林业科学 ›› 2023, Vol. 59 ›› Issue (6): 118-129.doi: 10.11707/j.1001-7488.LYKX20220437
韦雪蕾1,2(),张国钢1,2,*,贾茹1,2,姬云瑞1,徐红英1,2,杨泽玉1,2,刘化金3,刘宇霖3,杨培宇3
收稿日期:
2022-06-27
出版日期:
2023-06-25
发布日期:
2023-08-08
通讯作者:
张国钢
E-mail:serena_caf@163.com
基金资助:
Xuelei Wei1,2(),Guogang Zhang1,2,*,Ru Jia1,2,Yunrui Ji1,Hongying Xu1,2,Zeyu Yang1,2,Huajin Liu3,Yulin Liu3,Peiyu Yang3
Received:
2022-06-27
Online:
2023-06-25
Published:
2023-08-08
Contact:
Guogang Zhang
E-mail:serena_caf@163.com
摘要:
目的: 分析我国东部水鸟重要迁徙通道——黑龙江兴凯湖保护区不同年度水鸟群落结构特征和多样性变化趋势,为保护区水鸟保护和管理提供基础数据。方法: 对2014—2015年和2021年兴凯湖43个监测点的水鸟调查数据进行对比分析,结合兴凯湖气温和水位等信息,利用Shannon-Wiener多样性指数、Pielou均匀度指数和TBI指数,比较2次调查期间不同区域和不同栖息地水鸟的丰度变化和群落结构差异,并探讨该差异与气候的相关性。结果: 兴凯湖共记录水鸟7目12科71种665 504只,与2014—2015年相比,种类无明显差异,水鸟个体数量增加近1倍,主要是雁鸭类和鸥类水鸟数量增加,鹤类、鸻类和秧鸡类水鸟数量呈下降趋势。3—4月和9—11月迁徙期水鸟种类、数量较高,5—8月繁殖期则较低。兴凯湖4个区域水鸟群落结构相近但有一定差异:龙王庙水鸟种类和数量最多,物种呈增加趋势;湖岗和东北泡子水鸟均匀度较低,物种呈增加趋势;青山水库水鸟数量最少,但多样性和均匀度均最高,物种呈减少趋势。在7种栖息地类型中,沼泽水鸟种类最多,混合生境水鸟数量最大且多样性也最高,农田水鸟均匀度最低,以上3种栖息地水鸟种类和数量均增多;灌丛、草甸和水域栖息地水鸟种类和数量均下降,其中水域水鸟数量下降最多。结论: 兴凯湖水鸟数量增多与近年来保护区加强管理以及气温、水位升高等因素有关。兴凯湖目前仍面临农田增多、沼泽减少的压力,建议采用标准化方法进行长期水鸟监测,针对不同时期水鸟分布状况对重点区域加强管护。
中图分类号:
韦雪蕾,张国钢,贾茹,姬云瑞,徐红英,杨泽玉,刘化金,刘宇霖,杨培宇. 黑龙江兴凯湖水鸟多样性变化及其影响因素[J]. 林业科学, 2023, 59(6): 118-129.
Xuelei Wei,Guogang Zhang,Ru Jia,Yunrui Ji,Hongying Xu,Zeyu Yang,Huajin Liu,Yulin Liu,Peiyu Yang. Variation of Waterbird Diversity and Its Affecting Factors in Xingkai Lake, Heilongjiang Province[J]. Scientia Silvae Sinicae, 2023, 59(6): 118-129.
表1
2021年3—11月兴凯湖各科水鸟种类、数量及多样性指数"
科 Family | 种类 Number of species | 个体总数量 Total number of individuals | 占总个体数比例 Proportion of total number(%) | 香农-威纳多样性指数 Shannon-Wiener diversity index(H′ ) | Pielou均匀度指数 Pielou Evenness index(J) |
鸭科 Anatidae | 26 | 517 966 | 77.83 | 2.217 | 0.681 |
鹬科 Scolopacidae | 13 | 2 145 | 0.32 | 1.177 | 0.459 |
鹭科 Ardeidae | 11 | 15 746 | 2.37 | 1.323 | 0.552 |
鸥科 Laridae | 6 | 94 508 | 14.20 | 1.382 | 0.771 |
??科 Podicipedidae | 5 | 5 960 | 0.90 | 0.871 | 0.541 |
秧鸡科 Rallidae | 2 | 25 246 | 3.79 | 0.031 | 0.044 |
鹤科 Gruidae | 2 | 685 | 0.10 | 0.272 | 0.393 |
鸻科 Charadriidae | 2 | 250 | 0.04 | 0.446 | 0.644 |
鸬鹚科 Phalacrocoracidae | 1 | 1 743 | 0.26 | 0 | — |
鹳科 Ciconiidae | 1 | 902 | 0.14 | 0 | — |
反嘴鹬科 Recurvirostridae | 1 | 240 | 0.04 | 0 | — |
鹮科 Threskiornithidae | 1 | 113 | 0.02 | 0 | — |
表2
兴凯湖不同区域水鸟群落特征①"
区域 Area | 种类 Number of species | 个体总数量 Total number of individuals | 占总个体数比例 Proportion of total number(%) | 香农-威纳多样性指数 Shannon-Wiener diversity index(H′) | Pielou均匀度指数 Pielou evenness index(J) |
湖岗 Hugang | 55ab | 163 729a | 24.60 | 2.288a | 0.571a |
东北泡子 Dongbeipaozi | 60ab | 220 586a | 33.15 | 2.434a | 0.594a |
龙王庙 Longwang Temple | 67a | 256 024a | 38.47 | 2.875a | 0.684ab |
青山水库 Qingshan Reservoir | 52b | 25 165b | 3.78 | 3.176a | 0.804b |
表3
兴凯湖不同栖息地群落特征①"
栖息地 Habitat | 种类 Number of species | 个体总数量 Total number of individuals | 占总个体数比例 Proportion of total number(%) | 香农-威纳多样性指数 Shannon-Wiener diversity Index(H′) | Pielou均匀度指数 Pielou evenness index(J) |
林地 Forest | 1a | 11ab | 0.002 | 0.000a | — |
灌丛 Shrub | 2ab | 7ab | 0.001 | 0.598a | 0.863a |
草甸 Grassland | 5a | 44a | 0.007 | 1.369a | 0.850a |
沼泽 Marsh | 61c | 78 543abc | 11.802 | 2.656bc | 0.646a |
水域 Wetland | 49bc | 162 396bc | 24.402 | 2.610b | 0.671a |
农田 Farmland | 46ab | 172 931abc | 25.985 | 1.454ac | 0.380a |
混合生境 Mixed habitat | 57c | 251 572c | 37.802 | 2.894b | 0.716a |
表5
2014—2015 年和 2021 年之间7种栖息地水鸟的 TBI"
栖息地 Habitat | 物种减少 Species losses (B) | 物种增加 Species gains (C) | TBI | 变化 Change (C–B)*① | P#② |
林地 Forest | 0.083 | 0.917 | 1.000 | + | 0.001 |
灌丛 Shrub | 0.987 | 0.013 | 1.000 | – | 0.001 |
草甸 Grassland | 0.952 | 0.007 | 0.959 | - | 0.001 |
沼泽 Marsh | 0.075 | 0.554 | 0.628 | + | 0.502 |
水域 Wetland | 0.306 | 0.077 | 0.383 | – | 0.961 |
农田 Farmland | 0.083 | 0.511 | 0.594 | + | 0.575 |
混合生境 Mixed habitat | 0.001 | 0.954 | 0.955 | + | 0.001 |
陈丽霞, 刘化金, 刘宇霖, 等. 兴凯湖不同栖息地水鸟群落差异分析. 林业科学, 2019, 55 (1): 56- 65. | |
Chen L X, Liu H J, Liu Y L, et al. Analysis on the variation of waterbird communities in different habitats of Khanka Lake in China. Scientia Silvae Sinicae, 2019, 55 (1): 56- 65. | |
冯尚柱, 刘化金, 于文涛, 等. 兴凯湖湿地保护区鸟类多样性调查. 湿地科学, 2005, 3 (2): 149- 153.
doi: 10.3969/j.issn.1672-5948.2005.02.012 |
|
Feng S Z, Liu H J, Yu W T, et al. The survey on bird diverstisy in Xingkai Lake, China. Wetland Science, 2005, 3 (2): 149- 153.
doi: 10.3969/j.issn.1672-5948.2005.02.012 |
|
冯尚柱, 于文涛, 刘化金. 兴凯湖湿地恢复与建设对策研究. 林业科技, 2020, 45 (5): 54- 57. | |
Feng S Z, Yu W T, Liu H J. Study on countermeasures for restoration and construction of Xingkai Lake Wetland. Forestry Science & Technology, 2020, 45 (5): 54- 57. | |
金 铃, 赵春喜, 惠兆丽. 兴凯湖春季雁鸭类迁徙多样性及数量变化原因. 东北林业大学学报, 2000, 28 (1): 78- 80. | |
Jin L, Zhao C X, Hui Z L. Study on anatidae biodiversity in Xingkai lake natural reserve in spring. Journal of Northeast Forestry University, 2000, 28 (1): 78- 80. | |
柯长青, 蔡 宇, 肖 瑶. 1979 年—2019 年兴凯湖湖冰物候变化的被动微波遥感监测. 遥感学报, 2022, 26 (1): 201- 210. | |
Ke C Q, Cai Y, Xiao Y. Monitoring ice phenology variations in Khanka Lake based on passive remote sensing data from 1979 to 2019. National Remote Sensing Bulletin, 2022, 26 (1): 201- 210. | |
刘化金, 陈丽霞, 贾 茹, 等. 基于环志数据探讨兴凯湖水鸟的迁徙规律. 动物学杂志, 2020, 55 (4): 456- 461. | |
Liu H J, Chen L X, Jia R, et al. Migration patterns of waterbird at Khanka Lake based on the analysis of banding and recovery data. Chinese Journal of Zoology, 2020, 55 (4): 456- 461. | |
刘化金, 陈丽霞, 刘宇霖, 等. 兴凯湖东方白鹳(Ciconia boyciana)种群动态变化 . 生态学杂志, 2021, 40 (11): 3683- 3690. | |
Liu H J, Chen L X, Liu Y L, et al. Population dynamics of Oriental Storks (Ciconia boyciana) at Xingkai Lake in China . Chinese Journal of Ecology, 2021, 40 (11): 3683- 3690. | |
刘晓辉, 焉申堂, 王仁春, 等. 湿地生态效益补偿标准探讨: 以兴凯湖国际重要湿地为例. 湿地科学, 2016, 14 (3): 289- 294. | |
Liu X H, Yan S T, Wang R C, et al. Discussion on wetland ecological compensation standard: a case study in Xingkai Lake Wetlands of international importance. Wetland Science, 2016, 14 (3): 289- 294. | |
卢向东, 王朝贵, 王建强, 等. 兴凯湖地区东方白鹳迁徙动态及其停歇地环境条件研究. 林业科技, 2003, 28 (6): 30- 32.
doi: 10.3969/j.issn.1001-9499.2003.06.013 |
|
Lu X D, Wang C G, Wang J Q, et al. Research on the migration trends of Oriental White Stork and environmental factors of parking area. Forestry Science&Technology, 2003, 28 (6): 30- 32.
doi: 10.3969/j.issn.1001-9499.2003.06.013 |
|
马克平, 刘玉明. 1994. 生物群落多样性的测度方法Ⅰ: α 多样性的测度方法(下) . 生物多样性, 2(4): 231—239. | |
Ma K P, Liu Y M. 1994. Methods of measure on biological community diversity I: the method of α diversity. Chinese Biodiversity, 2(4) : 231-239.[in Chinese] | |
马志龙, 金 辛, 曾朝辉, 等. 兴凯湖湿地丹顶鹤迁徙与繁殖数量调查. 动物学杂志, 2017, 52 (1): 138- 143. | |
Ma Z L, Jin X, Zeng C H, et al. Population census of migration and breeding Red-crowned Crane (Grus japonensis) in the Xingkai Lake, China . Chinese Journal of Zoology, 2017, 52 (1): 138- 143. | |
孙 冬, 孙晓俊. 兴凯湖水文特性. 东北水利水电, 2006, 24 (4): 21,27. | |
Sun D, Sun X J. Hydrological characteristic if Xingkaihu lake. Water Resources & Hydropower of Northeast China, 2006, 24 (4): 21,27. | |
王凤昆, 刘化金, 冯尚柱. 2005年兴凯湖中俄湿地鹤类调查. 野生动物, 2006, 27 (6): 27- 29. | |
Wang F K, Liu H J, Feng S Z. Cranes in Xingkai Lake Wetland in China and Russia during 2005. Chinese Wildlife, 2006, 27 (6): 27- 29. | |
张希国. 黑龙江省东方白鹳现状及种群恢复. 野生动物, 2011, 32 (3): 164- 166. | |
Zhang X G. The status and population recovery of oriental White Stork in Heilongjiang Province, China. Chinese Wildlife, 2011, 32 (3): 164- 166. | |
郑光美, 2011. 鸟类学. 2版. 北京: 北京师范大学出版社, 1−563. | |
Zheng G M. 2011. Ornithology. 2nd ed. Beijing: Beijing Normal University Press, 1−563.[in Chinese] | |
郑光美. 2017. 中国鸟类分类与分布名录. 3 版. 北京: 科学出版社, 1−492. | |
Zheng G M. 2017. A checklist on the classification and distribution of the birds of China. 3rd ed. Beijing: Science Press, 1−492.[in Chinese] | |
朱井丽, 吴庆明, 李晓民, 等. 兴凯湖保护区迁徙季节水禽多样性及种多度关系. 东北林业大学学报, 2011, 39 (9): 132- 134.
doi: 10.3969/j.issn.1000-5382.2011.09.041 |
|
Zhu J L, Wu Q M, Li X M, et al. Community diversity and species abundance of waterbirds during migration season in Xingkai Lake Nature Reserve. Journal of Northeast Forestry University, 2011, 39 (9): 132- 134.
doi: 10.3969/j.issn.1000-5382.2011.09.041 |
|
Amano T, Székely T, Wauchope H S, et al. Responses of global waterbird populations to climate change vary with latitude. Nature Climate Change, 2020, 10 (10): 959- 964.
doi: 10.1038/s41558-020-0872-3 |
|
Behara A, Vinayachandran P N, Shankar D. Influence of Rainfall Over Eastern Arabian Sea on Its Salinity. Journal of Geophysical Research:Oceans, 2019, 124 (7): 5003- 5020.
doi: 10.1029/2019JC014999 |
|
Both C, Bouwhuis S, Lessells C M, et al. Climate change and population declines in a long-distance migratory bird. Nature, 2006, 441 (7089): 81- 83.
doi: 10.1038/nature04539 |
|
Brewer R. 1994. The science of ecology.2nd ed. Philadelphia: Saunders College Publishing. | |
Cohen J M, Fink D, Zuckerberg B. Avian responses to extreme weather across functional traits and temporal scales. Global Change Biology, 2020, 26 (8): 4240- 4250.
doi: 10.1111/gcb.15133 |
|
Crick H P. The impact of climate change on birds: Impact of climate change on birds. Ibis, 2004, 146, 48- 56.
doi: 10.1111/j.1474-919X.2004.00327.x |
|
de Chazal J, Rounsevell M A. Land-use and climate change within assessments of biodiversity change: a review. Global Environmental Change, 2009, 19 (2): 306- 315.
doi: 10.1016/j.gloenvcha.2008.09.007 |
|
Fong C R, Gaynus C J, Carpenter R C. Extreme rainfall events pulse substantial nutrients and sediments from terrestrial to nearshore coastal communities: a case study from French Polynesia. Scientific Reports, 2020, 10 (1): 2955.
doi: 10.1038/s41598-020-59807-5 |
|
Gregory R D, Strien A van. Wild bird indicators: using composite population trends of birds as measures of environmental health. Ornithological Science, 2010, 9 (1): 3- 22.
doi: 10.2326/osj.9.3 |
|
Haig S M, Murphy S P, Matthews J H, et al. Climate-altered wetlands challenge waterbird use and migratory connectivity in arid landscapes. Scientific Reports, 2019, 9 (1): 4666.
doi: 10.1038/s41598-019-41135-y |
|
Howes J, Bakewell D. 1989. Shorebird studies manual[M]. KuaIa LumPur: Asian Wetland Bureau Publication, 143−147. | |
IUCN. 2020. The IUCN red list of threatened species. Retrieved from http://www.iucnredlist.org. | |
Jenouvrier S. Impacts of climate change on avian populations. Global Change Biology, 2013, 19 (7): 2036- 2057.
doi: 10.1111/gcb.12195 |
|
Jetz W, Wilcove D S, Dobson A P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology, 2007, 5 (6): e157.
doi: 10.1371/journal.pbio.0050157 |
|
Jiguet F, Devictor V, Ottvall R, et al. Bird population trends are linearly affected by climate change along species thermal ranges. Proceedings of the Royal Society B:Biological Sciences, 2010, 277 (1700): 3601- 3618.
doi: 10.1098/rspb.2010.0796 |
|
Jordán D P. 2017. Waterbirds in a changing world: effects of climate, habitat and conservation policy on European waterbirds. Academic dissertation, University of Helsinki, 1: 148. | |
Lee E, Sagong J, Lee Y. Influence of land use change on the waterbird community of Sihwa Lake, Republic of Korea. Avian Research, 2020, 11 (1): 36.
doi: 10.1186/s40657-020-00221-w |
|
Legendre P. A temporal beta‐diversity index to identify sites that have changed in exceptional ways in space–time surveys. Ecology and Evolution, 2019, 9 (6): 3500- 3514.
doi: 10.1002/ece3.4984 |
|
Lehikoinen A, Jaatinen K, Vähätalo A V, et al. Rapid climate driven shifts in wintering distributions of three common waterbird species. Global Change Biology, 2013, 19 (7): 2071- 2081.
doi: 10.1111/gcb.12200 |
|
Li X, Anderson C J, Wang Y, et al. Waterbird diversity and abundance in response to variations in climate in the Liaohe Estuary, China. Ecological Indicators, 2021, 132, 108286.
doi: 10.1016/j.ecolind.2021.108286 |
|
Li X, Zeng Q, Lei G, et al. Effects of meteorological factors on waterbird functional diversity and community composition in Liaohe Estuary, China. International Journal of Environmental Research and Public Health, 2022, 19 (9): 5392.
doi: 10.3390/ijerph19095392 |
|
Liu X, Zhang Y, Dong G, et al. Landscape pattern changes in the Xingkai Lake Area, northeast China. International Journal of Environmental Research and Public Health, 2019, 16 (20): 3820.
doi: 10.3390/ijerph16203820 |
|
Ma Z, Cai Y, Li B, et al. Managing wetland habitats for waterbirds: an international perspective. Wetlands, 2010, 30 (1): 15- 27.
doi: 10.1007/s13157-009-0001-6 |
|
Mantyka-Pringle C S, Visconti P, Di Marco M, et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biological Conservation, 2015, 187, 103- 111.
doi: 10.1016/j.biocon.2015.04.016 |
|
McAllister D E, Craig J F, Davidson N, et al. 2001. Biodiversity impacts of large dams. Background Paper Nr. 1 br/>Prepared for IUCN/UNEP/WCD, 1−64. | |
Milchunas D G, Lauenroth W K. Quantitative Effects of Grazing on Vegetation and Soils Over a Global Range of Environments: Ecological Archives M063-001. Ecological Monographs, 1993, 63 (4): 327- 366.
doi: 10.2307/2937150 |
|
Okes N C, Hockey P R, Cumming G S. Habitat use and life history as predictors of bird responses to habitat change: bird response to habitat change. Conservation Biology, 2008, 22 (1): 151- 162.
doi: 10.1111/j.1523-1739.2007.00862.x |
|
Pavón-Jordán D, Fox A D, Clausen P, et al. Climate-driven changes in winter abundance of a migratory waterbird in relation to EU protected areas. Diversity and Distributions, 2015, 21 (5): 571- 582.
doi: 10.1111/ddi.12300 |
|
Studds C, Marra P. Linking fluctuations in rainfall to nonbreeding season performance in a long-distance migratory bird, Setophaga ruticilla . Climate Research, 2007, 35, 115- 122.
doi: 10.3354/cr00718 |
|
Wang Z, Li N, Gao S, et al. Response of wintering waterbird diversity to reclamation history and post‐reclamation habitat along Yellow Sea coast. Integrative Zoology, 2020, 15 (6): 595- 602.
doi: 10.1111/1749-4877.12464 |
|
Whittington M, Malan G, Panagos M D. Trends in waterbird diversity at Banzi, Shokwe and Nyamithi pans, Ndumo Game Reserve, South Africa. Ostrich, 2013, 84 (1): 47- 61.
doi: 10.2989/00306525.2013.775188 |
|
Zar J H. 1999. Biostatistical analysis. Prentice-Hall Inc., Englewood Cliffs, New Jersey. | |
Zou Y A, Liu J, Yang X T, et al. Impact of coastal wetland restoration strategies in the Chongming Dongtan wetlands, China: waterbird community composition as an indicator. Acta Zoologica Academiae Scientiarum Hungaricae, 2014, 60 (2): 185- 198. |
[1] | 杨林,熊忠平,刘霞,钱怡顺,杨蕊,韩秀,房华,徐正会. 新疆天山中部蚂蚁物种多样性[J]. 林业科学, 2023, 59(6): 102-111. |
[2] | 陆日,王晨,陈烨,许茜茜,胡玥,陈峥,曹镓玺,武曙红,李玲,高鹤. 红树林保护碳汇项目碳信用计量方法——以深圳市福田红树林保护区为例[J]. 林业科学, 2023, 59(3): 44-53. |
[3] | 靳正雅,钱沉鱼,杜澄举,马涛,温秀军,王偲. 白蚁、黏土与生态环境相互作用研究进展[J]. 林业科学, 2023, 59(1): 143-150. |
[4] | 丁晓磊,汪青桐,林司曦,赵瑞文,张悦,叶建仁. 广东省与江苏省松材线虫种群遗传结构差异分析[J]. 林业科学, 2022, 58(8): 1-9. |
[5] | 李志,薛晓焱,刘震,蔡齐飞,耿晓东,冯建,周慧娜,张涛,李明婉,王艳梅. 山桐子健康和感病植株不同器官区细菌群落结构、多样性与功能预测分析[J]. 林业科学, 2022, 58(8): 136-148. |
[6] | 张树梓,尹建庭,任启文,张树彬,王鑫,李联地,毕君. 冀北山地针阔混交林优势种对邻体物种多样性格局的影响[J]. 林业科学, 2022, 58(4): 32-39. |
[7] | 潘文婷,孙建军,原勤勤,张利利,邓康桥,厉月桥. RAD-seq技术研究鹅掌楸属种源遗传多样性和遗传结构[J]. 林业科学, 2022, 58(4): 74-81. |
[8] | 任敏霞,李探,张子恒,曾月霞,王利峰,杨敏生,刘军侠. 转BtCry1Ac与API基因107杨对节肢动物群落多样性及稳定性的影响[J]. 林业科学, 2022, 58(4): 110-118. |
[9] | 于国祥,谢茂文,陈雅楠,陈丽霞,王毅花,刘冬平. 山东长岛凤头蜂鹰的种群动态及秋季迁徙[J]. 林业科学, 2022, 58(4): 119-127. |
[10] | 黄绍娴,王宏翔,彭辉,王耀仪,李远发,叶绍明. 雅长保护区老龄林树种空间优势度二阶特征分析[J]. 林业科学, 2022, 58(4): 128-140. |
[11] | 刘晨,张春雨,赵秀海. 采伐干扰对吉林蛟河针阔混交林生产力稳定性的影响[J]. 林业科学, 2022, 58(3): 1-9. |
[12] | 李聪,吕晶花,陆梅,杨志东,刘攀,任玉连,杜凡. 文山国家级自然保护区不同海拔地带性植被的土壤微生物生物量碳氮分布特征[J]. 林业科学, 2022, 58(3): 20-30. |
[13] | 贾斐然,周忠福,赵文霞,孙荟荃,姚艳霞. 苹小吉丁自然种群肠道微生物多样性[J]. 林业科学, 2022, 58(3): 86-96. |
[14] | 彭金根,龚金玉,范玉海,张华,张银凤,白宇清,王艳梅,谢利娟. 毛棉杜鹃根际与非根际土壤微生物群落多样性[J]. 林业科学, 2022, 58(2): 89-99. |
[15] | 张玮,何玉友,郭子武,汪舍平,陈双林. 失管毛竹林演替过程中乔木树种群落结构和多样性特征[J]. 林业科学, 2022, 58(12): 12-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||