Scientia Silvae Sinicae ›› 2023, Vol. 59 ›› Issue (3): 94-103.doi: 10.11707/j.1001-7488.LYKX20210794
• Research papers • Previous Articles Next Articles
Lu Han1(),Han Zhao1,Wei Wang1,Wenhui Liu1,Zaimin Jiang2,Jing Cai1,3,*(
)
Received:
2021-10-22
Online:
2023-03-25
Published:
2023-05-27
Contact:
Jing Cai
E-mail:1968604959@qq.com;cjcaijing@163.com
CLC Number:
Lu Han,Han Zhao,Wei Wang,Wenhui Liu,Zaimin Jiang,Jing Cai. Hydraulic Vulnerability Segmentation and Its Correlation with Growth in Hybrid Poplar[J]. Scientia Silvae Sinicae, 2023, 59(3): 94-103.
Table 1
List of abbreviations used in the study, including their units and descriptions"
符号 Symbol | 单位 Unit | 定义 Definition |
AGB | g | 地上生物量 Aboveground biomass |
P12 | MPa | 造成导水率/水力导度损失12%时的水势值 Water potential causing 12% loss of hydraulic conductivity or conductance |
P50 | MPa | 造成导水率/水力导度损失50%时的水势值 Water potential causing 50% loss of hydraulic conductivity or conductance |
P88 | MPa | 造成导水率/水力导度损失88%时的水势值 Water potential causing 88% loss of hydraulic conductivity or conductance |
Ψmiddy | MPa | 正午水势Middy leaf water potential |
HSM | MPa | 水力安全边际 Hydraulic safety margin |
DH | μm | 导管水力直径 Hydraulic weighted vessel diameter |
DV | μm | 平均导管直径 Mean vessel diameter |
VD | N·mm?2 | 导管密度 Vessel density |
FL | 导管腔占比 The fraction of vessel lumen | |
t | μm | 导管间的壁厚度 Double vessel wall thickness |
b | μm | 导管内径跨度 Conduits wall span |
(t/b)2 | 导管抗垮塌指标 Thickness-to-span ratio |
Table 2
Growth indexes of aboveground parts and hydraulic properties of roots, branches and leaves of K, Z and M (mean ± SE)"
项目 Item | K | Z | M |
地上生物量 | |||
AGB/g | 3 932.76±112.68a | 3 611.52±106.51a | 2182.13±81.33b |
水力特征值 Hydraulic properties | |||
叶片 Leaf | |||
P12/MPa | ?0.48 | ?0.66 | ?0.57 |
P50/MPa | ?1.27 | ?1.49 | ?1.31 |
P88/MPa | ?2.40 | ?2.56 | ?2.26 |
枝条 Branch | |||
P12/MPa | ?1.47±0.10a | ?1.36±0.12a | ?1.90±0.12b |
P50/MPa | ?2.08±0.07a | ?2.01±0.10a | ?2.47±0.09b |
P88/MPa | ?2.62±0.06a | ?2.60±0.12a | ?2.94±0.06b |
根段 Root segment | |||
P12/MPa | ?0.72±0.05a | ?0.74±0.05a | ?0.84±0.12a |
P50/MPa | ?1.38±0.04a | ?1.46±0.07a | ?1.44±0.10a |
P88/MPa | ?2.16±0.08a | ?2.30±0.13a | ?2.07±0.11a |
leaf P50-branch P50 | 0.81 | 0.52 | 1.16 |
root P50- branch P50 | 0.70 | 0.55 | 1.03 |
Ψmiddy/MPa | ?1.17±0.07b | ?0.95±0.01a | ?1.41±0.03c |
HSMleaf/MPa | 0.10 | 0.54 | ?0.10 |
HSMbranch/MPa | 0.91 | 1.06 | 1.06 |
Table 3
The characteristic values of vessel anatomical traits in roots, branches and leaves (mean ± SE)"
项目 Item | K | Z | M |
导管解剖结构特征Vessel anatomical traits | |||
叶片Leaf | |||
DH/μm | 19.46±1.64a | 16.25±0.41a | 15.29±0.68a |
DV/μm | 18.20±1.42a | 13.62±0.58b | 13.50±0.50b |
枝条Branch | |||
DH/μm | 34.40±0.33a | 33.60±0.83a | 31.12±0.40b |
DV/μm | 31.02±0.22a | 30.75±0.62a | 28.87±0.43b |
VD/(N· mm?2) | 230±13a | 224±15a | 226±16a |
FL | 0.187 6±0.011 7a | 0.175 1±0.008 0a | 0.155 1±0.008 0a |
t/μm | 5.38±0.15a | 5.58±0.11a | 5.79±0.24a |
b/μm | 30.37±0.32a | 30.73±0.58a | 27.46±0.41b |
(t/b)2 | 0.032±0.002b | 0.033±0.003b | 0.044±0.002a |
根段Root segment | |||
DH/μm | 80.16±6.57a | 79.21±3.12a | 71.24±0.68a |
DV/μm | 72.14±5.72a | 69.8±2.34a | 63.42±1.00a |
VD/(N·mm?2) | 52±2b | 57±4b | 66±3a |
FL | 0.228 3±0.030 8a | 0.240 8±0.022 6a | 0.225 9±0.010 2a |
t/μm | 8.85±0.51a | 8.56±1.05a | 8.19±0.35a |
b/μm | 73.10±6.08a | 72.85±3.82a | 64.51±2.05a |
(t/b)2 | 0.016±0.000 8a | 0.015±0.0031a | 0.017±0.000 5a |
李和平. 2009. 植物显微技术. 2版. 北京: 科学出版社, 1-285. | |
Li H P. 2009. Plant microscopy technique. 2nd edition. Beijing: Science Press, 1-285. [in Chinese] | |
李 荣, 姜在民, 张硕新, 等 木本植物木质部栓塞脆弱性研究新进展. 植物生态学报, 2015, 39 (8): 838- 848.
doi: 10.17521/cjpe.2015.0080 |
|
Li R, Jiang Z M, Zhang S X, et al Recent advances in the study of xylem embolism vulnerability in woody plants. Chinese Journal of Plant Ecology, 2015, 39 (8): 838- 848.
doi: 10.17521/cjpe.2015.0080 |
|
张海昕, 李 姗, 张硕新, 等 4个杨树无性系木质部导管结构与栓塞脆弱性的关系. 林业科学, 2013, 49 (5): 54- 61.
doi: 10.11707/j.1001-7488.20130508 |
|
Zhang H Y, Li S, Zhang S X, et al Relationships between xylem vessel structure and embolism vulnerability in four Populus clones . Scientia Silvae Sinicae, 2013, 49 (5): 54- 61.
doi: 10.11707/j.1001-7488.20130508 |
|
赵 涵. 2021. 杨树水力学特性与生长速率及生物量的关系. 杨凌: 西北农林科技大学. | |
Zhao H. 2021. The relationships between poplar hydraulic traits and growth rate as well as biomass. Yangling: Northwest A&F University. [in Chinese] | |
Ahmad H B, Lens F, Capdeville G, et al Intraspecific variation in embolism resistance and stem anatomy across four sunflower (Helianthus annuus L.) accessions . Physiologia Plantarum, 2018, 163 (1): 59- 72.
doi: 10.1111/ppl.12654 |
|
Avila R T, Cardoso A A, Batz T A, et al Limited plasticity in embolism resistance in response to light in leaves and stems in species with considerable vulnerability segmentation. Physiologia Plantarum, 2021, 172 (4): 2142- 2152.
doi: 10.1111/ppl.13450 |
|
Bittencourt P R, Pereira L, Oliveira R S Pneumatic method to measure plant xylem embolism. Bio-protocol, 2018, 8 (20): 1- 14. | |
Blackman C J, Li X M, Choat B, et al Desiccation time during drought is highly predictable across species of Eucalyptus from contrasting climates . New Phytologist, 2019, 224 (2): 632- 643.
doi: 10.1111/nph.16042 |
|
Bouche P S, Delzon S, Choat B, et al. 2016. Are needles of Pinus pinaster more vulnerable to xylem embolism than branches? New insights from X-ray computed tomography. Plant, Cell and Environment, 39(4): 860−870. | |
Brodribb T J, Holbrook N M Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiology, 2003, 132 (4): 2166- 2173.
doi: 10.1104/pp.103.023879 |
|
Brodribb T J, Holbrook N M, Zwieniecki M A, et al Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima. New Phytologist, 2005, 165 (3): 839- 846.
doi: 10.1111/j.1469-8137.2004.01259.x |
|
Cai J, Hacke U, Zhang S X, et al What happens when stems are embolized in a centrifuge? Testing the cavitron theory. Physiologia Plantarum, 2010, 140 (4): 311- 320.
doi: 10.1111/j.1399-3054.2010.01402.x |
|
Cai J, Tyree M T. 2010. The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx. Plant, Cell and Environment, 33(7): 1059−1069. | |
Choat B, Jansen S, Brodribb T J, et al Global convergence in the vulnerability of forests to drought. Nature, 2012, 491 (7426): 752- 756.
doi: 10.1038/nature11688 |
|
Cochard H, Barigah S T, Kleinhentz M, et al. 2008. Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species? Journal of Plant Physiology, 165(9): 976−982. | |
Cochard H, Casella E, Mencuccini M Xylem vulnerability to cavitation varies among poplar and willow clones and correlates with yield. Tree Physiology, 2007, 27 (12): 1761- 1767.
doi: 10.1093/treephys/27.12.1761 |
|
Creek D, Blackman C J, Brodribb T J, et al. 2018. Coordination between leaf, stem, and root hydraulics and gas exchange in three arid-zone angiosperms during severe drought and recovery. Plant, Cell and Environment, 41(12): 2869−2881. | |
Eller C B, Barros F D, Bittencourt P R L, et al. 2018. Xylem hydraulic safety and construction costs determine tropical tree growth. Plant, Cell and Environment, 41(3): 548−562. | |
Fichot R, Barigah T S, Chamaillard S, et al. 2010. Common trade-offs between xylem resistance to cavitation and other physiological traits do not hold among unrelated Populus deltoids × Populus nigra hybrids. Plant, Cell and Environment, 33(9): 1553−1568. | |
Fichot R, Brignolas F, Cochard H, et al. 2015. Vulnerability to drought-induced cavitation in poplars: synthesis and future opportunities. Plant, Cell and Environment, 38(7): 1233−1251. | |
Hacke U G, Jacobsen A L, Pratt R B. 2009. Xylem function of arid-land shrubs from California, USA: an ecological and evolutionary analysis. Plant, Cell and Environment, 32(10): 1324−1333. | |
Hacke U G, Sperry J S, Wheeler J K, et al Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 2006, 26 (6): 689- 701.
doi: 10.1093/treephys/26.6.689 |
|
Hajek P, Leuschner C, Hertel D, et al Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus . Tree Physiology, 2014, 34 (7): 744- 756.
doi: 10.1093/treephys/tpu048 |
|
Hukin D, Cochard H, Dreyer E, et al. 2005. Cavitation vulnerability in roots and shoots: does Populus euphratica Oliv. , a poplar from arid areas of Central Asia, differ from other poplar species? Journal of Experimental Botany, 56(418): 2003−2010. | |
Jin Y, Wang C K, Zhou Z H Conifers but not angiosperms exhibit vulnerability segmentation between leaves and branches in a temperate forest. Tree Physiology, 2019, 39 (3): 454- 462.
doi: 10.1093/treephys/tpy111 |
|
Johnson D M, Wortemann R, McCulloh K A, et al A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiology, 2016, 36 (8): 983- 993.
doi: 10.1093/treephys/tpw031 |
|
Johnson K M, Brodersen C, Carins-Murphy M R, et al Xylem embolism spreads by single-conduit events in three dry forest angiosperm stems. Plant physiology, 2020, 184 (1): 212- 222.
doi: 10.1104/pp.20.00464 |
|
Klepsch M, Zhang Y, Kotowska M M, et al Is xylem of angiosperm leaves less resistant to embolism than branches? Insights from micro-CT, hydraulics, and anatomy. Journal of Experimental Botany, 2018, 69 (22): 5611- 5623. | |
Lemoine D, Cochard H, Granier A Within crown variation in hydraulic architecture in beech (Fagus sylvatica L . ):evidence for a stomatal control of xylem embolism. Annals of Forest Science, 2002, 59 (1): 19- 27. | |
Levionnois S, Ziegler C, Jansen S, et al Vulnerability and hydraulic segmentations at the stem–leaf transition: coordination across Neotropical trees. New Phytologist, 2020, 228 (2): 512- 524.
doi: 10.1111/nph.16723 |
|
Li X M, Delzon S, Torres-Ruiz J, et al Lack of vulnerability segmentation in four angiosperm tree species: evidence from direct X-ray microtomography observation. Annals of Forest Science, 2020, 77 (2): 1- 12. | |
Losso A, Bär A, Dämon B, et al Insights from in vivo micro-CT analysis: testing the hydraulic vulnerability segmentation in Acer pseudoplatanus and Fagus sylvatica seedlings . New Phytologist, 2019, 221 (4): 1831- 1842.
doi: 10.1111/nph.15549 |
|
Maherali H, Moura C F, Caldeira M C, et al. 2006. Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. Plant, Cell and Environment, 29(4): 571−583. | |
McDowell N, Pockman W T, Allen C D, et al. 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist, 178(4): 719−739. | |
Nardini A, Pedà G, La Rocca N Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences. New Phytologist, 2012, 196 (3): 788- 798.
doi: 10.1111/j.1469-8137.2012.04294.x |
|
Nolf M, Creek D, Duursma R, et al. 2015. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species. Plant, Cell and Environment, 38(12): 2652−2661. | |
Pammenter N W, Vander Willigen C A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiology, 1998, 18 (8): 589- 593. | |
Peguero-Pina J J, Sancho-Knapik D, Martin P, et al Evidence of vulnerability segmentation in a deciduous Mediterranean oak (Quercus subpyrenaica E.H. del Villar) . Trees-Structure and Function, 2015, 29 (6): 1917- 1927.
doi: 10.1007/s00468-015-1273-5 |
|
Pereira L, Bittencourt P R L, Pacheco V S, et al. 2020. The pneumatron: an automated pneumatic apparatus for estimating xylem vulnerability to embolism at high temporal resolution. Plant, Cell and Environment, 43(1): 131−142. | |
Rawlings J O, Cure W W The weibull function as a dose-response model to describe ozone effects on crop yields. Crop Science, 1985, 25, 807- 814.
doi: 10.2135/cropsci1985.0011183X002500050020x |
|
Rodriguez-Dominguez C M, Carins-Murphy M R, Lucani C, et al Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots. New Phytologist, 2018, 218 (3): 1025- 1035.
doi: 10.1111/nph.15079 |
|
Rosner S, Klein A, Müller U, et al Hydraulic and mechanical properties of young Norway spruce clones related to growth and wood structure. Tree Physiology, 2007, 27 (8): 1165- 1178.
doi: 10.1093/treephys/27.8.1165 |
|
Scholz F G, Bucci S J, Goldstein G Strong hydraulic segmentation and leaf senescence due to dehydration may trigger die-back in Nothofagus dombeyi under severe droughts: a comparison with the co-occurring Austrocedrus chilensis . Trees-Structure and Function, 2014, 28 (5): 1475- 1487.
doi: 10.1007/s00468-014-1050-x |
|
Skelton R P, Brodribb T J, Choat B Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation. New Phytologist, 2017, 214 (2): 561- 569.
doi: 10.1111/nph.14450 |
|
Skelton R P, Dawson T E, Thompson S E, et al Low vulnerability to xylem embolism in leaves and stems of North American oaks. Plant Physiology, 2018, 177 (3): 1066- 1077.
doi: 10.1104/pp.18.00103 |
|
Tyree M T, Cochard H, Cruiziat P, et al. 1993. Drought-induced leaf shedding in walnut: evidence for vulnerability segmentation. Plant, Cell and Environment, 16(7): 879−882. | |
Tyree M T, Ewers F W The hydraulic architecture of trees and other woody plants. New Phytologist, 1991, 119 (3): 345- 360.
doi: 10.1111/j.1469-8137.1991.tb00035.x |
|
Villagra M, Campanello P I, Bucci S J, et al Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species. Tree Physiology, 2013, 33 (12): 1308- 1318.
doi: 10.1093/treephys/tpt098 |
|
Wikberg J, Ögren E Interrelationships between water use and growth traits in biomass-producing willows. Trees-Structure and Function, 2004, 18 (1): 70- 76.
doi: 10.1007/s00468-003-0282-y |
|
Willson C J, Manos P S, Jackson R B Hydraulic traits are influenced by phylogenetic history in the drought-resistant, invasive genus Juniperus (Cupressaceae) . American Journal of Botany, 2008, 95 (3): 299- 314.
doi: 10.3732/ajb.95.3.299 |
|
Wu M, Zhang Y, Oya T, et al Root xylem in three woody angiosperm species is not more vulnerable to embolism than stem xylem. Plant and Soil, 2020, 450, 479- 495.
doi: 10.1007/s11104-020-04525-0 |
|
Zhao H, Jiang Z M, Zhang Y J, et al Hydraulic efficiency at the whole tree level stably correlated with productivity over years in 9 poplar hybrids clones. Forest Ecology and Management, 2021, 496, 1- 10. | |
Zhu S D, Liu H, Xu Q Y, et al. 2016. Are leaves more vulnerable to cavitation than branches? Functional Ecology, 30(11): 1740−1744. | |
Zimmermann M H Xylem structure and the ascent of sap. Science, 1983, 222 (4623): 1- 500. |
[1] | Weifeng Wang,Yuqi Zhao,Miaoqin Gao,Yuzheng Zong,Xingyu Hao. Leaf Photosynthesis and Carbon and Nitrogen Distribution of Populus×popularis‘35-44’ Young Cuttings in Response to Elevated CO2 Concentration and Temperature [J]. Scientia Silvae Sinicae, 2023, 59(2): 40-47. |
[2] | Minxia Ren,Tan Li,Ziheng Zhang,Yuexia Zeng,Lifeng Wang,Minsheng Yang,Junxia Liu. Effects of Transgenic BtCry1Ac and API gene in Poplar 107 on Diversity and Stability of Arthropod Community [J]. Scientia Silvae Sinicae, 2022, 58(4): 110-118. |
[3] | Youjing Zhang,Yueyang Li,Han Zhao,Yuwan Cheng,Wei Wang,Zaimin Jiang,Jing Cai. Relationship between Hydraulic Efficiency and Gas Exchange and Growth of Six Poplar Clones [J]. Scientia Silvae Sinicae, 2022, 58(11): 118-126. |
[4] | Weixi Zhang,Yanbo Wang,Changjun Ding,Wenxu Zhu,Xiaohua Su. Detection of Horizontal Transfer of the Exogenous Gene in Adult Trees of Transgenic Populus alba × P. berolinensis in a Field Trial and Successive Years of Monitoring of Soil Microorganism [J]. Scientia Silvae Sinicae, 2022, 58(1): 52-61. |
[5] | Fang Tang,Shutang Zhao,Lijuan Wang,Xueqin Song,Mengzhu Lu. Gene Expression of Secondary Vascular System Regeneration in Populus tomentosa [J]. Scientia Silvae Sinicae, 2021, 57(9): 52-65. |
[6] | Yuequ Chen,Qingzhen Liu,Limei Li,Yang Zhang,Jiao Han,Yong'an Zhang. Screening and Identification of Antagonistic Streptomyces for Biocontrol of Poplar Canker [J]. Scientia Silvae Sinicae, 2021, 57(7): 92-100. |
[7] | Yang Qu,Qin Guo,Tian Li,Ziyun Zhao,Haitao Yue,Jie Yang,Qiang Wang. Preparation and Characterization of Hot-Pressed Peanut Meal Based Adhesive [J]. Scientia Silvae Sinicae, 2021, 57(6): 144-149. |
[8] | Hui Liu,Xiaoqin Wu,Jianren Ye,Dan Chen. Phosphate-Dissolving Mechanisms of Pseudomonas fluorescens and Its Colonizing Dynamics in the Mycorrhizosphere of Poplars [J]. Scientia Silvae Sinicae, 2021, 57(3): 90-97. |
[9] | Changming Ma,Hanhan Zhang,Yu Han,Qingxing Meng,Jinsong Zhang,Yujie Ma. Error and Correction Formula of Granier's Original Formula to Calculate the Stem Sap Flux Density of Clone 107 Poplar [J]. Scientia Silvae Sinicae, 2021, 57(3): 161-169. |
[10] | Yongdong Zhou,Junfeng Hou. Moisture State and Migration Mechanism of High Moisture Content Poplar Lumber during Platen Drying [J]. Scientia Silvae Sinicae, 2020, 56(9): 104-111. |
[11] | Weibo Sun,Xindong Gong,Yan Zhou,Hongyan Li. Photosynthetic Characteristics of Transgenic Poplars with Maize PEPC and PPDK Gene at Young Plant Stage [J]. Scientia Silvae Sinicae, 2020, 56(7): 33-43. |
[12] | Jingwei He,Yiying Zhang,Chengming Tian,Dianguang Xiong,Yingmei Liang. Effects of Regional Landscape Pattern on the Epidemic of Poplar Rust Disease: A Case Study of Populus alba in Yanqing, Beijing [J]. Scientia Silvae Sinicae, 2020, 56(4): 99-108. |
[13] | Wenxin Liu,Zhicheng Chen,Yongxin Dai,Xianchong Wan. Responses of Photosynthetic Physiological Process of a Poplar with Overexpressed PIP1 Gene to Drought Stress and Rehydration [J]. Scientia Silvae Sinicae, 2020, 56(2): 69-78. |
[14] | Kuocheng Shen,Qianwen Chen,Mei Qi,Zijia Peng,Junfeng Fan,Zhongdong Yu. Correlation between Poplar Leaf Structure and the Resistance to Rust Infection [J]. Scientia Silvae Sinicae, 2020, 56(12): 75-82. |
[15] | Weibo Sun,Zhaoqiong Wei,Xiaoxing Ma,Hui Wei,Qiang Zhuge. Safety Assessment of a Field Trial of Three Types of Transgenic Poplar Nanlin895 [J]. Scientia Silvae Sinicae, 2020, 56(10): 53-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||