline. Journal of Ecology, 2019, 108 (3): 1074- 1087. | |
Panthi S, Bräuning A, Zhou Z K, et al. Growth response of Abies georgei to climate increases with elevation in the central Hengduan Mountains, southwestern China. Dendrochronologia, 2018, 47, 1- 9.
doi: 10.1016/j.dendro.2017.11.001 |
|
Pan Y, Birdsey R A, Fang J Y, et al. A large and persistent carbon sink in the world’s forests. Science, 2011, 333 (6045): 988- 993.
doi: 10.1126/science.1201609 |
|
Piao S L, Nan H J, Huntingford C, et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nature Communications, 2014, 5, 5018.
doi: 10.1038/ncomms6018 |
|
Pugh T A M, Lindeskog M, Smith B, et al. Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences, 2018, 116 (10): 512- 518. | |
Quesada-Román A, Ballesteros-Cánovas J A, George S S, et al. Tropical and subtropical dendrochronology: approaches, applications, and prospects. Ecological Indicators, 2022, 144 (2): 109506. | |
Ren P, Rossi S, Camarero J J, et al. Critical temperature and precipitation thresholds for the onset of xylogenesis of Juniperus przewalskii in a semi-arid area of the north-eastern Tibetan Plateau. Annals of Botany, 2018, 121 (4): 617- 624.
doi: 10.1093/aob/mcx188 |
|
Ren P, Rossi S, Gricar J, et al. 2015. Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau? Annals of Botany, 115(4): 629–639. | |
Richardson A D, Keenan T F, Migliavacca M, et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 2013, 169, 156- 173.
doi: 10.1016/j.agrformet.2012.09.012 |
|
Schurman J S, Babst F, Björklund J, et al. The climatic drivers of primary Picea forest growth along the Carpathian arc are changing under rising temperatures. Global Change Biology, 2019, 25 (9): 3136- 3150.
doi: 10.1111/gcb.14721 |
|
Seddon A W R, Macias-Fauria M, Long P R, et al. Sensitivity of global terrestrial ecosystems to climate variability. Nature, 2016, 531 (7593): 229- 232.
doi: 10.1038/nature16986 |
|
Sharma B, Fan Z X, Panthi S, et al. Warming induced tree-growth decline of Toona ciliata in (sub-) tropical southwestern China. Dendrochronologia, 2022, 73, 125954. | |
Shen J Y, Li Z S, Gao C J, et al. Radial growth response of Pinus yunnanensis to rising temperature and drought stress on the Yunnan Plateau, southwestern China. Forest Ecology and Management, 2020, 474, 118357.
doi: 10.1016/j.foreco.2020.118357 |
|
Shi C M, Gao C, Zhang Y D, et al. The majority of tree growth on the monsoonal Tibetan Plateau has benefited from recent summer warming. Catena, 2021, 207 (8): 105649. | |
Smith T, Boers N. Global vegetation resilience linked to water availability and variability. Nature Communications, 2023, 14, 498.
doi: 10.1038/s41467-023-36207-7 |
|
Song W Q, Zhao B Q, Mu C C, et al. Moisture availability influences the formation and characteristics of earlywood of Pinus tabuliformis more than latewood in northern China. Agricultural and Forest Meteorology, 2022, 327 (1): 109219. | |
Stoke M A, Smiley T I J. 1996. An introduction to tree-ring dating. Chicago: The University of Chicago Press. | |
Tei S, Sugimoto A, Yonenobu H, et al. Tree-ring analysis and modeling approaches yield contrary response of circumboreal forest productivity to climate change. Global Change Biology, 2017, 23 (12): 5179- 5188.
doi: 10.1111/gcb.13780 |
|
Thomte L, Shah S K, Mehrotra N, et al. Influence of climate on multiple tree-ring parameters of Pinus kesiya from Manipur, northeast India. Dendrochronologia, 2022, 71, 125906.
doi: 10.1016/j.dendro.2021.125906 |
|
Trugman A T, Detto M, Bartlett M K, et al. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecology Letters, 2018, 21 (10): 1552- 1560.
doi: 10.1111/ele.13136 |
|
Weigel R, Muffler L, Klisz M, et al. Winter matters: sensitivity to winter climate and cold events increases towards the cold distribution margin of European beech (Fagus sylvatica L.). Journal of Biogeography, 2019, 45 (12): 2779- 2790. | |
Yang B, He M H, Shishov V, et al. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proceedings of the National Academy of Sciences, 2017, 114 (27): 6966- 6971.
doi: 10.1073/pnas.1616608114 |
|
Yang R Q, Fu P L, Fan Z X, et al. Growth-climate sensitivity of two pine species shows species-specific changes along temperature and moisture gradients in southwest China. Agricultural and Forest Meteorology, 2023, 318 (12): 108907. | |
Yang Y, Saatchi S S, Xu L, et al. Post-drought decline of the Amazon carbon sink. Nature Communications, 2018, 9, 3172- 3181.
doi: 10.1038/s41467-018-05668-6 |
|
Zang C, Biondi F. Dendroclimatic calibration in R: the bootRes package for response and correlation function analysis. Dendrochronologia, 2013, 31 (1): 68- 74.
doi: 10.1016/j.dendro.2012.08.001 |
|
Zhang X L, Lv P C, Xu C, et al. Dryness decreases average growth rate and increases drought sensitivity of Mongolia oak trees in North China. Agricultural and Forest Meteorology, 2021, 308/309 (5): 108611. | |
Zhang Y X, Wilmking M, Gou X H. Changing relationships between tree growth and climate in northwest China. Plant Ecology, 2009, 201 (1): 39- 50.
doi: 10.1007/s11258-008-9478-y |
|
Zheng L L, Gaire N P, Shi P L. High-altitude tree growth responses to climate change across the Hindu Kush Himalaya. Journal of Plant Ecology, 2021, 14 (5): 829- 842.
doi: 10.1093/jpe/rtab035 |
|
Zhou P, Huang J G, Liang H X, et al. Radial growth of Larix sibirica was more sensitive to climate at low than high altitudes in the Altai Mountains, China. Agricultural and Forest Meteorology, 2021, 304/305 (6): 108392. | |
Ziaco E, Truettner C, Biondi F, et al. Moisture-driven xylogenesis in Pinus ponderosa from a Mojave Desert mountain reveals high phenological plasticity. Plant Cell and Environment, 2018, 41 (4): 823- 836.
doi: 10.1111/pce.13152 |
[1] | 张雨田,石军南,张怀清,吴炳伦. 洞庭湖湿地植被时空动态及其驱动力分析[J]. 林业科学, 2024, 60(8): 1-13. |
[2] | 王一君,陈立欣,陈左司南,张志强,许行,姚飞,陈胜楠. 夜间不同环境稳定性条件下杨树水分生理过程的生物物理控制[J]. 林业科学, 2024, 60(8): 95-108. |
[3] | 朱教君,王高峰,张怀清,高添. 关于“气候智慧林业”研究的思考[J]. 林业科学, 2024, 60(7): 1-7. |
[4] | 管崇帆,高翔,李志鹏,胡晓创,胡美均,张劲松,孟平,蔡金峰,孙守家. 辽西地区樟子松人工林生产力和水分利用效率对气候变化的响应及预测[J]. 林业科学, 2024, 60(7): 28-39. |
[5] | 刘元玺,王丽娜,吴俊文,李世民. 云南松幼苗生物量和非结构性碳水化合物特征的干旱响应[J]. 林业科学, 2024, 60(6): 71-85. |
[6] | 周小东,常顺利,王冠正,孙雪娇,张毓涛,李翔. 天山雪岭云杉径向生长响应气候变化的海拔分异[J]. 林业科学, 2024, 60(3): 45-56. |
[7] | 赵杼祺, 胡振宏, 何鲜, 黄志群. 森林木质残体微生物群落构建机制研究进展[J]. 林业科学, 2024, 60(2): 106-117. |
[8] | 葛婉婷,刘莹,赵智佳,张珅,李洁,杨桂娟,曲冠证,王军辉,麻文俊. 不同气候情景下黄心梓木在我国的潜在适生区预测[J]. 林业科学, 2024, 60(11): 63-74. |
[9] | 刘磊,赵立娟,刘佳奇,张辉盛,张志伟,黄瑞芬,高瑞贺. 基于优化的MaxEnt模型预测气候变化下松褐天牛在我国的潜在适生区[J]. 林业科学, 2024, 60(11): 139-148. |
[10] | 薛盼盼,缪宁,岳喜明,陶琼,张远东,冯秋红,毛康珊. 青藏高原东缘岷江冷杉径向生长对升温响应分异的坡向和海拔差异[J]. 林业科学, 2023, 59(7): 65-77. |
[11] | 韦雪蕾,张国钢,贾茹,姬云瑞,徐红英,杨泽玉,刘化金,刘宇霖,杨培宇. 黑龙江兴凯湖水鸟多样性变化及其影响因素[J]. 林业科学, 2023, 59(6): 118-129. |
[12] | 李政宏,丁昌俊,张伟溪,张静,沈乐,张腾倩,丁密,苏晓华,吴钟亲,方发之. 美洲黑杨无性系苗木对不同光周期处理的生长与生理响应[J]. 林业科学, 2023, 59(3): 127-144. |
[13] | 王亚,王军辉,王福德,刘逸夫,谭灿灿,袁艳超,聂稳,刘建锋,常二梅,贾子瑞. 末次间冰期以来及未来气候情景下红皮云杉适生分布区模拟[J]. 林业科学, 2023, 59(12): 1-12. |
[14] | 张淑宁,陈俊兴,敖敦,红梅,张雅茜,包福海,王淋,乌云塔娜,白玉娥,包文泉. 气候变化背景下我国长柄扁桃潜在适生区预测[J]. 林业科学, 2023, 59(12): 25-36. |
[15] | 司莉青,王明玉,陈锋,舒立福,赵凤君,李伟克. 雷电分布特征与雷击森林火预警[J]. 林业科学, 2023, 59(10): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||