Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (7): 117-128.doi: 10.11707/j.1001-7488.LYKX20220622
Previous Articles Next Articles
Kong Yue1,Xiang Li1,Xinlei Shi1,Xuekai Jiao1,Peng Wu1,Zhongfeng Zhang2,Guoliang Dong3,Yuanjin Fang4
Received:
2022-09-14
Online:
2024-07-25
Published:
2024-08-19
CLC Number:
Kong Yue,Xiang Li,Xinlei Shi,Xuekai Jiao,Peng Wu,Zhongfeng Zhang,Guoliang Dong,Yuanjin Fang. Effects of Thermal Pretreatment on Lateral Performance of Poplar Cross-Laminated Timber Shear Walls[J]. Scientia Silvae Sinicae, 2024, 60(7): 117-128.
Table 1
Physical and mechanical properties of defect-free poplar and spruce wood specimens"
试件种类 Specimen type | ρ/(kg·m?3) | W(%) | E0/MPa | fb/MPa | ft,0/MPa | fc,0/MPa | fv/MPa | ||
径面Radial | 弦面Tangential | ||||||||
杨木Poplar | 未处理 Untreated | 496.0(24.2) | 9.70(1.10) | 67.3(6.4) | 71.6(7.5) | 46.5(3.8) | 6.7(0.7) | 7.6(0.8) | |
高温处理材 Treated | 482.0(35.1) | 5.50(0.30) | 53.4(5.6) | 65.5(7.0) | 60.1(4.5) | 5.4(0.5) | 6.0(0.7) | ||
欧洲云杉Spruce | 435.0(26.0) | 11.02(0.60) | 67.6(5.8) | 87.8(8.0) | 38.1(3.1) | 5.9(0.6) | 6.7(0.7) |
Fig.8
Hysteresis curves of CLT shear walls under cyclic lateral load Positive values on the scale indicate the load and displacement applied in the positive direction of the shear wall; conversely, negative values represent the load and displacement applied in the negative direction of the shear wall."
Fig.9
Envelope curves of CLT shear walls under cyclic lateral load Positive values on the scale indicate the load and displacement applied in the positive direction of the shear wall; conversely, negative values represent the load and displacement applied in the negative direction of the shear wall."
Table 3
Mechanical properties parameters of CLT shear walls on the cyclic lateral loads"
试件 Specimens | 屈服荷载 Yield load (Fy)/kN | 极限承载力 Peak load (Fp)/kN | 破坏荷载 Ultimate load(Fu)/kN | 屈服位移 Yield displacement (Δy)/mm | 极限位移 Peak displacement (Δp)/mm | 破坏位移 Ultimate displacement (Δu)/mm | 延性 Ductility (μ) | 弹性抗侧刚度 Elastic shear stiffness(Ke)/ (kN·mm?1) | 耗能能力 Energy consumption (Ea)/kJ |
W1 | 58.93 | 78.49 | 69.18 | 10.14 | 22.96 | 23.63 | 2.28 | 5.89 | 1 744 |
W2 | 61.97 | 73.90 | 65.23 | 13.57 | 24.69 | 23.58 | 1.87 | 5.13 | 1 604 |
W3 | 46.84 | 59.97 | 53.72 | 9.48 | 16.00 | 16.98 | 1.81 | 5.00 | 1 358 |
W4 | 49.40 | 66.99 | 59.18 | 10.77 | 21.58 | 23.44 | 2.12 | 4.63 | 1 424 |
W5 | 43.63 | 58.24 | 52.18 | 8.95 | 17.22 | 17.94 | 1.91 | 4.88 | 1 290 |
何敏娟, 王希珺, 李 征. 往复荷载下正交胶合木剪力墙的承载能力与变形模式研究. 土木工程学报, 2020, 53 (9): 60- 67. | |
He M J, Wang X J, Li Z. Cyclic load capacity and deformation mode of cross-laminated timber shear walls. China Civil Engineering Journal, 2020, 53 (9): 60- 67. | |
龚迎春, 任海青, 丁青锋. 国产落叶松正交胶合木胶层剪切强度评价. 木材科学与技术, 2021, 35 (2): 49- 53.
doi: 10.12326/j.2096-9694.2020077 |
|
Gong Y C, Ren H Q, Ding Q F. Evaluation of bonding shear strength of cross-laminated timber fabricated with domestic larch. Chinese Journal of Wood Science and Technology, 2021, 35 (2): 49- 53.
doi: 10.12326/j.2096-9694.2020077 |
|
《木结构设计手册》编辑委员会. 2021. 木结构设计手册. 4版. 北京: 中国建筑工业出版社. | |
Editorial Committee of Design manual of Wood Structures. 2021. Design manual of wood structures. 4th ed. Beijing: China Architecture & Building Press. [in Chinese] | |
孙 超, 肖从真, 李建辉, 等. 正交胶合木剪力墙抗震性能试验研究. 建筑科学, 2021, 37 (9): 1- 12. | |
Sun C, Xiao C Z, Li J H, et al. Experiment research on seismic behavior of cross-laminated timber shear wall. Building Science, 2021, 37 (9): 1- 12. | |
孙晓峰, 何敏娟, 李 征. 往复荷载下预应力正交胶合木剪力墙抗侧力性能研究. 土木工程学报, 2020, 53 (3): 11- 18. | |
Sun X F, He M J, Li Z. Lateral performance of post-tensioned cross-laminated timber shear walls. China Civil Engineering Journal, 2020, 53 (3): 11- 18. | |
王菲彬, 王昕萌, 杨树明, 等. 国产杉木不同层板厚度对正交胶合木力学性能的影响. 林业科学, 2020, 56 (11): 168- 175.
doi: 10.11707/j.1001-7488.20201118 |
|
Wang F B, Wang X M, Yang S M, et al. Effect of different laminate thickness on mechanical properties of cross-laminated timber made from Chinese fir. Scientia Silvae Sinicae, 2020, 56 (11): 168- 175.
doi: 10.11707/j.1001-7488.20201118 |
|
王志强, 付红梅, 戴骁汉, 等. 不同树种木材复合交错层压胶合木的力学性能. 中南林业科技大学学报, 2014, 34 (12): 141- 145.
doi: 10.3969/j.issn.1673-923X.2014.12.026 |
|
Wang Z Q, Fu H M, Dai X H, et al. Experimental study on mechanical properties of cross-laminated timber with different tree species wood. Journal of Central South University of Forestry & Technology, 2014, 34 (12): 141- 145.
doi: 10.3969/j.issn.1673-923X.2014.12.026 |
|
杨 洋, 张 蕾, 李 能, 等. 户外用木材耐光老化技术研究进展. 林产工业, 2020, 57 (9): 49- 52. | |
Yang Y, Zhang L, Li N, et al. The review of research progress on anti-photodegradation technology of outdoor wood. China Forest Products Industry, 2020, 57 (9): 49- 52. | |
岳 孔, 陆 栋, 宋学松. 利用傅里叶变换红外光谱分析高温改性对杨木强度等级的影响. 光谱学与光谱分析, 2023, 43 (3): 848- 853.
doi: 10.3964/j.issn.1000-0593(2023)03-0848-06 |
|
Yue K, Lu D, Song X S. Influence of thermal modification on poplar strength class by Fourier infrared spectroscopy analysis. Spectroscopy and Spectral Analysis, 2023, 43 (3): 848- 853.
doi: 10.3964/j.issn.1000-0593(2023)03-0848-06 |
|
岳 孔, 陆 栋, 戴长路, 等. 高温中胶合木构件胶缝界面剪切断裂能研究. 华中科技大学学报(自然科学版), 2021, 49 (4): 86- 90. | |
Yue K, Lu D, Dai C L, et al. Study on shear fracture energy for bondlines in glulam at high temperature. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49 (4): 86- 90. | |
岳 孔, 陆 栋, 胡文杰, 等. 高温中木材顺纹弦面抗剪强度. 林业科学, 2022, 58 (1): 111- 118.
doi: 10.11707/j.1001-7488.20220112 |
|
Yue K, Lu D, Hu W J, et al. Parallel-to-grain tangential shear strength of wood at elevated temperatures under oxygen-free conditions. Scientia Silvae Sinicae, 2022, 58 (1): 111- 118.
doi: 10.11707/j.1001-7488.20220112 |
|
岳 孔, 宋旭磊, 程秀才, 等. 杉木胶合木湿应力研究. 林业工程学报, 2019a, 4 (4): 35- 40. | |
Yue K, Song X L, Cheng X C, et al. Study on moisture stresses in Chinese fir glued laminated timber. Journal of Forestry Engineering, 2019a, 4 (4): 35- 40. | |
岳 孔, 刘伟庆, 程秀才, 等. 高温中花旗松结构材顺纹抗压强度试验研究. 华中科技大学学报(自然科学版), 2019b, 47 (8): 44- 49. | |
Yue K, Liu W Q, Cheng X C, et al. Experimental study on parallel-to-grain compressive strength of structural Douglas fir wood exposed to elevated temperatures. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019b, 47 (8): 44- 49. | |
岳 孔, 宋旭磊, 焦学凯, 等. 高温预处理对足尺胶合木梁力学性能的影响. 林业科学, 2020, 56 (4): 128- 134.
doi: 10.11707/j.1001-7488.20200414 |
|
Yue K, Song X L, Jiao X K, et al. Mechanical properties of full-scale glulam beam made of thermally treated lamellas. Scientia Silvae Sinicae, 2020, 56 (4): 128- 134.
doi: 10.11707/j.1001-7488.20200414 |
|
张 晋, 刘得龙, 张 强, 等. 正交胶合木墙体耐火极限试验及数值模拟. 华南理工大学学报(自然科学版), 2021, 49 (4): 9- 19. | |
Zhang J, Liu D L, Zhang Q, et al. Fire resistance test and numerical simulation of cross-laminated timber wall. Journal of South China University of Technology (Natural Science Edition), 2021, 49 (4): 9- 19. | |
Almeida T, Almeida D, Chahud E, et al. Mechanical performance of wood under artificial and natural weathering treatments. BioResources, 2019, 14 (3): 6267- 6277.
doi: 10.15376/biores.14.3.6267-6277 |
|
Brandner R, Flatscher G, Ringhofer A, et al. Cross laminated timber (CLT): overview and development. European Journal of Wood and Wood Products, 2016, 74 (3): 331- 351.
doi: 10.1007/s00107-015-0999-5 |
|
Cogulet A, Blanchet P, Landry V. Wood degradation under UV irradiation: a lignin characterization. Journal of Photochemistry and Photobiology B, 2016, Biology,158, 184- 191. | |
Cademartori P, Santos P, Serrano L, et al. Effect of thermal treatment on physicochemical properties of Gympie messmate wood. Industrial Crops and Products, 2013, 45, 360- 366.
doi: 10.1016/j.indcrop.2012.12.048 |
|
Esteves B, Graça J, Pereira H. Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung, 2008, 62 (3): 344- 351.
doi: 10.1515/HF.2008.057 |
|
Frangi A, Fontana M, Hugi E, et al. Experimental analysis of cross-laminated timber panels in fire. Fire Safety Journal, 2009, 44 (8): 1078- 1087.
doi: 10.1016/j.firesaf.2009.07.007 |
|
Gavric I, Popovski M. 2014. Design models for CLT shear walls and assemblies based on connection properties. Proceedings of the INTER Conference, Bath. UK, 1-4. | |
He Z X, Qi Y R, Zhang G, et al. Mechanical properties and dimensional stability of poplar wood modified by pre-compression and post-vacuum-thermo treatments. Polymers, 2022, 14 (8): 1571.
doi: 10.3390/polym14081571 |
|
Izzi M, Casagrande D, Bezzi S, et al. Seismic behaviour of Cross-Laminated Timber structures: a state-of-the-art review. Engineering Structures, 2018, 170, 42- 52.
doi: 10.1016/j.engstruct.2018.05.060 |
|
Kippel M, Leyder C, Frangi A, et al. Fire tests on loaded cross-laminated timber wall and floor elements. Fire Safety Science, 2014, 11, 626- 639.
doi: 10.3801/IAFSS.FSS.11-626 |
|
Kukk V, Horta R, Püssa M, et al. Impact of cracks to the hygrothermal properties of CLT water vapour resistance and air permeability. Energy Procedia, 2017, 132, 741- 746.
doi: 10.1016/j.egypro.2017.10.019 |
|
Leichti R, Anderson E, Sutt E, et al. 2006. Sheathing nail bending yield strength-role in shear wall performances. Proceedings of the World Conference on Timber Engineering, Portland: Oregon State University Conference Services, 203–210. | |
Mirzaei G, Mohebby B, Ebrahimi G. Glulam beam made from hydrothermally treated poplar wood with reduced moisture induced stresses. Construction and Building Materials, 2017, 135, 386- 393.
doi: 10.1016/j.conbuildmat.2016.12.178 |
|
Mirzaei G, Mohebby B, Ebrahimi G. Technological properties of glulam beams made from hydrothermally treated poplar wood. Wood Material Science & Engineering, 2018, 13 (1): 36- 44. | |
Nairn J A. Predicting layer cracks in cross-laminated timber with evaluations of strategies for suppressing them. European Journal of Wood and Wood Products, 2019, 77 (3): 405- 419.
doi: 10.1007/s00107-019-01399-7 |
|
Santos J A. Mechanical behaviour of Eucalyptus wood modified by heat. Wood Science and Technology, 2000, 34 (1): 39- 43.
doi: 10.1007/s002260050006 |
|
Sawata K, Yasumura M. Determination of embedding strength of wood for dowel-type fasteners. Journal of Wood Science, 2002, 48 (2): 138- 146.
doi: 10.1007/BF00767291 |
|
Schneider J, Karacabeyli E, Popovski M, et al. Damage assessment of connections used in cross-laminated timber subject to cyclic loads. Journal of Performance of Constructed Facilities, 2014, 28 (6): A4014008.
doi: 10.1061/(ASCE)CF.1943-5509.0000528 |
|
Shi X L, Yue K, Jiao X K, et al. Experimental investigation into lateral performance of cross-laminated timber shear walls made from fast-growing poplar wood. Wood Material Science & Engineering, 2023, 18 (4): 1212- 1227. | |
Uibel T, Blaß H J. Load carrying capacity of joints with dowel type fasteners in solid wood panels. CIB-W18 Meeting Thirty-nine, 2006, Florence, Italy. | |
Wiesner F, Randmael F, Wan W, et al. Structural response of cross-laminated timber compression elements exposed to fire. Fire Safety Journal, 2017, 91, 56- 67.
doi: 10.1016/j.firesaf.2017.05.010 |
|
Yue K, Li X, Jiao X K, et al. Strength grading of Chinese poplar wood for structural use following thermal modification. Polymer Testing, 2023a, 123, 108032.
doi: 10.1016/j.polymertesting.2023.108032 |
|
Yue K, Qian J, Wu P, et al. Experimental analysis of thermally-treated Chinese poplar wood with focus on structural application. Industrial Crops and Products, 2023b, 197, 116612.
doi: 10.1016/j.indcrop.2023.116612 |
|
Yue K, Song X L, Jiao X K, et al. An experimental study of flexural behavior of glulam beams made out of thermally treated fast-growing poplar laminae. Wood and Fiber Science, 2020, 52 (2): 152- 164.
doi: 10.22382/wfs-2020-014 |
|
Yue K, Wang L, Xia J, et al. Experimental research on mechanical properties of laminated poplar wood veneer/plastic sheet composites. Wood and Fiber Science, 2019, 51 (3): 320- 331.
doi: 10.22382/wfs-2019-030 |
|
Yue K, Wu J H, Wang F, et al. Mechanical properties of Douglas fir wood at elevated temperatures under nitrogen conditions. Journal of Materials in Civil Engineering, 2022, 34 (2): 04021434.
doi: 10.1061/(ASCE)MT.1943-5533.0004072 |
[1] | Chen Qian, Chen Jinghuan, Wang Kun, Jiang Jianxin, Sun Runcang. Research Progress on the Hydrothermal Pretreatment of Lignocellulosic Biomass and Its Bioconversion [J]. Scientia Silvae Sinicae, 2017, 53(9): 97-104. |
[2] | Wang Weihong;Wang Qingwen;Zhang Zhengming. Natural Weathering and Accelerated UV Weathering of Rice Hull Polyethylene Composite [J]. Scientia Silvae Sinicae, 2008, 44(8): 90-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||