Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (9): 80-89.doi: 10.11707/j.1001-7488.LYKX20230311
Previous Articles Next Articles
Shengxi Zhang1(),Yanhong He1,Longfei Hao1,*,Zhengying Nie2,Tingyan Liu3,Yunpeng Wang4,Yongchun Hua1
Received:
2023-07-15
Online:
2024-09-25
Published:
2024-10-08
Contact:
Longfei Hao
E-mail:1309997928@qq.com
CLC Number:
Shengxi Zhang,Yanhong He,Longfei Hao,Zhengying Nie,Tingyan Liu,Yunpeng Wang,Yongchun Hua. Regulating Effects of Soil Microorganisms and Nitrogen Addition on Rhizosphere Microhabitat and Root Morphology of Caragana korshinskii[J]. Scientia Silvae Sinicae, 2024, 60(9): 80-89.
Table 1
Nitrogen addition amount g·plant?1"
施入时间 Application time | 施入次数 Application number | 不施氮处理 Zero nitrogen (0N) | 低氮处理 Low nitrogen (LN) | 高氮处理 High nitrogen (HN) |
6月June | 1 | 0.00 | 0.16 | 0.31 |
2 | 0.00 | 0.16 | 0.31 | |
3 | 0.00 | 0.16 | 0.31 | |
7月July | 4 | 0.00 | 0.33 | 0.66 |
5 | 0.00 | 0.33 | 0.66 | |
6 | 0.00 | 0.33 | 0.66 | |
8月August | 7 | 0.00 | 0.37 | 0.73 |
8 | 0.00 | 0.37 | 0.73 | |
9 | 0.00 | 0.37 | 0.73 | |
9月September | 10 | 0.00 | 0.22 | 0.45 |
11 | 0.00 | 0.22 | 0.45 |
Table 2
The microbial biomass carbon, nitrogen and phosphorus content of C. korshinskii seedlings under soil microorganisms and nitrogen addition treatments mg·kg?1"
处理 Treatments | 微生物生物量碳 Microbial biomass carbon (MBC) | 微生物生物量氮 Microbial biomass nitrogen (MBN) | 微生物生物量磷 Microbial biomass phosphorus (MBP) | ||
?S | +M | 0N | 100.79±3.79bcd | 16.73±1.09ab | 3.49±0.26b |
LN | 127.76±9.01abc | 6.77±1.47cde | 2.93±0.57bcd | ||
HN | 129.19±14.33abc | 8.89±1.62c | 5.03±0.5a | ||
?M | 0N | 142.28±24.25a | 14.17±3.66b | 1.75±0.25d | |
LN | 136.7±6.34ab | 19.25±0.69a | 3.15±0.28bc | ||
HN | 157.94±10.83a | 17.28±1.23ab | 3.04±0.61bcd | ||
+S | +M | 0N | 85.03±14.15d | 2.19±0.25ef | 3.34±0.32b |
LN | 90.6±8.69cd | 5.27±0.8cdef | 3.13±0.46bcd | ||
HN | 166.17±3.16a | 7.24±1.29cd | 3.46±0.24b | ||
?M | 0N | 95.12±12.78cd | 1.81±0.02f | 2.28±0.41bcd | |
LN | 73.29±8.28d | 3.87±0.84def | 1.89±0.49cd | ||
HN | 70.85±14.74d | 2.63±0.53def | 2.95±0.40bcd |
Table 3
Enzyme activity in rhizosphere soil of C. korshinskii seedlings under soil microorganisms and nitrogen addition treatments nmol·g?1h?1"
处理 Treatments | β-1,4葡萄糖苷酶 β-1,4 glucosidase (BG) | β-1,4-N-乙酰-氨基葡糖氨糖苷酶和亮氨酸氨基肽酶 β-1,4-N-acetyl-glucosaminidase and leucine aminopeptidase (NAG+LAP) | 碱性磷酸酶 Alkaline phosphatase (ALP) | ||
?S | +M | 0N | 16.48±0.69cd | 77.26±3.91b | 19.40±1.46cd |
LN | 16.38±0.19cd | 81.62±2.30ab | 22.03±0.15bc | ||
HN | 17.50±0.77bc | 88.12±2.64a | 27.50±1.67a | ||
?M | 0N | 19.79±0.14a | 40.63±2.13e | 17.96±0.37d | |
LN | 19.22±1.60ab | 54.92±0.99d | 23.15±2.24b | ||
HN | 14.57±0.36d | 66.62±6.35c | 19.04±0.99cd | ||
+S | +M | 0N | 6.75±0.87e | 15.28±1.80f | 8.25±0.39e |
LN | 6.66±0.20e | 12.95±0.70fg | 9.64±0.59e | ||
HN | 7.31±0.82e | 14.43±2.18f | 8.80±1.4e | ||
?M | 0N | 2.41±0.29f | 5.90±0.59g | 7.49±0.14e | |
LN | 2.58±0.23f | 19.16±2.64f | 8.36±0.48e | ||
HN | 2.53±0.09f | 15.51±0.80f | 8.23±0.99e |
Table 4
Available nutrients in the soils of C. korshinskii seedlings under soil microorganisms and nitrogen addition treatments"
处理 Treatments | 可溶性有机碳 Dissolved organic carbon (DOC)/(mg·g?1) | 有效氮 Available nitrogen (AN)/(mg·kg?1) | 有效磷 Available phosphorus (AP)/(mg·kg?1) | ||
?S | +M | 0N | 5.05±0.11a | 3.36±0.14de | 3.23±0.14b |
LN | 5.08±0.52a | 3.09±0.69de | 3.67±0.18a | ||
HN | 4.57±0.05ab | 4.48±0.66cd | 2.83±0.21bcd | ||
?M | 0N | 3.95±0.6bc | 3.74±0.59de | 2.65±0.19cde | |
LN | 3.23±0.07cd | 3.65±0.87de | 2.52±0.23def | ||
HN | 3.53±0.11cd | 4.55±0.93cd | 3.07±0.13bc | ||
+S | +M | 0N | 3.29±0.19cd | 2.44±0.05e | 2.09±0.06f |
LN | 2.86±0.22d | 3.75±0.54de | 2.09±0.08f | ||
HN | 3.11±0.10cd | 3.69±0.04de | 2.23±0.17ef | ||
?M | 0N | 3.78±0.07bc | 5.95±0.33de | 2.89±0.11bcd | |
LN | 3.63±0.22cd | 7.38±0.28ab | 3.05±0.13bc | ||
HN | 3.64±0.11cd | 8.04±1.01a | 2.53±0.07def |
Fig.1
Easily extractable glomalin-related soil protein of C. korshinskii seedlings under soil microorganisms and nitrogen addition treatments In the figure, different letters indicate significant differences among the different treatments (P<0.05). 0N, LN and HN indicate no nitrogen, low nitrogen and high nitrogen treatment respectively. ?S+M, ?S?M, +S+M, +S?M stand for mycorrhizal seedlings in non-sterile soil, non-mycorrhizal seedlings in non-sterile soil, mycorrhizal seedlings in sterile soil and non-mycorrhizal seedlings in sterile soil, respectively."
Table 5
Fine root morphology of C. korshinskii seedlings with a diameter≤0.5 mm under soil microorganisms and nitrogen addition treatments"
处理 Treatments | 总根长 Root length/cm | 总表面积 Root surface area/cm2 | 总体积 Root volume/cm3 | 根尖数 Root tips | ||
?S | +M | 0N | 265.19±6.13b | 26.14±0.96b | 0.23±0.01b | 709.67±47.18d |
LN | 252.08±23.66b | 23.19±0.94bc | 0.21±0.01b | |||
HN | 146.21±16.57cd | 14.39±1.40de | 0.14±0.01c | 618.67±84.07d | ||
?M | 0N | 34.92±5.11e | 1.73±0.29g | 0.01±0f | 72±16.09h | |
LN | 121.07±22.52cd | 6.25±0.97fg | 0.03±0.01ef | 269±50.76efg | ||
HN | 78.16±19.05de | 6.48±1.03fg | 0.04±0.01ef | 118±18.19gh | ||
+S | +M | 0N | 174.56±3.15c | 8.99±0.25ef | 0.05±0.01ef | 401.67±12.57e |
LN | 308.02±5.46b | 18.40±0.11cd | 0.12±0cd | 870.67±108.83c | ||
HN | 496.57±67.79a | 45.03±6.19a | 0.41±0.05a | |||
?M | 0N | 86.50±10.67de | 5.75±0.78fg | 0.04±0.01ef | 154±4.58gh | |
LN | 181.40±9.92c | 11.80±0.78ef | 0.08±0.01de | 340.67±17.34ef | ||
HN | 113.76±0.38cd | 7.43±0.11fg | 0.05±0ef | 198.67±13.78fgh |
Table 6
Multiple linear regression analysis of root morphology and soil factors of C. korshinskii seedlings under soil sterilization, seedling inoculation and nitrogen addition treatments"
因变量 Dependent variable | 参数 Parameter | 系数估计值 Estimate | 标准化回归系数 Beta | t | P |
RL | 常量Constant | 279.723 | 2.870 | <0.01 | |
MBC | 1.732 | 0.492 | 3.016 | <0.01 | |
MBP | 63.194 | 0.506 | 3.428 | <0.01 | |
EE-GRSP | ?1.617 | ?0.461 | ?3.284 | <0.01 | |
ALP | ?10.736 | ?0.605 | ?3.776 | <0.01 | |
RS | 常量Constant | 12.820 | 1.212 | >0.05 | |
MBC | 0.171 | 0.514 | 3.523 | <0.01 | |
MBP | 6.593 | 0.558 | 4.159 | <0.01 | |
AN | ?2.181 | ?0.343 | ?2.491 | <0.05 | |
AP | 9.113 | 0.388 | 2.607 | <0.05 | |
EE-GRSP | ?0.168 | ?0.506 | ?3.995 | <0.01 | |
ALP | ?1.312 | ?0.781 | ?4.422 | <0.01 | |
RV | 常量Constant | 0.082 | 0.859 | >0.05 | |
MBC | 0.002 | 0.558 | 4.018 | <0.01 | |
MBP | 0.060 | 0.537 | 4.210 | <0.01 | |
AN | ?0.020 | ?0.329 | ?2.505 | <0.05 | |
AP | 0.092 | 0.413 | 2.910 | <0.01 | |
EE-GRSP | ?0.002 | ?0.545 | ?4.519 | <0.01 | |
ALP | ?0.012 | ?0.722 | ?4.298 | <0.01 | |
RT | 常量Constant | 776.321 | 1.849 | >0.05 | |
MBC | 7.739 | 0.556 | 4.009 | <0.01 | |
MBP | 257.223 | 0.521 | 4.089 | <0.01 | |
AN | ?95.210 | ?0.359 | ?2.740 | <0.05 | |
AP | 297.157 | 0.303 | 2.142 | <0.05 | |
EE-GRSP | ?7.707 | ?0.556 | ?4.622 | <0.01 | |
ALP | ?49.256 | ?0.702 | ?4.184 | <0.01 |
Fig.2
Redundancy analysis of root morphology and soil factors of C. korshinskii seedlings under soil microorganisms and nitrogen addition treatments RL, RS, RV and RT represent total root length, total root surface area, total root volume and number of root tips of C. korshinskii seedlings with root diameter ≤ 0.5 mm, respectively. MBC, MBN, MBP, BG, NAG+LAP, ALP, DOC, AN, AP, EE-GRSP represent microbial biomass carbon, microbial biomass nitrogen, microbial biomass phosphorus, β-1,4 glucosidase, β-1, 4-N-acetyl-glucosaminidase and leucine aminopeptidase, alkaline phosphatase, and dissolved organic carbon, available nitrogen, available phosphorus, easily extractable glomalin-related soil protein, respectively."
郝龙飞, 刘婷岩, 何永琴, 等. 菌根真菌调控灌木铁线莲根际土壤生态化学计量特征对氮沉降的应激响应. 林业科学, 2022, 58 (6): 151- 160.
doi: 10.11707/j.1001-7488.20220615 |
|
Hao L F, Liu T Y, He Y Q, et al. Responses of rhizosphere soil stoichiometry of Clematis fruticosa inoculated with arbuscular mycorrhizal fungi to nitrogen deposition. Scientia Silvae Sinicae, 2022, 58 (6): 151- 160.
doi: 10.11707/j.1001-7488.20220615 |
|
蒋凯鑫, 于坤霞, 李 鹏, 等. 砒砂岩区典型淤地坝沉积泥沙特征及来源分析. 水土保持学报, 2020, 34 (1): 47- 53. | |
Jiang K X, Yu K X, Li P, et al. Sediment characteristics and sources analysis of typical check dam in Pisha sandstone area. Journal of Soil and Water Conservation, 2020, 34 (1): 47- 53. | |
刘瑞雪, 吴泓瑾, 黄国柱, 等. 氮添加对树木根系特性的影响. 应用生态学报, 2019, 30 (5): 1735- 1742. | |
Liu R X, Wu H J, Huang G Z, et al. Effects of nitrogen addition on tree root traits. Chinese Journal of Applied Ecology, 2019, 30 (5): 1735- 1742. | |
刘婷岩, 郝龙飞, 王续富, 等. 氮沉降及菌根真菌对长白落叶松苗木根系构型及根际酶活性的影响. 植物研究, 2021, 41 (1): 145- 151. | |
Liu T Y, Hao L F, Wang X F, et al. Effects of nitrogen deposition and ectomycorrhizal fungi on root architecture and rhizosphere soil enzyme activities of Larix olgensis seedlings. Bulletin of Botanical Research, 2021, 41 (1): 145- 151. | |
刘伟玮, 刘某承, 李文华, 等. 辽东山区林参复合经营土壤质量评价. 生态学报, 2017, 37 (8): 2631- 2641. | |
Liu W W, Liu M C, Li W H, et al. Soil quality assessment of a forest-ginseng agroforestry system in the mountainous region of eastern Liaoning Province, Northeast China. Acta Ecologica Sinica, 2017, 37 (8): 2631- 2641. | |
李赵毅, 郝龙飞, 刘婷岩, 等. 接种丛枝菌根真菌对模拟大气氮沉降下灌木铁线莲根系形态及养分承载的影响. 植物研究, 2022, 42 (5): 886- 895.
doi: 10.7525/j.issn.1673-5102.2022.05.020 |
|
Li Z Y, Hao L F, Liu T Y, et al. AM fungi inoculation on root morphology and nutrient loading of Clematis fruticosa seedlings under simulated atmospheric nitrogen deposition. Bulletin of Botanical Research, 2022, 42 (5): 886- 895.
doi: 10.7525/j.issn.1673-5102.2022.05.020 |
|
李宗明, 沈菊培, 张丽梅, 等. 模拟氮沉降对干旱半干旱温带草原土壤细菌群落结构的影响. 环境科学, 2018, 39 (12): 5665- 5671. | |
Li Z M, Shen J P, Zhang L M, et al. Effects of stimulated nitrogen deposition on the bacterial community structure of semiarid temperate grassland. Environmental Science, 2018, 39 (12): 5665- 5671. | |
王子婷, 柴春山, 张洋东, 等. 半干旱黄土区柠条生长与环境因子的关系研究进展. 中国水土保持, 2021, 466 (1): 49- 52.
doi: 10.3969/j.issn.1000-0941.2021.01.018 |
|
Wang Z T, Chai C S, Zhang Y D, et al. Research progress on the relationship between Caragana korshinskii growth and environmental factors in semi-arid loess region. Soil and Water Conservation in China, 2021, 466 (1): 49- 52.
doi: 10.3969/j.issn.1000-0941.2021.01.018 |
|
韦莉莉, 卢昌熠, 丁 晶, 等. 丛枝菌根真菌参与下植物—土壤系统的养分交流及调控. 生态学报, 2016, 36 (14): 4233- 4243. | |
Wei L L, Lu C Y, Ding J, et al. Functional relationships between arbuscular mycorrhizal symbionts and nutrient dynamics in plant-soil-microbe system. Acta Ecologica Sinica, 2016, 36 (14): 4233- 4243. | |
谢 欢, 张秋芳, 陈廷廷, 等. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性. 植物生态学报, 2022, 46 (7): 811- 822.
doi: 10.17521/cjpe.2021.0280 |
|
Xie H, Zhang Q F, Chen T T, et al. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition. Chinese Journal of Plant Ecology, 2022, 46 (7): 811- 822.
doi: 10.17521/cjpe.2021.0280 |
|
Allsup C M, George I, Lankau R A. Shifting microbial communities can enhance tree tolerance to changing climates. Science, 2023, 380 (6647): 835- 840. | |
Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 2009, 68 (1): 1- 13.
doi: 10.1111/j.1574-6941.2009.00654.x |
|
Bin J, Li J, Yanming Z, et al. Leguminous Caragana korshinskii evidently enhances microbial necromass carbon accumulation in dryland soils. Catena, 2022, 215, 106342.
doi: 10.1016/j.catena.2022.106342 |
|
Baldrian P, López-Mondéjar R, Kohout P. 2023. Forest microbiome and global change. nature reviews. Microbiology, 21(8): 487−501. | |
Chevallier T. Standard soil methods for long-term ecological research. Geoderma, 2001, 104 (1): 182- 183.. | |
Daniel A, Dylan B M, Xin Chen. Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles, 2019, 33 (1): 100- 107.
doi: 10.1029/2018GB005990 |
|
Deng L, Peng C H, Kim D G, et al. Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. Earth-Science Reviews, 2021, 214 (0): 103501. | |
Gong W L, Chao X, Qian H J, et al. Soil carbon, nitrogen, and phosphorus cycling microbial populations and their resistance to global change depend on soil C: N: P stoichiometry. mSystems, 2020, 5 (3): e00162. | |
Jia X Y, Zhong Y Q W, Liu J, et al. Effects of nitrogen enrichment on soil microbial characteristics: From biomass to enzyme activities. Geoderma, 2020, 366 (0): 114256. | |
Kumar S, Singh K A, Ghosh P. Distribution of soil organic carbon and glomalin related soil protein in reclaimed coal mine-land chronosequence under tropical condition. Science of the Total Environment, 2018, 625 (1): 1341- 1350. | |
Lastovetsky O A, Caruso T, Brennan F P, et al. Evidence of a selective and bi-directional relationship between arbuscular mycorrhizal fungal and bacterial communities co-inhabiting plant roots. Environmental Microbiology, 2022, 24 (11): 5378- 5391.
doi: 10.1111/1462-2920.16227 |
|
Rodríguez-Caballero G, Caravaca F, Fernández-González A J, et al. Arbuscular mycorrhizal fungi inoculation mediated changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem. Science of the Total Environment, 2017, 584-585 (1): 838- 848. | |
Shi J C, Wang X L, Wang E T. Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems. Annual Review of Plant Biology, 2023, 74, 569- 607.
doi: 10.1146/annurev-arplant-061722-090342 |
|
Smith S E, Read D J, 2008. Mycorrhizal symbiosis. Academic Press, New York, 1−10. | |
Stock S C, Koester M, Boy J, et al. 2021 Plant carbon investment in fine roots and arbuscular mycorrhizal fungi: A cross-biome study on nutrient acquisition strategies. Science of the Total Environment, 781: 146748. | |
Song X, Gu H, Wang M, et al. Management practices regulate the response of Moso bamboo foliar stoichiometry to nitrogen deposition. Scientific Reports, 2016, 6 (4): 24107. | |
Tapia-Torres Y, Elser J J, Souza V, et al. Ecoenzymatic stoichiometry at the extremes: How microbes cope in an ultra-oligotrophic desert soil. Soil Biology & Biochemistry, 2015, 87, 34- 42. | |
Veresoglou S D, Sen R, Mamolos A P, et al. Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils. Journal of Ecology, 2011, 99 (6): 1339- 1349.
doi: 10.1111/j.1365-2745.2011.01863.x |
|
Wright S F, Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Science, 1996, 161 (9): 575- 586.
doi: 10.1097/00010694-199609000-00003 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||