Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (9): 90-98.doi: 10.11707/j.1001-7488.LYKX20230160
Previous Articles Next Articles
Xiaolin Qiu(),Shumin Wang,Lu Yu,Yuchen Yang,Dianguang Xiong*,Chengming Tian
Received:
2023-04-19
Online:
2024-09-25
Published:
2024-10-08
Contact:
Dianguang Xiong
E-mail:qxl18261227526@163.com
CLC Number:
Xiaolin Qiu,Shumin Wang,Lu Yu,Yuchen Yang,Dianguang Xiong,Chengming Tian. Functional of SNARE Protein CcNyv1 in Cytospora chrysosperma[J]. Scientia Silvae Sinicae, 2024, 60(9): 90-98.
Table 1
List of primers"
引物 Primer name | 引物序列 Primer sequence (5'—3') | 引物用途 Use of primer |
CcNyv1-5Ffor | GCCTTGAACCTCGTGTAG | CcNyv1 5F 侧翼序列 5F flanking sequence of CcNyv1 |
CcNyv1-5Frev | TGTGGATACCTGATGTTGTT | |
CcNyv1-3Ffor | TATGGCGGTCGTTATTGC | CcNyv1 3F 侧翼序列 3F flanking sequence of CcNyv1 |
CcNyv1-3Frev | TGCTTCCTCTGGTGTTCA | |
Hygromycinfor | CGCCAGGGTTTTCCCAGTCACGAC | 潮霉素片段 Hygromycin cassette |
Hygromycinrev | AGCGGATAACAATTTCACACAGGA | |
HY-R | GTATTGACCGATTCCTTGCGGTCCGAA | 2/3 潮霉素片段 The 2/3rd portion of the hygromycin cassette |
YG-F | GATGTAGGAGGGCGTGGATATGTCCT | |
CcNyv1-5Ffor/HY-R | tgactgggaaaaccctggcg TGTGGATACCTGATGTTGTT | CcNyv1 5F 侧翼序列结合 2/3 潮霉素序列 5F flanking sequence of CcNyv1 combinate 2/3rd sequence of the hygromycin cassette |
YG-F/CcNyv1-3Frev | gtgtgaaattgttatccgct TATGGCGGTCGTTATTGC | CcNyv1 3F 侧翼序列结合 2/3 潮霉素序列 3F flanking sequence of CcNyv1 combinate 2/3rd sequence of the hygromycin cassette |
External-CcNyv1for | GCAACCCAACAACATCAGGT | 用于验证突变体的外部序列 External sequence used for validation of mutant |
External-CcNyv1rev | GGACCCGAAGTTTTGTGGAC | |
Internal-CcNyv1for | TCGCTCATCCTCCCCAAAAT | 用于验证突变体的内部序列 Internal sequence used for validation of mutant |
Internal-CcNyv1rev | TTGACAGCAAGAACGATGGC | |
Probe-HPHfor | agccccacttgtagcagtag | 用于杂交的潮霉素探针序列 Probe HPH sequence used for hybridization |
Probe-HPHrev | ccccaatgtcaagcacttcc | |
CcNyv1-Compfor | GCCTTGAACCTCGTGTAG | CcNyv1 回补序列 CcNyv1 Complementary sequence |
CcNyv1-Comprev | CTTGTTATGGCTTCGTTGG | |
G418-for | GACGTTAACTGATATTGAAGGA | 遗传霉素片段 Geneticin cassette |
G418-rev | GCTGGTGACGGAATTTTCAT | |
CcNyv1-Longin domainfor | GCCTTGAACCTCGTGTAG | CcNyv1 Longin 结构域片段 Longin domain cassette of CcNyv1 |
CcNyv1-Longin domainrev | GGTGCCGTACTCGACCATC | |
CcNyv1-SNARE domainfor | GCCATCAGCACCGCACAGAGG | CcNyv1 SNARE 结构域片段 SNARE domain cassette of CcNyv1 |
CcNyv1-SNARE domainrev | CTTGTTATGGCTTCGTTGG | |
CcNyv1-promoterfor | GCCTTGAACCTCGTGTAG | CcNyv1 启动子片段 Promoter cassette of CcNyv1 |
CcNyv1-promoterrev | CATACTGCGGACGGTTTGT | |
CcNyv1-promoterrev/CcNyv1- SNARE domainfor | taacaaaccgtccgcagtatg GCCATCAGCACCGCACAGAGG | CcNyv1启动子片段结合CcNyv1 SNARE 结构域片段 Promoter cassette of CcNyv1 combinate SNARE domain cassette of CcNyv1 |
Internal-Longin domainfor | CACGGCTCAGCAAGACTAAC | 用于验证 Longin 结构域的内部序列 Internal sequence used for validation of Longin domain |
Internal-Longin domainrev | GATCTCGAACAGGAAGCCGA | |
Internal-SNARE domainfor | GCACAGAGGGAGATTGACGA | 用于验证SNARE 结构域的内部序列 Internal sequence used for validation of SNARE domain |
Internal-SNARE domainrev | TTCTTCCACCACATCTGCCT |
Fig.2
Targeted gene deletion and complementation A: Construction strategy of mutants and complementary strain; B: Specific primers were used to verify the transformed strains by PCR. External primer of CcNyv1 M: DL15000 Marker; Internal primer of CcNyv1 M: DL2000 Marker; Internal primer of CcNyv1△Longin M: DL2000 Marker; Internal primer of CcNyv1△SNARE M: DL2000 Marker; C: Southern blot analysis of deletion mutants."
Fig.3
Colony growth in CcNyv1 deletion mutant A: Colony morphologies of the wild-type, mutant and complemented strains after 24 h, 48 h and 60 h of growth on PDA plates; B: Data statistics of colony diameter. Error bars are standard deviation and different lowercases represent significantly difference at P < 0.05."
Fig.4
Measurement of salt stress in CcNyv1 deletion mutants A: Colony morphologies of the wild-type, mutant and complemented strains after 60 h of growth on salt stressed PDA plates with 0.05 mol·L−1 NaCl, 0.04 mol·L−1 KCl and 0.8 mol·L−1 Sorbitol. B: Data statistics of bacteriostasis rate. Error bars are standard deviation and different lowercases represent significantly difference at P < 0.05."
陈洪珠. 杨树腐烂病防治措施. 农村科技, 2013, 30 (4): 37.
doi: 10.3969/j.issn.1002-6193.2013.04.023 |
|
Chen H Z. Control measures of poplar canker. Rural Science and Technology, 2013, 30 (4): 37.
doi: 10.3969/j.issn.1002-6193.2013.04.023 |
|
李雪燕, 熊典广, 田呈明. 杨树腐烂病菌胞外分泌复合体亚基CcExo70的功能. 林业科学, 2021, 57 (8): 82- 93.
doi: 10.11707/j.1001-7488.20210808 |
|
Li X Y, Xiong D G, Tian C M. Functional analysis of the exocyst subunit CcExo70 in Cytospora chrysosperma. Scientia Silvae Sinicae, 2021, 57 (8): 82- 93.
doi: 10.11707/j.1001-7488.20210808 |
|
刘玲玲, 王永林, 熊典广, 等. 杨树腐烂病菌(Cytospora chrysosperma)原生质体遗传转化体系的构建. 微生物学通报, 2017, 44 (10): 2487- 2497. | |
Liu L L, Wang Y L, Xiong D G, et al. Construction of protoplast transformation system of Cytospora chrysosperma. Microbiology China, 2017, 44 (10): 2487- 2497. | |
闫腾飞. 杨树腐烂病的防治研究. 农业科技与信息, 2016, 33 (22): 115- 116.
doi: 10.3969/j.issn.1003-6997.2016.22.083 |
|
Yan T F. Prevention and treatment of poplar canker. Agricultural Science and Information, 2016, 33 (22): 115- 116.
doi: 10.3969/j.issn.1003-6997.2016.22.083 |
|
张光亚, 熊 杰, 陈凤玲. 外被体蛋白Ⅰ结构与功能的研究进展. 医学综述, 2016, 22 (1): 5- 9.
doi: 10.3969/j.issn.1006-2084.2016.01.002 |
|
Zhang G Y, Xiong J, Chen F L. Research progress in the structure and function of coat protein Ⅰ. Medical Recapitulate, 2016, 22 (1): 5- 9.
doi: 10.3969/j.issn.1006-2084.2016.01.002 |
|
赵 翔, 韩宝达, 李立新. SM蛋白在膜泡运输中的功能. 遗传, 2012, 34 (4): 11- 22. | |
Zhao X, Han B D, Li L X. Function of SM protein in vesicle transport. Hereditas(Beijing), 2012, 34 (4): 11- 22. | |
Adnan M, Islam W, Zhang J, et al. Diverse role of SNARE protein Sec22 in vesicle trafficking, membrane fusion, and autophagy. Cells, 2019, 8 (4): 337.
doi: 10.3390/cells8040337 |
|
Burri L, Lithgow T. A complete set of SNAREs in yeast. Traffic, 2004, 5 (1): 45- 52.
doi: 10.1046/j.1600-0854.2003.00151.x |
|
Dou X, Wang Q, Qi Z, et al. MoVam7, a conserved SNARE involved in vacuole assembly, is required for growth, endocytosis, ROS accumulation, and pathogenesis of Magnaporthe oryzae. PLoS ONE, 2011, 6 (1): e16439.
doi: 10.1371/journal.pone.0016439 |
|
Flanagan J J, Mukherjee I, Barlowe C. Examination of Sec22 homodimer formation and role in SNARE-dependent membrane fusion. Journal of Biological Chemistry, 2015, 290 (17): 10657- 10666.
doi: 10.1074/jbc.M114.626911 |
|
Giraldo M C, Dagdas Y F, Gupta Y K, et al. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nature Communications, 2013, 4, 1996.
doi: 10.1038/ncomms2996 |
|
Gupta G D, Free S J, Levina N N, et al. Two divergent plasma membrane syntaxin-like SNAREs, nsyn1 and nsyn2, contribute to hyphal tip growth and other developmental processes in Neurospora crassa. Fungal Genetics and Biology, 2003, 40 (3): 271- 286.
doi: 10.1016/S1087-1845(03)00109-9 |
|
Higuchi Y, Shoji JY, Arioka M, et al. Endocytosis is crucial for cell polarity and apical membrane recycling in the filamentous fungus Aspergillus oryzae. Eukaryotic Cell, 2009, 8 (1): 37- 46.
doi: 10.1128/EC.00207-08 |
|
Hong SY, So J, Lee J, et al. Functional analyses of two syntaxin-like SNARE genes, GzSYN1 and GzSYN2, in the ascomycete Gibberella zeae. Fungal Genetics and Biology, 2010, 47 (4): 364- 372.
doi: 10.1016/j.fgb.2010.01.005 |
|
Kuratsu M, Taura A, Shoji JY, et al. Systematic analysis of SNARE localization in the filamentous fungus Aspergillus oryzae. Fungal Genetics and Biology, 2007, 44 (12): 1310- 1323.
doi: 10.1016/j.fgb.2007.04.012 |
|
Li B, Dong X, Zhao R, et al. The t-SNARE protein FgPep12, associated with FgVam7, is essential for ascospore discharge and plant infection by trafficking Ca2+ ATPase FgNeo1 between Golgi and endosome/vacuole in Fusarium graminearum. Public Library of Science Pathogens, 2019, 15 (5): e1007754.
doi: 10.1371/journal.ppat.1007754 |
|
Li B, Liu L, Li Y, et al. The FgVps39-FgVam7-FgSso1 complex mediates vesicle trafficking and is important for the development and virulence of Fusarium graminearum. Molecular plant-microbe interactions, 2017, 30 (5): 410- 422. | |
Li X, Xiong D, Tian C. Genome‐wide identification, phylogeny and transcriptional profiling of SNARE genes in Cytospora chrysosperma. Journal of Phytopathology, 2021, 169 (7/8): 471- 485.
doi: 10.1111/jph.13003 |
|
Song W, Dou X, Qi Z, et al. R-SNARE homolog MoSec22 is required for conidiogenesis, cell wall integrity, and pathogenesis of Magnaporthe oryzae. PLoS ONE, 2010, 5 (10): e13193.
doi: 10.1371/journal.pone.0013193 |
|
Steinberg G, Fuchs U. 2004. The role of microtubules in cellular organization and endocytosis in the plant pathogen Ustilago maydis. Journal of Microscopy, 214(Pt 2): 114−123. | |
Takita Y, Engstrom L, Ungermann C, et al. Inhibition of the Ca(2+)-ATPase Pmc1p by the v-SNARE protein Nyv1p. Journal of Biological Chemistry, 2001, 276 (9): 6200- 6206.
doi: 10.1074/jbc.M009191200 |
|
Tochio H, Tsui MM, Banfield DK, et al. An autoinhibitory mechanism for nonsyntaxin SNARE proteins revealed by the structure of Ykt6p. Science, 2001, 293 (5530): 698- 702. | |
Wang J, Tian L, Zhang D D, et al. SNARE-encoding genes VdSec22 and VdSso1 mediate protein secretion required for full virulence in Verticillium dahliae. Molecular Plant Microbe Interactions, 2018, 31 (6): 651- 664.
doi: 10.1094/MPMI-12-17-0289-R |
|
Wen W, Chen L, Wu H, et al. Identification of the yeast R-SNARE Nyv1p as a novel longin domain-containing protein. Molecular Biology of the Cell, 2006, 17 (10): 4282- 4299.
doi: 10.1091/mbc.e06-02-0128 |
|
Xu H, Zick M, Wickner W T, et al. A lipid-anchored SNARE supports membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108 (42): 17325- 17330.
doi: 10.1073/pnas.1113888108 |
|
Zhang H, Li B, Fang Q, et al. SNARE protein FgVam7 controls growth, asexual and sexual development, and plant infection in Fusarium graminearum. Molecular Plant Pathology, 2016, 17 (1): 108- 119.
doi: 10.1111/mpp.12267 |
|
Zhang Y, Shin Y K. Transmembrane organization of yeast syntaxin-analogue Sso1p. Biochemistry, 2006, 45 (13): 4173- 4181.
doi: 10.1021/bi052178+ |
[1] | Lingyu Yang,Wenguang Shi,Zhibin Luo. Characteristics of Ectomycorrhizal Fungi Paxillus involutus Promoting Nitrogen Uptake and Utilization of Its Host Populus tremula × Populus alba [J]. Scientia Silvae Sinicae, 2024, 60(9): 69-79. |
[2] | He Yingqi, Wang Lufei, Zhang Yamei, Yu Yanglun, Yu Wenji. Effect of Compression Ratios on the Surface Hardness of Poplar Wood Scrimber [J]. Scientia Silvae Sinicae, 2024, 60(9): 141-149. |
[3] | Aoyu Wang,Youzheng Guo,Tan Deng,Yang Liu,Nan Di,Jie Duan,Ximeng Li,Benye Xi. Comparison of Several Methods for Evaluating Plant Water Regulation Strategies [J]. Scientia Silvae Sinicae, 2024, 60(8): 109-119. |
[4] | Shufeng Guo,Yuan Guo,Yan Chen,He Li,Shengpei Zhang. Functional Analysis of Cysteine Protease CfAtg4 in Colletotrichum fructicola on Camellia oleifera [J]. Scientia Silvae Sinicae, 2024, 60(7): 65-72. |
[5] | Kong Yue,Xiang Li,Xinlei Shi,Xuekai Jiao,Peng Wu,Zhongfeng Zhang,Guoliang Dong,Yuanjin Fang. Effects of Thermal Pretreatment on Lateral Performance of Poplar Cross-Laminated Timber Shear Walls [J]. Scientia Silvae Sinicae, 2024, 60(7): 117-128. |
[6] | Xiansheng Geng,Jinping Shu,Ying Liu,Jun Liu. Isolation and Identification of the Pathogen Causing Canker Disease of Toona sinensis in Zhejiang Province [J]. Scientia Silvae Sinicae, 2024, 60(5): 151-157. |
[7] | Lei Xu,Xiaoyun Wu,Jiang Lü,Yun Shi,Mengxun Zhu,Hang Xu,Zhiqiang Zhang. Impacts of Diffuse Radiation Fraction on Energy Partitioning in a Poplar Plantation in the North China Plain [J]. Scientia Silvae Sinicae, 2024, 60(3): 100-110. |
[8] | Jiaming Wan,Jiang Lü,Yun Shi,Hang Xu,Zhiqiang Zhang. Effects of Diffuse Radiation on the Gross Primary Productivity of a Poplar Plantation [J]. Scientia Silvae Sinicae, 2023, 59(5): 1-10. |
[9] | Lu Han,Han Zhao,Wei Wang,Wenhui Liu,Zaimin Jiang,Jing Cai. Hydraulic Vulnerability Segmentation and Its Correlation with Growth in Hybrid Poplar [J]. Scientia Silvae Sinicae, 2023, 59(3): 94-103. |
[10] | Weifeng Wang,Yuqi Zhao,Miaoqin Gao,Yuzheng Zong,Xingyu Hao. Leaf Photosynthesis and Carbon and Nitrogen Distribution of Populus×popularis‘35-44’ Young Cuttings in Response to Elevated CO2 Concentration and Temperature [J]. Scientia Silvae Sinicae, 2023, 59(2): 40-47. |
[11] | Ruirui Zhao,Yong Liu,Kai Wang. Effects of Biochar and Manure on Wood Decomposition and Soil Enzyme Activities Related Soil Nutrient Cycling in a triploid Populus tomentosa Plantation [J]. Scientia Silvae Sinicae, 2023, 59(11): 1-11. |
[12] | Wei Wang,Han Zhao,Xin Huang,Zhuoliang Hou,Zaimin Jiang,Jing Cai. Relationship Between Leaf Hydraulic and Economic Traits and Biomass of Poplar Clones [J]. Scientia Silvae Sinicae, 2023, 59(10): 89-98. |
[13] | Minxia Ren,Tan Li,Ziheng Zhang,Yuexia Zeng,Lifeng Wang,Minsheng Yang,Junxia Liu. Effects of Transgenic BtCry1Ac and API gene in Poplar 107 on Diversity and Stability of Arthropod Community [J]. Scientia Silvae Sinicae, 2022, 58(4): 110-118. |
[14] | Youjing Zhang,Yueyang Li,Han Zhao,Yuwan Cheng,Wei Wang,Zaimin Jiang,Jing Cai. Relationship between Hydraulic Efficiency and Gas Exchange and Growth of Six Poplar Clones [J]. Scientia Silvae Sinicae, 2022, 58(11): 118-126. |
[15] | Weixi Zhang,Yanbo Wang,Changjun Ding,Wenxu Zhu,Xiaohua Su. Detection of Horizontal Transfer of the Exogenous Gene in Adult Trees of Transgenic Populus alba × P. berolinensis in a Field Trial and Successive Years of Monitoring of Soil Microorganism [J]. Scientia Silvae Sinicae, 2022, 58(1): 52-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||