Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (9): 69-79.doi: 10.11707/j.1001-7488.LYKX20230524
Previous Articles Next Articles
Lingyu Yang1,Wenguang Shi1,*(),Zhibin Luo1,2
Received:
2023-10-30
Online:
2024-09-25
Published:
2024-10-08
Contact:
Wenguang Shi
E-mail:swg0911@126.com
CLC Number:
Lingyu Yang,Wenguang Shi,Zhibin Luo. Characteristics of Ectomycorrhizal Fungi Paxillus involutus Promoting Nitrogen Uptake and Utilization of Its Host Populus tremula × Populus alba[J]. Scientia Silvae Sinicae, 2024, 60(9): 69-79.
Table 1
Primers of AMTs and NRTs used for quantitative real-time PCR"
基因名称 | 基因ID号 | 上游引物(5'→3') | 下游引物(5'→3') |
Gene names | Gene model | Forward primers (5'→3') | Reverse primers (5'→3') |
AMT1;1 | Potri.010G063500 | GTGTCATCTTCACCGCCTTA | CCATGCTTGTTAGACTCGTC |
AMT1;2 | Potri.019G023600 | CCAATCCGGCTAAACTCGA | CACCACTAACGAAGCACTAT |
AMT2;1 | Potri.006G102800 | TGCCAGGGCTTGTCATACT | CCTAGTGCCATCTTCGAGTG |
AMT3;1 | Potri.001G305400 | CATGGCTGTCCTTAACACGA | ATCCTTGAACAAGACCTGCA |
AMT3;2 | Potri.019G000800 | CCCTTGCGTCCATTTCCTT | ATGCCAGTGGGAGTGGGTTA |
NPF1.2F | Potri.006G240000 | TACATCCAGAGGAGGGCAAG | GGTCCATAACTCCGACAGCA |
NRT2.4A | Potri.009G008500 | CCTACAGTCCCCACAGATAC | GCAGCGAAAGTGGAGACAA |
NPF2.7 | Potri.008G045100 | GATAACATCAACGACGGGAG | TCAAACATTACGGCAGGCT |
NPF2.11 | Potri.012G071500 | TATTCCTCCCAAGTCCATCA | CTGTTTCCAAGGCGTCTGT |
NPF4.3E | Potri.003G000800 | AATAGCCCCATCTGCTGACT | TGGAAGGATTTGGCGAGTT |
NPF4.6A | Potri.014G036200 | GAAGGCTAGGAGGAAACAGA | GAACCGTTAGGAGGGCATAT |
NPF5.6B | Potri.006G092000 | GGTGCTGAAAACCAAAATCC | ATAGCGGCAAGTGCGTAA |
NPF5.7B | Potri.016G103500 | TTCTGATCCTGCTGACTTGC | CATAGTGCCTTGCTTGACGA |
NPF6.3 | Potri.003G111500 | AGGTGGAGAGGCAATGGAGA | GTGGCGAAGATGGCGATGG |
NPF7.3B | Potri.003G088800 | TCCTCTTAGCAGGCTTGACA | CTCCCACAGCACGACTTTT |
actin | Potri.019G010400 | CCCATTGAGCACGGTATTGT | TACGACCACTGGCATACAGG |
Fig.3
Net NH4+ flux (a), net NO3? flux (b) and comparison of net flux of NH4+ and NO3? (c) in root tips of non-mycorrhizal (NM) and mycorrhizal (M) poplars Asterisks on the error bars for the same parameter indicate significant differences between the treatments (*:P<0.05, **:P<0.01, ***:P<0.001)."
Fig.4
Fold change of AMTs and NRTs in roots of non-mycorrhizal (NM) and mycorrhizal (M) poplars 图中误差线上的星号表示差异显著(*: P<0.05, **: P<0.01 , ***: P<0.001)。Asterisks on the error bars for the same parameter indicate significant differences between the treatments (*:P<0.05, **:P<0.01, ***:P<0.001). ns表示差异不显著。ns represents no significant differences between the treatments."
Fig.6
Activities of nitrate reductase (NR, a), nitrite reductase (NiR, b), glutamine synthetase (GS, c), glutamate synthetase (GOGAT, d) and glutamate dehydrogenase (GDH, e) in roots and leaves of non-mycorrhizal (NM) and mycorrhizal (M) poplars (*: P<0.05,**: P<0.01)。Asterisks on the error bars for the same parameter indicate significant differences between the treatments (*: P<0.05, **: P<0.01)."
董园园, 董彩霞, 卢颖林, 等. NH4+-N部分代替NO3−-N对番茄生育中后期氮代谢相关酶活性的影响. 土壤学报, 2006, 43 (2): 261- 266. | |
Dong Y Y, Dong C X, Lu Y L, et al. Influence of partial replacement of NO3−-N with NH4+-N in nutrient solution on enzyme activity in nitrogen assimilation of tomato at different growing stages. Acta Pedologica Sinica, 2006, 43 (2): 261- 266. | |
郭良栋, 田春杰. 菌根真菌的碳氮循环功能研究进展. 微生物学通报, 2013, 40 (1): 158- 171. | |
Guo L D, Tian C J. Progress of the function of mycorrhizal fungi in the cycle of carbon and nitrogen. Microbiology China, 2013, 40 (1): 158- 171. | |
梁 军, 张 颖, 贾秀贞, 等. 外生菌根菌对杨树生长及抗逆性指标的效应. 南京林业大学学报(自然科学版), 2003, 27 (4): 39- 43. | |
Liang J, Zhang Y, Jia X Z, et al. Effects of ectomycorrhizae on growth and resistance of poplar. Journal of Nanjing Forestry University (Natural Sciences Edition), 2003, 27 (4): 39- 43. | |
廖晓初, 李 勇, 袁 玲, 等. 氮源对松乳菇生长及氮吸收和硝酸还原酶活性影响. 西南农业大学学报(自然科学版), 2006, 28 (3): 386- 388.
doi: 10.3969/j.issn.1673-9868.2006.03.010 |
|
Liao X C, Li Y, Yuan L, et al. Effects of different nitrogen sources on the growth nitrogen uptake and nitrate reductase activities of ectomycorrhizal fungus Lactarius delicious. Journal of Southwest Agricultural University (Natural Science Edition), 2006, 28 (3): 386- 388.
doi: 10.3969/j.issn.1673-9868.2006.03.010 |
|
刘 辉, 吴小芹, 任嘉红, 等. 荧光假单胞菌与红绒盖牛肝菌共接种对杨树氮代谢和矿质元素含量的影响. 林业科学, 2018, 54 (10): 56- 63. | |
Liu H, Wu X Q, Ren J H, et al. Effect of co-inoculation Pseudomonas fluorescent and Xerocomus chrysenteron on the nitrogen metabolism and mineral element contents of poplar. Scientia Silvae Sinicae, 2018, 54 (10): 56- 63. | |
石文广, 李 靖, 张玉红, 等. 7种杨树铅抗性和积累能力的比较研究. 南京林业大学学报(自然科学版), 2021, 45 (3): 61- 70. | |
Shi W G, Li J, Zhang Y H, et al. A comparative study on lead tolerance and accumulation of seven poplar species. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45 (3): 61- 70. | |
宋 微, 吴小芹, 叶建仁. 6种外生菌根真菌对895杨矿质营养吸收的影响. 南京林业大学学报(自然科学版), 2011, 54 (2): 35- 38. | |
Song H, Wu X Q, Ye J R. Effects of six kinds of ectomycorrhizal fungi on the mineral nutrient absorption of poplar clone 895. Journal of Nanjing Forestry University (Natural Sciences Edition), 2011, 54 (2): 35- 38. | |
Aoyama S, Reyes T H, Guglielminetti L, et al. Ubiquitin ligase ATL31 functions in leaf senescence in response to the balance between atmospheric CO2 and nitrogen availability in Arabidopsis. Plant and Cell Physiology, 2014, 55 (2): 293- 305.
doi: 10.1093/pcp/pcu002 |
|
Bâ A M, Sanon K B, Duponnois R, et al. Growth response of Afzelia africana Sm. seedlings to ectomycorrhizal inoculation in a nutrient-deficient soil. Mycorrhiza, 1999, 9 (2): 91- 95.
doi: 10.1007/s005720050005 |
|
Bidartondo M I, Wallander H Ek H, Söderström B. 2001. Do nutrient additions alter carbon sink strength of ectomycorrhizal fungi? New Phytologist, 151(2): 543−550. | |
Bittsánszky A, Pilinszky K, Gyulai G, et al. Overcoming ammonium toxicity. Plant Science, 2015, 231, 184- 190.
doi: 10.1016/j.plantsci.2014.12.005 |
|
Børja I, Nilsen P. Long term effect of liming and fertilization on ectomycorrhizal colonization and tree growth in old Scots pine (Pinus sylvestris L.) stands. Plant and Soil, 2009, 314 (1/2): 109- 119. | |
Castro-Rodríguez V, Assaf-Casals I, Pérez-Tienda J, et al. 2016. Deciphering the molecular basis of ammonium uptake and transport in maritime pine. Plant, Cell & Environment, 39(8): 1669−1682. | |
Castro-Rodríguez V, Cañas R A, de la Torre F N, et al. Molecular fundamentals of nitrogen uptake and transport in trees. Journal of Experimental Botany, 2017, 68 (10): 2489- 2500.
doi: 10.1093/jxb/erx037 |
|
Chen M Y, Zhu K K, Xie J Y, et al. Ammonium-nitrate mixtures dominated by NH4+-N promote the growth of pecan (Carya illinoinensis) through enhanced N uptake and assimilation. Frontiers in Plant Science, 2023, 14, 1186818.
doi: 10.3389/fpls.2023.1186818 |
|
Corrêa A, Strasser R J, Martins-Loução M A. 2008. Response of plants to ectomycorrhizae in N-limited conditions: which factors determine its variation? Mycorrhiza, 18(8): 413-427. | |
Couturier J, Montanini B, Martin F, et al. The expanded family of ammonium transporters in the perennial poplar plant. New Phytologist, 2007, 174 (1): 137- 150.
doi: 10.1111/j.1469-8137.2007.01992.x |
|
Deckmyn G, Meyer A, Smits M, et al. Simulating ectomycorrhizal fungi and their role in carbon and nitrogen cycling in forest ecosystems. Canadian Journal of Forest Research, 2014, 44 (6): 535- 553.
doi: 10.1139/cjfr-2013-0496 |
|
Eltrop L, Marschner H. Growth and mineral nutrition of non-mycorrhizal and mycorrhizal Norway spruce (Picea abies) seedlings grown in semi-hydroponic sand culture: I. growth and mineral nutrient uptake in plants supplied with different forms of nitrogen. New Phytologist, 1996, 133 (3): 469- 478.
doi: 10.1111/j.1469-8137.1996.tb01914.x |
|
Esteban R, Ariz I, Cruz C, et al. Mechanisms of ammonium toxicity and the quest for tolerance. Plant Science, 2016, 248, 92- 101.
doi: 10.1016/j.plantsci.2016.04.008 |
|
France R C, Reid C. Interactions of nitrogen and carbon in the physiology of ectomycorrhizae. Canadian Journal of Botany, 1983, 61 (3): 964- 984.
doi: 10.1139/b83-106 |
|
Hawkins B J, Robbins S. Comparison of ammonium, nitrate, and proton fluxes in mycorrhizal and nonmycorrhizal roots of lodgepole pine in contrasting nitrogen treatments. Canadian Journal of Forest Research, 2022, 52 (9): 1245- 1253.
doi: 10.1139/cjfr-2022-0066 |
|
Hrynkiewicz K, Baum C. Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals. Environmental Technology, 2013, 34 (2): 225- 230.
doi: 10.1080/09593330.2012.689369 |
|
Jiao Y, Chen Y H, Ma C F, et al. Phenylalanine as a nitrogen source induces root growth and nitrogen-use efficiency in Populus × canescens. Tree Physiology, 2018, 38 (1): 66- 82.
doi: 10.1093/treephys/tpx109 |
|
Juuti J T, Jokela S, Paulin L, et al. Suillus bovinus glutamine synthetase gene organization, transcription and enzyme activities in the Scots pine mycorrhizosphere developed on forest humus. New Phytologist, 2004, 164 (2): 389- 399.
doi: 10.1111/j.1469-8137.2004.01166.x |
|
Lasa B, Frechilla S, Aparicio-Tejo P M, et al. Role of glutamate dehydrogenase and phosphoenolpyruvate carboxylase activity in ammonium nutrition tolerance in roots. Plant Physiology and Biochemistry, 2002, 40 (11): 969- 976.
doi: 10.1016/S0981-9428(02)01451-1 |
|
Leberecht M, Dannenmann M, Tejedor J, et al. 2016. Segregation of nitrogen use between ammonium and nitrate of ectomycorrhizas and beech trees. Plant, Cell & Environment, 39(12): 2691-2700. | |
Li H, Li M C, Luo J, et al. N-fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow-and fast-growing Populus species. Journal of Experimental Botany, 2012, 63 (17): 6173- 6185.
doi: 10.1093/jxb/ers271 |
|
Li J J, Liu X Y, Xu L Q, et al. Low nitrogen stress-induced transcriptome changes revealed the molecular response and tolerance characteristics in maintaining the C/N balance of sugar beet (Beta vulgaris L.). Frontiers in Plant Science, 2023, 14, 1164151.
doi: 10.3389/fpls.2023.1164151 |
|
Liese R, Lübbe T, Albers N W, et al. The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species. Tree Physiology, 2018, 38 (1): 83- 95.
doi: 10.1093/treephys/tpx131 |
|
Lu Y, Deng S R, Li Z R, et al. Physiological characteristics and transcriptomic dissection in two root segments with contrasting net fluxes of ammonium and nitrate of poplar under low nitrogen availability. Plant and Cell Physiology, 2022, 63 (1): 30- 44.
doi: 10.1093/pcp/pcab137 |
|
Luo Z B, Janz D, Jiang X N, et al. Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiology, 2009, 151 (4): 1902- 1917.
doi: 10.1104/pp.109.143735 |
|
Ma Y L, He J L, Ma C F, et al. 2014. Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus × canescens. Plant, Cell & Environment, 37(3): 627-642. | |
Martin T, Oswald O, Graham I A. Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: nitrogen availability. Plant Physiology, 2002, 128 (2): 472- 481.
doi: 10.1104/pp.010475 |
|
Martins A, Casimiro A, Pais M S. Influence of mycorrhization on physiological parameters of micropropagated Castanea sativa Mill. plants. Mycorrhiza, 1997, 7 (3): 161- 165. | |
Masclaux-Daubresse C, Daniel V F, Dechorgnat J, et al. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany, 2010, 105 (7): 1141- 1157. | |
Meng S, Wang S, Quan J, et al. Distinct carbon and nitrogen metabolism of two contrasting poplar species in response to different N supply levels. International Journal of Molecular Sciences, 2018, 19 (8): 2302.
doi: 10.3390/ijms19082302 |
|
Moreau D, Bardgett R D, Finlay R D, et al. A plant perspective on nitrogen cycling in the rhizosphere. Functional Ecology, 2019, 33 (4): 540- 552.
doi: 10.1111/1365-2435.13303 |
|
Nunes-Nesi A, Fernie A R, Stitt M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Molecular Plant, 2010, 3 (6): 973- 996.
doi: 10.1093/mp/ssq049 |
|
Plassard C, GuerinL A, Véry A A, et al. 2002. Local measurements of nitrate and potassium fluxes along roots of maritime pine. Effects of ectomycorrhizal symbiosis. Plant, Cell & Environment, 25 (1): 75−84. | |
Ranathunge K, El-Kereamy A, Gidda S, et al. AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. Journal of Experimental Botany, 2014, 65 (4): 965- 979.
doi: 10.1093/jxb/ert458 |
|
Reyes T H, Scartazza A, Lu Y, et al. Effect of carbon/nitrogen ratio on carbohydrate metabolism and light energy dissipation mechanisms in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2016, 105, 195- 202.
doi: 10.1016/j.plaphy.2016.04.030 |
|
Rineau F, Shah F, Smits M, et al. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. The ISME Journal, 2013, 7 (10): 2010- 2022.
doi: 10.1038/ismej.2013.91 |
|
Sa G, Yao J, Deng C, et al. Amelioration of nitrate uptake under salt stress by ectomycorrhiza with and without a Hartig net. New Phytologist, 2019, 222 (4): 1951- 1964.
doi: 10.1111/nph.15740 |
|
Selle A, Willmann M, Grunze N, et al. The high affinity poplar ammonium importer PttAMT1.2 and its role in ectomycorrhizal symbiosis. New Phytologist, 2005, 168 (3): 697- 706.
doi: 10.1111/j.1469-8137.2005.01535.x |
|
Shen F, Qin Y J, Wang R, et al. Comparative genomics reveals a unique nitrogen-carbon balance system in Asteraceae. Nature Communications, 2023, 14 (1): 4334.
doi: 10.1038/s41467-023-40002-9 |
|
Shi W G, Liu W, Yu W, et al. Abscisic acid enhances lead translocation from the roots to the leaves and alleviates its toxicity in Populus × canescens. Journal of Hazardous Materials, 2019, 362, 275- 285.
doi: 10.1016/j.jhazmat.2018.09.024 |
|
Siemens J A, Calvo-Polanco M, Zwiazek J J. Hebeloma crustuliniforme facilitates ammonium and nitrate assimilation in trembling aspen (Populus tremuloides) seedlings. Tree Physiology, 2011, 31 (11): 1238- 1250. | |
Smith S E, Read D J. 2008. Mycorrhizal symbiosis (Third Edition). NewYork: Academic Press. | |
Sousa N R, Ramos M A, Marques A P G C, et al. The effect of ectomycorrhizal fungi forming symbiosis with Pinus pinaster seedlings exposed to cadmium. Science of the Total Environment, 2012, 414, 63- 67.
doi: 10.1016/j.scitotenv.2011.10.053 |
|
Sun P F, Cheng R M, Xiao W F, et al. The relationship between ectomycorrhizal fungi, nitrogen deposition, and Pinus massoniana seedling nitrogen transporter gene expression and nitrogen uptake kinetics. Journal of Fungi, 2022, 9 (1): 65.
doi: 10.3390/jof9010065 |
|
Sun W F, Huang A B, Sang Y Y, et al. Carbon–nitrogen interaction modulates plant growth and expression of metabolic genes in rice. Journal of Plant Growth Regulation, 2013, 32 (3): 575- 584.
doi: 10.1007/s00344-013-9324-x |
|
Szuba A, Karliński L, Krzesłowska M, et al. Inoculation with a Pb-tolerant strain of Paxillus involutus improves growth and Pb tolerance of Populus × canescens under in vitro conditions. Plant and Soil, 2017, 412 (1/2): 253- 266. | |
Szuba A. Ectomycorrhiza of Populus. Forest Ecology and Management, 2015, 347, 156- 169.
doi: 10.1016/j.foreco.2015.03.012 |
|
Szuba A, Marczak L, Kozlowski R. Role of the proteome in providing phenotypic stability in control and ectomycorrhizal poplar plants exposed to chronic mild Pb stress. Environment Pollution, 2020, 264, 114585.
doi: 10.1016/j.envpol.2020.114585 |
|
Szuba A, Marczak Ł, Kozłowski R. Pb Stress and Ectomycorrhizas: strong protective proteomic responses in poplar roots inoculated with Paxillus involutus isolate and characterized by low root colonization intensity. International Journal of Molecular Sciences, 2021, 22 (9): 4300.
doi: 10.3390/ijms22094300 |
|
Waese J, Provart N J. The bio-analytic resource for plant biology. Methods in Molecular Biology, 2017, 1533, 119- 148. | |
Wright D, Scholes J, Read D, et al. 2000. Changes in carbon allocation and expression of carbon transporter genes in Betula pendula Roth. colonized by the ectomycorrhizal fungus Paxillus involutus (Batsch) Fr. Plant, Cell & Environment, 23(1): 39-49. | |
Zhang J H, He N P, Liu C C, et al. Variation and evolution of C: N ratio among different organs enable plants to adapt to N-limited environments. Global Change Biology, 2020, 26 (4): 2534- 2543.
doi: 10.1111/gcb.14973 |
|
Zhang Y, Li B Z, Liu F, et al. Transcriptomic and physiological analysis revealed the ammonium tolerance mechanisms of Myriophyllum aquaticum. Environmental and Experimental Botany, 2021, 187, 104462.
doi: 10.1016/j.envexpbot.2021.104462 |
|
Zhao L, Chen P F, Liu P, et al. Genetic effects and expression patterns of the nitrate transporter (NRT) gene family in Populus tomentosa. Frontiers in Plant Science, 2021, 12, 661635.
doi: 10.3389/fpls.2021.661635 |
|
Zheng Z L. Carbon and nitrogen nutrient balance signaling in plants. Plant Signaling & Behavior, 2009, 4 (7): 584- 591. | |
Zhou J, Yang L Y, Chen X, et al. Genome-wide identification and characterization of the NF-YA gene family and its expression in response to different nitrogen forms in Populus× canescens. International Journal of Molecular Sciences, 2022, 23 (19): 11217.
doi: 10.3390/ijms231911217 |
[1] | Shixin Zhang,Yangyang Geng,Ting Zhou,Jihui Wang,Bokai Hu,Yana Liu. Regulation of Lactarius akahatsu on the Growth and Root Metabolites of Pinus massoniana and Pinus armandii Seedlings [J]. Scientia Silvae Sinicae, 2024, 60(9): 50-58. |
[2] | Qiu Xiaolin, Wang Shumin, Yu Lu, Yang Yuchen, Xiong Dianguang, Tian Chengming. Functional of SNARE Protein CcNyv1 in Cytospora chrysosperma [J]. Scientia Silvae Sinicae, 2024, 60(9): 90-98. |
[3] | He Yingqi, Wang Lufei, Zhang Yamei, Yu Yanglun, Yu Wenji. Effect of Compression Ratios on the Surface Hardness of Poplar Wood Scrimber [J]. Scientia Silvae Sinicae, 2024, 60(9): 141-149. |
[4] | Aoyu Wang,Youzheng Guo,Tan Deng,Yang Liu,Nan Di,Jie Duan,Ximeng Li,Benye Xi. Comparison of Several Methods for Evaluating Plant Water Regulation Strategies [J]. Scientia Silvae Sinicae, 2024, 60(8): 109-119. |
[5] | Kong Yue,Xiang Li,Xinlei Shi,Xuekai Jiao,Peng Wu,Zhongfeng Zhang,Guoliang Dong,Yuanjin Fang. Effects of Thermal Pretreatment on Lateral Performance of Poplar Cross-Laminated Timber Shear Walls [J]. Scientia Silvae Sinicae, 2024, 60(7): 117-128. |
[6] | Liqin Zhu,Rongzhen Huang,Zhiyuan Peng,Xianhua Zou,Yingchun Liao,Jingkai Li,Guangshui Chen. Research Progress on the Plasticity Responses of Plant Below-Ground Foraging Traits to Soil Phosphorus-Rich Patches [J]. Scientia Silvae Sinicae, 2024, 60(5): 191-200. |
[7] | Lei Xu,Xiaoyun Wu,Jiang Lü,Yun Shi,Mengxun Zhu,Hang Xu,Zhiqiang Zhang. Impacts of Diffuse Radiation Fraction on Energy Partitioning in a Poplar Plantation in the North China Plain [J]. Scientia Silvae Sinicae, 2024, 60(3): 100-110. |
[8] | Jiaming Wan,Jiang Lü,Yun Shi,Hang Xu,Zhiqiang Zhang. Effects of Diffuse Radiation on the Gross Primary Productivity of a Poplar Plantation [J]. Scientia Silvae Sinicae, 2023, 59(5): 1-10. |
[9] | Lu Han,Han Zhao,Wei Wang,Wenhui Liu,Zaimin Jiang,Jing Cai. Hydraulic Vulnerability Segmentation and Its Correlation with Growth in Hybrid Poplar [J]. Scientia Silvae Sinicae, 2023, 59(3): 94-103. |
[10] | Weifeng Wang,Yuqi Zhao,Miaoqin Gao,Yuzheng Zong,Xingyu Hao. Leaf Photosynthesis and Carbon and Nitrogen Distribution of Populus×popularis‘35-44’ Young Cuttings in Response to Elevated CO2 Concentration and Temperature [J]. Scientia Silvae Sinicae, 2023, 59(2): 40-47. |
[11] | Ruirui Zhao,Yong Liu,Kai Wang. Effects of Biochar and Manure on Wood Decomposition and Soil Enzyme Activities Related Soil Nutrient Cycling in a triploid Populus tomentosa Plantation [J]. Scientia Silvae Sinicae, 2023, 59(11): 1-11. |
[12] | Wei Wang,Han Zhao,Xin Huang,Zhuoliang Hou,Zaimin Jiang,Jing Cai. Relationship Between Leaf Hydraulic and Economic Traits and Biomass of Poplar Clones [J]. Scientia Silvae Sinicae, 2023, 59(10): 89-98. |
[13] | Min Li, Xizhou Zhao, Haoyun Wang, Zhongke Lu, Guijie Ding. Effects of Drought Stress and Ectomycorrhizal Fungi on the Root Morphology and Exudates of Pinus massoniana Seedlings [J]. Scientia Silvae Sinicae, 2022, 58(7): 63-72. |
[14] | Minxia Ren,Tan Li,Ziheng Zhang,Yuexia Zeng,Lifeng Wang,Minsheng Yang,Junxia Liu. Effects of Transgenic BtCry1Ac and API gene in Poplar 107 on Diversity and Stability of Arthropod Community [J]. Scientia Silvae Sinicae, 2022, 58(4): 110-118. |
[15] | Youjing Zhang,Yueyang Li,Han Zhao,Yuwan Cheng,Wei Wang,Zaimin Jiang,Jing Cai. Relationship between Hydraulic Efficiency and Gas Exchange and Growth of Six Poplar Clones [J]. Scientia Silvae Sinicae, 2022, 58(11): 118-126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||