林业科学 ›› 2023, Vol. 59 ›› Issue (7): 65-77.doi: 10.11707/j.1001-7488.LYKX20220387
薛盼盼1,2(),缪宁1,*(
),岳喜明1,陶琼1,张远东3,冯秋红4,5,毛康珊1
收稿日期:
2022-06-09
出版日期:
2023-07-25
发布日期:
2023-09-08
通讯作者:
缪宁
E-mail:xuepp1531@163.com;miaoning@scu.edu.cn
基金资助:
Panpan Xue1,2(),Ning Miao1,*(
),Ximing Yue1,Qiong Tao1,Yuandong Zhang3,Qiuhong Feng4,5,Kangshan Mao1
Received:
2022-06-09
Online:
2023-07-25
Published:
2023-09-08
Contact:
Ning Miao
E-mail:xuepp1531@163.com;miaoning@scu.edu.cn
摘要:
目的: 研究气候变化背景下青藏高原东缘典型优势树种岷江冷杉的分异现象与坡向和海拔的空间关联,揭示该地区岷江冷杉发生分异的原因和响应机制。方法: 采用树木年轮方法,在青藏高原东缘米亚罗林区岷江冷杉4个主要分布坡向(东北、北、西北、西)的3个海拔梯度(3 650、3 800和3 950 m)采集875根岷江冷杉的树芯,去除生长趋势后建立12个基于地形点位的岷江冷杉标准年表。利用回归分析方法研究岷江冷杉径向生长与增温的分异现象,应用Pearson相关分析和滑动相关分方法分析1955—2019年岷江冷杉径向生长与气候因子的相关性及其动态变化。结果: 1) 4个坡向林线岷江冷杉径向生长均未发生分异,西坡未出现分异,北坡、西北坡中低海拔和东北坡低海拔均与增温趋势表现出分异。2) 在5个发生分异的样点中,中低海拔北坡和低海拔西北坡岷江冷杉的径向生长与生长季(6月)降水呈显著负相关(P<0.05);中海拔北坡和西北坡分别与前一年9月降水和10月温度呈显著负相关(P<0.05);低海拔北坡与4月和9月温度呈显著负相关(P<0.05)。3) 1955—2019年,中海拔北坡岷江冷杉径向生长与前一年9月和6月降水的负相关关系趋于显著(P<0.05);低海拔北坡与4月和9月温度的负相关关系趋于显著(P<0.05),与6月降水的负相关关系趋于显著(P<0.05);中海拔西北坡与前一年10月温度保持稳定的显著正相关关系(P<0.05);低海拔西北坡与6月降水的负相关关系趋于显著(P<0.05),与6月温度的显著负相关关系趋于不相关;低海拔东北坡与前一年9、10和12月,当年1、5和9月温度的负相关关系均趋于显著(P<0.05)。结论: 相比偏阳的东北坡和西坡,岷江冷杉出现分异现象的海拔分别在北坡和西北坡更低。岷江冷杉的分异现象与前一年生长季末和当年非生长季的干旱胁迫密切联系。未来气候变化背景下,低海拔岷江冷杉的生长响应具有不确定性,但林线岷江冷杉的径向生长将受益于增温。
中图分类号:
薛盼盼,缪宁,岳喜明,陶琼,张远东,冯秋红,毛康珊. 青藏高原东缘岷江冷杉径向生长对升温响应分异的坡向和海拔差异[J]. 林业科学, 2023, 59(7): 65-77.
Panpan Xue,Ning Miao,Ximing Yue,Qiong Tao,Yuandong Zhang,Qiuhong Feng,Kangshan Mao. Divergence Phenomenon of Radial Growth of Minjiang Fir in Response to Warming at Different Slope Aspects and Elevations on the Eastern Margin of the Tibetan Plateau[J]. Scientia Silvae Sinicae, 2023, 59(7): 65-77.
表1
采样点基本情况①"
采样点 Sampling sites | 坡向 Aspects | 坡度 Slope/ (°) | 经度 Longitude (E)/(°) | 纬度 Latitude (N)/(°) | 海拔 Altitude/m |
W-H-1 | 西坡 West slope | 27~30 | 102.696 5 | 31.837 7 | 3 950 |
W-M-1 | 102.692 8 | 31.831 6 | 3 800 | ||
W-L-1 | 102.690 5 | 31.832 5 | 3 650 | ||
W-H-2 | 102.698 1 | 31.837 0 | 3 960 | ||
W-M-2 | 102.695 9 | 31.837 8 | 3 820 | ||
W-L-2 | 102.693 0 | 31.839 2 | 3 660 | ||
NW-H-1 | 西北坡 Northwest slope | 27~30 | 102.707 3 | 31.867 4 | 3 980 |
NW-M-1 | 102.733 9 | 31.869 1 | 3 812 | ||
NW-L-1 | 102.731 6 | 31.870 3 | 3 655 | ||
NW-H-2 | 102.732 6 | 31.862 8 | 3 987 | ||
NW-M-2 | 102.729 9 | 31.865 1 | 3 819 | ||
NW-L-2 | 102.728 0 | 31.866 8 | 3 680 | ||
N-H-1 | 北坡 North slope | 27~30 | 102.672 5 | 31.834 2 | 4 008 |
N-M-1 | 102.675 7 | 31.835 2 | 3 871 | ||
N-L-1 | 102.678 5 | 31.835 1 | 3 719 | ||
N-H-2 | 102.669 9 | 31.834 6 | 4 010 | ||
N-M-2 | 102.672 6 | 31.836 1 | 3 849 | ||
N-L-2 | 102.676 7 | 31.836 9 | 3 705 | ||
NE-H-1 | 东北坡Northeast slope | 27~30 | 102.798 8 | 31.634 1 | 3 965 |
NE-M-1 | 102.799 8 | 31.636 4 | 3 815 | ||
NE-L-1 | 102.805 7 | 31.635 2 | 3 660 | ||
NE-H-2 | 102.799 9 | 31.636 4 | 3 968 | ||
NE-M-2 | 102.799 4 | 31.636 4 | 3 810 | ||
NE-L-2 | 102.905 7 | 31.635 2 | 3 650 |
表2
岷江冷杉年轮指数的统计参数①"
采样点Sites | 采样数量/样本量Tree/series | 时间跨度Time span | MS | SD | AC1 | EPS | SNR | PC1(%) |
W-H | 76/50 | 1802—2020 | 0.089 | 0.159 | 0.744 | 0.940 | 15.533 | 28.74 |
W-M | 70/37 | 1699—2020 | 0.120 | 0.255 | 0.776 | 0.924 | 12.078 | 34.25 |
W-L | 74/35 | 1820—2020 | 0.136 | 0.264 | 0.833 | 0.880 | 7.367 | 26.72 |
NW-H | 74/50 | 1823—2020 | 0.120 | 0.200 | 0.674 | 0.946 | 17.679 | 34.43 |
NW-M | 74/42 | 1836—2020 | 0.112 | 0.196 | 0.721 | 0.959 | 23.258 | 49.53 |
NW-L | 71/38 | 1927—2020 | 0.111 | 0.288 | 0.811 | 0.913 | 10.504 | 39.96 |
N-H | 74/45 | 1815—2020 | 0.119 | 0.186 | 0.685 | 0.964 | 26.782 | 46.90 |
N-M | 70/43 | 1811—2020 | 0.106 | 0.160 | 0.639 | 0.942 | 16.323 | 37.98 |
N-L | 73/36 | 1938—2020 | 0.089 | 0.120 | 0.602 | 0.931 | 13.443 | 35.70 |
NE-H | 72/43 | 1785—2020 | 0.115 | 0.178 | 0.685 | 0.935 | 14.341 | 35.95 |
NE-M | 74/33 | 1809—2020 | 0.112 | 0.189 | 0.716 | 0.890 | 8.064 | 33.91 |
NE-L | 73/51 | 1720—2020 | 0.101 | 0.136 | 0.565 | 0.876 | 7.068 | 22.99 |
程瑞梅, 刘泽彬, 封晓辉, 等. 气候变化对树木木质部生长影响的研究进展. 林业科学, 2015, 51 (6): 147- 154. | |
Cheng R M, Liu Z B, Feng X H, et al. Advances in research on the effect of climatic change on xylem growth of trees. Scientia Silvae Sinicae, 2015, 51 (6): 147- 154. | |
盖学瑞, 于大炮, 王守乐, 等. 树轮-气候“分异问题”形成机制的研究进展. 生态学杂志, 2017, 36 (11): 3273- 3280. | |
Gai X R, Yu D P, Wang S L, et al. A review of formation mechanism on the ‘divergence problem’ of tree growth-climate relationship. Chinese Journal of Ecology, 2017, 36 (11): 3273- 3280. | |
高琳琳, 勾晓华, 邓 洋 等. 树轮气候学中分异现象的研究进展. 冰川冻土, 2011, 33 (2): 453- 460. | |
Gao L L, Gou X H, Deng Y, et al. An overview of the divergence phenomenon in dendroclimatology. Journal of Glaciology and Geocryology, 2011, 33 (2): 453- 460. | |
苟晓霞, 张同文, 喻树龙, 等. 不同生境下圆柏径向生长的气候响应. 生态学杂志, 2021, 40 (6): 1574- 1588. | |
Gou X X, Zhang T W, Yu S L, et al. Response of radial growth of Juniperus seravschanica to climate changes in different environmental conditions . Chinese Journal of Ecology, 2021, 40 (6): 1574- 1588. | |
郭滨德, 王晓春, 张远东. 阈值温度和积温对川西高原林线岷江冷杉径向生长的影响. 生态学报, 2019, 39 (3): 895- 904. | |
Guo B D, Wang X C, Zhang Y D. Effects of accumulated and threshold temperatures on the radial growth of Abies faxonianain the alpine timberline, western Sichuan Plateau . Acta Ecologica Sinica, 2019, 39 (3): 895- 904. | |
郭滨德, 张远东. 王晓春. 川西高原不同坡向云、冷杉树轮对快速升温的响应差异. 应用生态学报, 2016, 27 (2): 354- 364. | |
Guo B D, Zhang Y D, Wang X C. Response of Picea purpurea and Abies faxoniana tree rings at different slope aspects to rapid warming in western Sichuan, China . Chinese Journal of Applied Ecology, 2016, 27 (2): 354- 364. | |
郭明明, 张远东, 王晓春, 等. 升温突变对川西马尔康树木生长的影响. 生态学报, 2015, 35 (22): 7464- 7474. | |
Guo M M, Zhang Y D, Wang X C, et al. Effects of abrupt warming on main conifer tree rings in Markang, Sichuan, China. Acta Ecologica Sinica, 2015, 35 (22): 7464- 7474. | |
靳 翔, 徐 庆, 刘世荣, 等. 川西亚高山岷江冷杉和铁杉年轮对气候因子的响应. 林业科学, 2013, 49 (1): 21- 26. | |
Jin X, Xu Q, Liu S R, et al. Responses of the tree-ring of Abies faxoniana and Tsuga chinensis to climate factors in sub-alpine in western Sichuan . Scientia Silvae Sinicae, 2013, 49 (1): 21- 26. | |
李 宝, 程雪寒, 吕利新. 西藏朗县地区不同龄级高山松林木径向生长对火干扰的响应. 植物生态学报, 2016, 40 (5): 436- 446.
doi: 10.17521/cjpe.2015.0440 |
|
Li B, Cheng X H, Lü L X. Responses of radial growth to fire disturbance in alpine pine (Pinus densata) of different age classes in Nang County, Xizang, China . Chinese Journal of Plant Ecology, 2016, 40 (5): 436- 446.
doi: 10.17521/cjpe.2015.0440 |
|
李广起, 白 帆, 桑卫国. 2011. 长白山红松和鱼鳞云杉在分布上限的径向生长对气候变暖的不同响应. 植物生态学报, 35(5): 500−511. | |
Li G Q, Bai F, Sang W G. 2011. Different responses of radial growth to climate warming in Pinus koraiensis and Picea jezoensis var. komarovii at their upper elevational limits in Changbai Mountain, China. Chinese Journal of Plant Ecology, 35(5): 500−511.[in Chinese] | |
李静茹, 彭剑峰, 杨 柳, 等. 川西高原两种针叶树径向生长对气候因子的响应. 应用生态学报, 2021, 32 (10): 3512- 3520. | |
Li J R, Peng J F, Yang L, et al. Responses of radial growth of two coniferous species to climate factors in western Sichuan Plateau, China. Chinese Journal of Applied Ecology, 2021, 32 (10): 3512- 3520. | |
李宗善, 刘国华, 傅伯杰, 等. 川西卧龙国家级自然保护区树木生长对气候响应的时间稳定性评估. 植物生态学报, 2010, 34 (9): 1045- 1057. | |
Li Z S, Liu G H, Fu B J, et al. Evaluation of temporal stability in tree growth-climate response in Wolong National Natural Reserve, western Sichuan, China. Chinese Journal of Plant Ecology, 2010, 34 (9): 1045- 1057. | |
刘 欣, 刘滨辉. 大兴安岭不同坡向兴安落叶松径向生长对气候变化的响应. 东北林业大学学报, 2014, 42 (12): 13- 17,21. | |
Liu X, Liu B H. Response of Larix gmelinii (Rupr . ) Kuzen radial growth to climate for different slope direction in Daxing’an Mountain. Journal of Northeast Forestry University, 2014, 42 (12): 13- 17,21. | |
刘 禹, 马利民. 树轮宽度对近376年呼和浩特季节降水的重建. 科学通报, 1999, 18 (44): 1986- 1992. | |
Liu Y, Ma L M. Reconstruction of seasonal precipitation in Hohhot in recent 376 years by tree-ring width. Chinese Science Bulletin, 1999, 18 (44): 1986- 1992. | |
潘少安, 李旭华, 冯秋红, 等. 四川省岷江冷杉对气候变化的响应及其潜在分布格局. 生态学报, 2022, 41 (10): 42. | |
Pan S A, Li X H, Feng Q H, et al. Response of Abies faxoniana to future climate change and its potential distribution patterns in Sichuan Province . Acta Ecologica Sinica, 2022, 41 (10): 42. | |
彭钟通, 郭明明, 张远东, 等. 2021. 升温突变对川西道孚林线川西云杉和鳞皮冷杉生长的影响. 生态学报, 41(20): 8202-8211. | |
Peng Z T, Guo M M, Zhang Y D, et al. 2021. Effects of abrupt warming on Picea likiangensis var. balfouriana and Abies squamata growth at tree line in Daofu, Sichuan, China. Acta Ecologica Sinica, 41(20): 8202-8211.[in Chinese] | |
石仁娜·加汗, 张同文, 喻树龙, 等. 2021 天山不同海拔雪岭云杉径向生长对气候变化的响应. 干旱区研究, 38(2): 327−338. | |
Shirenna·jiahan, Zhang T W, Yu S L, et al. 2021. Picea schrenkiana response to climate change at different altitudes in Tianshan Mountains. Arid Zone Research, 38(2): 327−338.[in Chinese] | |
王 彬, 于澎涛, 于艺鹏, 等. 2021 祁连山不同年龄青海云杉径向生长对气候变化的响应. 林业科学, 57(3): 1−8. | |
Wang B, Yu P T, Yu Y P, et al. 2021. Response of radial growth of Qinghai spruce at different ages to climate change in Qilian Mountains, northwestern China. Scientia Silvae Sinicae, 57(3): 1−8.[in Chinese] | |
王玲玲, 勾晓华, 夏敬清, 等. 2021. 树木形成层活动及其影响因素研究进展. 应用生态学报. 32(10): 3761−3770. | |
Wang L L, Gou X H, Xia J Q, et al. 2021. Research progress on cambial activity of trees and the influencing factors. Chinese Journal of Applied Ecology, 32(10): 3761−3770.[in Chinese] | |
吴 普, 王丽丽, 黄 磊. 五个中国特有针叶树种树轮宽度对气候变化的敏感性. 地理研究, 2006, 25 (1): 43- 52. | |
Wu P, Wang L L, Huang L. A preliminary study on the tree-ring sensitivity to climate change of five endemic conifer species in China. Geographical Research, 2006, 25 (1): 43- 52. | |
徐 宁, 王晓春, 张远东, 等. 川西米亚罗林区不同海拔岷江冷杉生长对气候变化的响应. 生态学报, 2013, 33 (12): 3742- 3751.
doi: 10.5846/stxb201211131594 |
|
Xu N, Wang X C, Zhang Y D, et al. Climate- growth relationships of Abies faxoniana from different elevations at Miyaluo, western Sichuan, China . Acta Ecologica Sinica, 2013, 33 (12): 3742- 3751.
doi: 10.5846/stxb201211131594 |
|
于 健, 陈佳佳, 孟盛旺, 等. 长白山群落交错带长白松和鱼鳞云杉径向生长对气候变暖的响应. 应用生态学报, 2021, 32 (1): 46- 56. | |
Yu J, Chen J J, Meng S W, et al. Response of radial growth of Pinus sylvestriformis and Picea jezoensis to climate warming in the ecotone of Changbai Mountain, Northeast China . Chinese Journal of Applied Ecology, 2021, 32 (1): 46- 56. | |
曾郅玮, 赵世杰, 鲜骏仁, 等. 长期增温对树线交错带岷江冷杉幼苗异龄叶大小与出叶强度关系的影响. 生态学报, 2021, 41 (14): 5782- 5791. | |
Zeng Z W, Zhao S J, Xian J R, et al. Long-term warming effects on relationship between leaf size and leafing intensity of Abies faxoniana seedlings in the treeline ecotone . Acta Ecologica Sinica, 2021, 41 (14): 5782- 5791. | |
赵志江, 郭文霞, 康东伟, 等. 川西亚高山岷江冷杉和紫果云杉径向生长对气候因子的响应. 林业科学, 2019, 55 (7): 1- 16. | |
Zhao Z J, Guo W X, Kang D W, et al. Response of radial growth of Abies faxoniana and Picea purpurea to climatic factors in subalpine of western Sichuan . Scientia Silvae Sinicae, 2019, 55 (7): 1- 16. | |
赵志江, 康东伟, 李俊清. 川西亚高山不同年龄紫果云杉径向生长对气候因子的响应. 生态学报, 2016, 36 (1): 173- 179. | |
Zhao Z J, Kang D W, Li J Q. Age-dependent radial growth responses of Picea purpurea to climatic factors in the subalpine region of Western Sichuan Province, China . Acta Ecologica Sinica, 2016, 36 (1): 173- 179. | |
D'Arrigo R D, Kaufmann R K, Davi N, et al. Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Global Biogeochemical Cycles, 2004, 18 (3): 1- 7. | |
D'Arrigo R, Wilson R, Liepert B, et al. On the ‘divergence problem’ in northern forests: a review of the tree-ring evidence and possible causes. Global and Planetary Change, 2008, 60 (3): 289- 305. | |
Esper J, Frank D. Divergence pitfalls in tree-ring research. Climatic Change, 2009, 94 (3): 261- 266. | |
Guo M M, Zhang Y D, Liu S R, et al. Divergent growth between spruce and fir at alpine treelines on the east edge of the Tibetan Plateau in response to recent climate warming. Agricultural and Forest Meteorology, 2019, 276/277, 107631.
doi: 10.1016/j.agrformet.2019.107631 |
|
Guo M M, Zhang Y D, Wang X C, et al. The responses of dominant tree species to climate warming at the treeline on the eastern edge of the Tibetan Plateau. Forest Ecology and Management, 2018, 425, 21- 26.
doi: 10.1016/j.foreco.2018.05.021 |
|
Hart S J, Laroque C P. Searching for thresholds in climate–radial growth relationships of Engelmann spruce and subalpine fir, Jasper National Park, Alberta, Canada. Dendrochronologia, 2013, 31 (1): 9- 15.
doi: 10.1016/j.dendro.2012.04.005 |
|
He C, Wang Z Q, Zhou T J, et al. Enhanced latent heating over the Tibetan Plateau as a key to the enhanced East Asian summer monsoon circulation under a warming climate. Journal of Climate, 2019, 32 (11): 3373- 3388.
doi: 10.1175/JCLI-D-18-0427.1 |
|
Huang X, Zhou T J, Turner A, et al. 2020. The recent decline and recovery of Indian summer monsoon rainfall: relative roles of external forcing and internal variability. Journal of Climate, 33(12): 5035−5060. | |
Jacoby G C, D'Arrigo R D. Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochemical Cycles, 1995, 9 (2): 227- 234.
doi: 10.1029/95GB00321 |
|
Keyimu M, Li Z S, Wu X C, et al. Recent decline of high altitude coniferous growth due to thermo-hydraulic constrains: Evidence from the Miyaluo Forest Reserve, Western Sichuan Plateau of China. Dendrochronologia, 2020, 63, 125751.
doi: 10.1016/j.dendro.2020.125751 |
|
Kirchhefer A J. The influence of slope aspect on tree-ring growth of Pinus sylvestris L . in northern Norway and its implications for climate reconstruction. Dendrochronologia, 2001, 18, 27- 40. | |
Körner C, Paulsen J, 2004. A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31(5): 713−732. | |
Lamarche V C, Donald A, Graybill H C, et al. Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation. Science, 1984, 225 (4666): 1019- 1021.
doi: 10.1126/science.225.4666.1019 |
|
Leonelli G, Pelfini M, Battipaglia G, et al. Site-aspect influence on climate sensitivity over time of a high-altitude Pinus cembra tree-ring network . Climatic Change, 2009, 96 (1): 185- 201. | |
Liang E Y, Shao X M, Dieter E, et al. Topography- and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau . Forest Ecology and Management, 2006, 236 (2/3): 268- 277.
doi: 10.1016/j.foreco.2006.09.016 |
|
Lloyd A H, Fastie, C L. Spatial and Temporal Variability in the Growth and Climate Response of Treeline Trees in Alaska. Climatic Change, 2002, 52 (4): 481- 509.
doi: 10.1023/A:1014278819094 |
|
Pepin N, Bradley R S, Diaz H F, et al. Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 2015, 5 (5): 424- 430.
doi: 10.1038/nclimate2563 |
|
Rossi S, Girard M J, Morin H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Global Change Biology, 2014, 20 (7): 2261- 2271.
doi: 10.1111/gcb.12470 |
|
Shao X M, Huang L, Liu H, et al. Reconstruction of precipitation variation from tree rings in recent 1000 years in Delingha, Qinghai. Science in China Series D:Earth Sciences, 2005, 48 (7): 939- 949.
doi: 10.1360/03yd0146 |
|
Wilmking M, Juday G P, Barber V A, et al. Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biology, 2004, 10 (10): 1724- 1736.
doi: 10.1111/j.1365-2486.2004.00826.x |
|
Zhang T W, Zhang R B, Jiang S X, et al. On the ‘divergence problem’ in the Alatau Mountains, Central Asia: a study of the responses of Schrenk spruce tree-ring width to climate under the recent warming and wetting trend. Atmosphere, 2019, 10 (8): 473.
doi: 10.3390/atmos10080473 |
|
Zhang Y D, Miao N, Liu S R. 2021. Has tree density increased at alpine treelines on the eastern Tibetan Plateau? Environmental Research Communications, 3(12): 121005. | |
Zhang Y D, Guo M M, Wang X C, et al. Divergent tree growth response to recent climate warming of Abies faxoniana at alpine treelines in east edge of Tibetan Plateau . Ecological Research, 2018, 33 (2): 303- 311.
doi: 10.1007/s11284-017-1538-0 |
[1] | 韦雪蕾,张国钢,贾茹,姬云瑞,徐红英,杨泽玉,刘化金,刘宇霖,杨培宇. 黑龙江兴凯湖水鸟多样性变化及其影响因素[J]. 林业科学, 2023, 59(6): 118-129. |
[2] | 罗凤敏,辛智鸣,高君亮,李永华,董雪,段瑞兵,李新乐. 敦煌及马鬃山地区植物生活型及其海拔梯度特征[J]. 林业科学, 2022, 58(3): 31-39. |
[3] | 王爱君,路东晔,张国盛,黄海广,王颖,呼斯楞,敖民. 基于MaxEnt模拟欧亚大陆气候变化下叉子圆柏的潜在分布[J]. 林业科学, 2021, 57(8): 43-55. |
[4] | 白蕤,李宁,刘少军,陈小敏,邹海平,吕润. 未来气候变化背景下橡胶树白根病在中国的风险分析[J]. 林业科学, 2021, 57(6): 37-45. |
[5] | 赵光华,崔馨月,王智,荆红利,樊保国. 气候变化背景下我国酸枣潜在适生区预测[J]. 林业科学, 2021, 57(6): 158-168. |
[6] | 董雪, 李永华, 辛智鸣, 段瑞兵, 姚斌, 包岩峰, 张正国, 刘源. 河西走廊西段荒漠戈壁灌木群落物种多样性的海拔格局[J]. 林业科学, 2021, 57(2): 168-178. |
[7] | 李益,冯秀秀,赵发珠,郭垚鑫,王俊,任成杰. 秦岭太白山不同海拔锐齿栎林土壤微生物群落的变化特征[J]. 林业科学, 2021, 57(12): 22-31. |
[8] | 李宏群,韩培士,牛常会,袁晓青,邢立刚. 气候变化对我国特有濒危动物褐马鸡潜在生境的影响[J]. 林业科学, 2021, 57(10): 102-110. |
[9] | 裴晓亚,MadukaNilakshi Jayasekara Arachchige,朱晨慧,王敦. 川西高原昆虫病原真菌的多样性[J]. 林业科学, 2020, 56(8): 73-79. |
[10] | 申佳艳,李帅锋,黄小波,王绍武,苏建荣. 金沙江流域不同海拔处云南松生态弹性及生长衰退过程[J]. 林业科学, 2020, 56(6): 1-11. |
[11] | 竹万宽,许宇星,王志超,杜阿朋. 中国桉树人工林生物量估算系数及影响要素[J]. 林业科学, 2020, 56(5): 1-11. |
[12] | 任玉连,陆梅,曹乾斌,李聪,冯峻,王志胜. 南滚河自然保护区森林土壤酶活性对海拔升高的响应[J]. 林业科学, 2020, 56(4): 22-34. |
[13] | 于健,陈佳佳,周光,刘国华,王永平,李俊清,刘琪璟. 横断山脉中部川滇冷杉和丽江云杉径向生长对气象因子的响应[J]. 林业科学, 2020, 56(12): 28-38. |
[14] | 潘天天,李彦,王忠媛,陆世通,叶琳峰,陈森,谢江波. 湿润区3种杉科植物枝和根木质部的水力功能与解剖结构的关系[J]. 林业科学, 2020, 56(12): 49-59. |
[15] | 赵志江, 郭文霞, 康东伟, 崔莉, 赵联军, 李俊清. 川西亚高山岷江冷杉和紫果云杉径向生长对气候因子的响应[J]. 林业科学, 2019, 55(7): 1-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||