林业科学 ›› 2025, Vol. 61 ›› Issue (6): 85-98.doi: 10.11707/j.1001-7488.LYKX20240612
收稿日期:
2024-10-19
出版日期:
2025-06-10
发布日期:
2025-06-26
通讯作者:
郭福涛
E-mail:guofutao@126.com
基金资助:
Jiayu Chen,Zhehan Li,Pingxin Zhao,Xiaoyu Zhan,Yuanfan Ma,Futao Guo*()
Received:
2024-10-19
Online:
2025-06-10
Published:
2025-06-26
Contact:
Futao Guo
E-mail:guofutao@126.com
摘要:
目的: 揭示林火烟气沉降背景下土壤理化性质对杉木挥发性有机物释放特征的影响,探讨火后土壤-植物-大气之间的相互作用,为火后生态修复与大气环境评估提供科学依据。方法: 选择福建省三明市尤溪县国有林场的杉木幼苗作为研究对象,设置烟气空白组、低浓度组和高浓度组,分别燃烧0、50和150 g可燃物进行烟气处理。在密闭烟气处理后的第7、30和90天,利用预浓缩系统和气相色谱-质谱联用仪测定植物挥发物的化学组成及释放速率,连续监测土壤理化性质变化,并运用结构方程模型(SEM)分析林火烟气浓度、杉木挥发性有机物释放速率、土壤理化性质间的潜在关联。结果: 1)林火烟气处理后的第7天烟气浓度对10~20 cm土层氮含量和10~20 cm土层pH值有显著正效应,第30天时对10~20 cm土层氮含量有显著负效应,而对10~20 cm土层pH值有显著正效应。第90天时对10~20 cm土层pH有显著负效应。随烟气处理后时间的推移,除0~20 cm土层中磷含量和0~10 cm土层的低浓度组中碳含量在第30天下降并于90天回升外,0~20 cm土层中氮含量、pH值、电导率和10~20 cm土层碳含量均呈下降趋势。2)杉木释放出8种重要的烯烃,包括1-丁烯、1-己烯、反式-2-丁烯、顺式-2-丁烯、1-戊烯、异戊二烯、反式-2-戊烯和顺式-2-戊烯,其中异戊二烯、1-己烯、1-戊烯和1-丁烯的释放速率最高,处理后30天时各杉木挥发性有机物释放速率显现差异,90天时趋于一致。烟气处理后30天时烟气浓度与异戊二烯的释放速率有显著负相关(P<0.01)。处理后90天时反式-2-丁烯的释放速率相较空白组显著下降(P<0.01)。在低浓度处理组中,处理后第7天时显著提高了1-丁烯的释放速率(P<0.01)。3)林火烟气改变了土壤的理化性质,土壤氮、磷元素含量、pH值与杉木挥发性有机物的释放存在一定联系,10~20 cm土层氮含量对异戊二烯的释放有直接的显著正效应(P<0.001),0~10 cm土层磷含量对异戊二烯的释放速率有直接的显著负效应(P<0.01),10~20 cm土层pH值对异戊二烯的释放速率有直接的极显著负效应(P<0.001)。结论: 在林火烟气沉降背景下,土壤理化性质(尤其是土壤氮含量、磷含量、pH值)的动态变化对杉木的异戊二烯等挥发性有机物的排放具有显著调控作用。这些发现丰富了林火发生后土壤-植物-大气环境的理论,也可为火后生态管理提供建议,如适量补充氮肥可以增强植物的抗氧化能力,合理地施磷和调节土壤pH值有助于控制植物挥发性有机物的排放,降低对区域空气质量的影响。
中图分类号:
陈佳宇,李哲瀚,赵平欣,詹笑宇,马远帆,郭福涛. 林火烟气沉降背景下土壤理化性质对杉木挥发性有机物排放特征的影响[J]. 林业科学, 2025, 61(6): 85-98.
Jiayu Chen,Zhehan Li,Pingxin Zhao,Xiaoyu Zhan,Yuanfan Ma,Futao Guo. Effects of Soil Physicochemical Properties on Emission Characteristics of Biogenic Volatile Organic Compounds from Cunninghamia lanceolata under Forest Fire Smoke Deposition[J]. Scientia Silvae Sinicae, 2025, 61(6): 85-98.
图7
林火烟气浓度、BVOCs释放速率以及土壤理化性质之间的结构方程示意图 图 a 中红色箭头表示二者之间存在负相关关系,蓝色箭头表示存在正相关关系。图b中:“S1”表示0~10 cm土层中的土壤性质指标,“S2”表示10~20 cm土层中的土壤性质指标;红色箭头表示二者之间存在显著负相关关系,蓝色箭头表示存在显著正相关关系,灰色线代表无显著相关关系;箭头颜色越深,表示二者相关性越强。在a、b两图中:单向箭头代表单向影响,双向箭头代表互相影响;pvalue、gfi、cfi、rmr、srmr、rmsea为结构方程常见的模型拟合指标,用于评估模型的拟合优度和质量(pvalue 表示显著性水平,pvalue >0.05 表示模型与数据拟合良好;gfi 和 cfi 用于评价模型拟合优度,gfi ≥ 0.90 和 cfi ≥ 0.90 表示拟合良好;rmr 和 srmr 衡量模型残差大小,理想值接近 0;rmsea 衡量模型拟合质量,rmsea ≤ 0.05 表示拟合优,0.05~0.08 表示拟合可接受)。*:P<0.05;**:P<0.01;***:P<0.001。"
黄爱葵, 李 楠. 植物源挥发性有机物的生态意义 (综述). 亚热带植物科学, 2011, 40 (3): 81- 86. | |
Huang A K, Li N. The ecological significance of botanical volatile organic compounds. Subtropical Plant Science, 2011, 40 (3): 81- 86. | |
黄 娟, 莫江明, 孔国辉, 等. 植物源挥发性有机物对氮沉降响应研究展望. 生态学报, 2011, 31 (21): 6616- 6623. | |
Huang J, Mo J M, Kong G H, et al. Research perspective for the effects of nitrogen deposition on biogenic volatile organic compounds. Acta Ecologica Sinica, 2011, 31 (21): 6616- 6623. | |
倪荣新, 宋其岩, 吴英俊, 等. 木荷生物防火林带与杉木林可燃物数量比较研究. 浙江林业科技, 2015, 35 (1): 45- 48. | |
Ni R X, Song Q Y, Wu Y J, et al. Comparison on fuel load under Schima superba and Cunninghamia lanceolata stands. Journal of Zhejiang Forestry Science and Technology, 2015, 35 (1): 45- 48. | |
俞新妥. 2000. 中国杉木90年代的研究进展 Ⅰ. 杉木研究的特点及有关基础研究的综述. 福建林学院学报, (1): 87−96. | |
Yu X T. 2000. A summary of the studies on Chinese fir in 1990’s Ⅰ. The distinguishing features of chinese fir research and research development on basic research. Journal of Forest and Environment, (1): 87−96. [in Chinese] | |
朱忠盼, 郭雨萱, 魏 帽, 等. 可燃物化学性质对燃烧释放 PM2.5 元素成分的影响. 中国环境科学, 2022, 42 (5): 2050- 2059. | |
Zhu Z P, Guo Y X, Wei M, et al. Effects of chemical properties of fuel on the composition of PM2.5 released by combustion. China Environmental Science, 2022, 42 (5): 2050- 2059. | |
Adame J A, Lope L, Hidalgo P J, et al. Study of the exceptional meteorological conditions, trace gases and particulate matter measured during the 2017 forest fire in Doñana Natural Park, Spain. Science of the Total Environment, 2018, 645, 710- 720.
doi: 10.1016/j.scitotenv.2018.07.181 |
|
Aydin Y M, Yaman B, Koca H, et al. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: determination of specific emission rates for thirty-one tree species. Science of the Total Environment, 2014, 490, 239- 253.
doi: 10.1016/j.scitotenv.2014.04.132 |
|
Bodí M B, Martin D A, Balfour V N, et al. Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, 2014, 130, 103- 127.
doi: 10.1016/j.earscirev.2013.12.007 |
|
Bond W J, Keeley J E. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution, 2005, 20 (7): 387- 394. | |
Davies S J, Unam L. Smoke-haze from the 1997 Indonesian forest fires: effects on pollution levels, local climate, atmospheric CO2 concentrations, and tree photosynthesis. Forest Ecology and Management, 1999, 124 (2/3): 137- 144. | |
Dudareva N, Klempien A, Muhlemann J K, et al. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 2013, 198 (1): 16- 32.
doi: 10.1111/nph.12145 |
|
Feng X, Chen Y, Qi Y, et al. Nitrogen enhanced photosynthesis of Miscanthus by increasing stomatal conductance and phospho enol pyruvate carboxylase concentration. Photosynthetica, 2012, 50 (4): 577- 586.
doi: 10.1007/s11099-012-0061-3 |
|
Germon A, Laclau J, Robin A, et al. Tamm review: deep fine roots in forest ecosystems: why dig deeper?. Forest Ecology and Management, 2020, 466, 118- 135. | |
Gershenzon J. Metabolic costs of terpenoid accumulation in higher plants. Journal of Chemical Ecology, 1994, 20 (6): 1281- 1328.
doi: 10.1007/BF02059810 |
|
Gertini G. 2005. Effects of fire on properties of forest soils: a review. Oecologia, 143(1): 1−10. | |
Granged A J, Zavala L M, Jordán A, et al. Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: a 3-year study. Geoderma, 2011, 164 (1/2): 85- 94. | |
Guenther A B, Jiang X, Heald C L, et al. 2012. The model of emissions of gases and aerosols from nature version 2.1 (megan2. 1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5(6): 1471-1492. | |
Guenther A, Hewitt C N, Erickson D, et al. A global model of natural volatile organic compound emissions. Journal of Geophysical Research: Atmospheres, 1995, 100 (D5): 8873- 8892.
doi: 10.1029/94JD02950 |
|
Guo L, Ma Y, Tigabu M, et al. Emission of atmospheric pollutants during forest fire in boreal region of China. Environmental Pollution, 2020, 264, 114709.
doi: 10.1016/j.envpol.2020.114709 |
|
He W, Zhang M, Jin G, et al. Effects of nitrogen deposition on nitrogen-mineralizing enzyme activity and soil microbial community structure in a Korean pine plantation. Microbial Ecology, 2021, 81 (2): 410- 424.
doi: 10.1007/s00248-020-01595-6 |
|
Hu W, Tan J, Shi X, et al. Nutrient addition and warming alter the soil phosphorus cycle in grasslands: a global meta-analysis. Journal of Soils and Sediments, 2022, 22 (10): 2608- 2619.
doi: 10.1007/s11368-022-03276-y |
|
Huang X, Lai J, Liu Y, et al. Biogenic volatile organic compound emissions from Pinus massoniana and Schima superba seedlings: their responses to foliar and soil application of nitrogen. Science of the Total Environment, 2020, 705, 135761.
doi: 10.1016/j.scitotenv.2019.135761 |
|
Iijima Y. Recent advances in the application of metabolomics to studies of biogenic volatile organic compounds (BVOC) produced by plant. Metabolites, 2014, 4 (3): 699- 721.
doi: 10.3390/metabo4030699 |
|
Iriti M, Faoro F. Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. International Journal of Molecular Sciences, 2009, 10 (8): 3371- 3399.
doi: 10.3390/ijms10083371 |
|
Jing X, Lun X, Fan C, et al. Emission patterns of biogenic volatile organic compounds from dominant forest species in Beijing, China. Journal of Environmental Sciences, 2020, 95, 73- 81.
doi: 10.1016/j.jes.2020.03.049 |
|
Kesselmeier J, Staudt M. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. Journal of Atmospheric Chemistry, 1999, 33, 23- 88.
doi: 10.1023/A:1006127516791 |
|
Kobayashi K, Awai K, Nakamura M, et al. Type-B monogalactosyldiacylglycerol synthases are involved in phosphate starvation-induced lipid remodeling, and are crucial for low-phosphate adaptation. The Plant Journal, 2009, 57 (2): 322- 331.
doi: 10.1111/j.1365-313X.2008.03692.x |
|
Körner C. Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist, 2006, 172 (3): 393- 411.
doi: 10.1111/j.1469-8137.2006.01886.x |
|
Li L, Bai G, Han H, et al. Localized biogenic volatile organic compound emission inventory in China: a comprehensive review. Journal of Environmental Management, 2024, 353, 120121.
doi: 10.1016/j.jenvman.2024.120121 |
|
Loreto F, Centritto M, Barta C, et al. 2007. The relationship between isoprene emission rate and dark respiration rate in white poplar (Populus alba L. ) leaves. Plant, Cell & Environment, 30(5): 662−669. | |
Loreto F, Schnitzler J. Abiotic stresses and induced BVOCs. Trends in Plant Science, 2010, 15 (3): 154- 166.
doi: 10.1016/j.tplants.2009.12.006 |
|
Marais E A, Jacob D J, Jimenez J L, et al. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls. Atmospheric Chemistry and Physics, 2016, 16 (3): 1603- 1618.
doi: 10.5194/acp-16-1603-2016 |
|
Mclauchlan K K, Higuera P E, Miesel J, et al. Fire as a fundamental ecological process: research advances and frontiers. Journal of Ecology, 2020, 108 (5): 2047- 2069.
doi: 10.1111/1365-2745.13403 |
|
Mohanty S, Grimm B, Tripathy B C. Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Planta, 2006, 224 (3): 692- 699.
doi: 10.1007/s00425-006-0248-6 |
|
Niinemets Ü, Seufert G, Steinbrecher R, et al. A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in Mediterranean evergreen Quercus species. New Phytologist, 2002, 153 (2): 257- 275.
doi: 10.1046/j.0028-646X.2001.00324.x |
|
Nizhelskiy M S, Kazeev K S, Vilkova V V, et al. Effect of smoke caused by fires on the enzymatic activity of forest soils in the North Caucasus (Russian Federation). Soil Systems, 2023, 7 (3): 77.
doi: 10.3390/soilsystems7030077 |
|
Okoshi R, Rasheed A, Reddy G C, et al. Size and mass distributions of ground-level sub-micrometer biomass burning aerosol from small wildfires. Atmospheric Environment, 2014, 89, 392- 402.
doi: 10.1016/j.atmosenv.2014.01.024 |
|
Ormeño E, Baldy V, Ballini C, et al. Production and diversity of volatile terpenes from plants on calcareous and siliceous soils: effect of soil nutrients. Journal of chemical ecology, 2008, 34, 1219- 1229.
doi: 10.1007/s10886-008-9515-2 |
|
Ormeño E, Fernandez C. Effect of soil nutrient on production and diversity of volatile terpenoids from plants. Current Bioactive Compounds, 2012, 8 (1): 71- 79.
doi: 10.2174/157340712799828188 |
|
Owen S M, Peñuelas J. Response to Firn and Jones: volatile isoprenoids, a special case of secondary metabolism. Trends in Plant Science, 2006, 11 (3): 113- 114.
doi: 10.1016/j.tplants.2006.01.002 |
|
Peñuelas J, Llusià J. BVOCs: plant defense against climate warming?. Trends in Plant Science, 2003, 8 (3): 105- 109.
doi: 10.1016/S1360-1385(03)00008-6 |
|
Peñuelas J, Staudt M. BVOCs and global change. Trends in Plant Science, 2010, 15 (3): 133- 144.
doi: 10.1016/j.tplants.2009.12.005 |
|
Pereira P, úbeda X, Martin D, et al. Wildfire effects on extractable elements in ash from a Pinus pinaster forest in Portugal. Hydrological Processes, 2014, 28 (11): 3681- 3690.
doi: 10.1002/hyp.9907 |
|
Pietri J A, Brookes P C. Nitrogen mineralisation along a pH gradient of a silty loam UK soil. Soil Biology and Biochemistry, 2008, 40 (3): 797- 802.
doi: 10.1016/j.soilbio.2007.10.014 |
|
Ren Y, Qu Z, Du Y, et al. Air quality and health effects of biogenic volatile organic compounds emissions from urban green spaces and the mitigation strategies. Environmental Pollution, 2017, 230, 849- 861.
doi: 10.1016/j.envpol.2017.06.049 |
|
Silver G M, Fall R. Enzymatic synthesis of isoprene from dimethylallyl diphosphate in aspen leaf extracts. Plant Physiology, 1991, 97 (4): 1588- 1591.
doi: 10.1104/pp.97.4.1588 |
|
Sinsabaugh R L, Lauber C L, Weintraub M N, et al. Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 2008, 11 (11): 1252- 1264.
doi: 10.1111/j.1461-0248.2008.01245.x |
|
Siwko M E, Marrink S J, de Vries A H, et al. Does isoprene protect plant membranes from thermal shock? A molecular dynamics study. Biochimica Et Biophysica Acta (BBA)-Biomembranes, 2007, 1768 (2): 198- 206.
doi: 10.1016/j.bbamem.2006.09.023 |
|
Stohl A, Berg T, Burkhart J F, et al. Arctic smoke–record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmospheric Chemistry and Physics, 2007, 7 (2): 511- 534.
doi: 10.5194/acp-7-511-2007 |
|
Úbeda X, Lorca M, Outeiro L R, et al. Effects of prescribed fire on soil quality in Mediterranean grassland (Prades Mountains, north-east Spain). International Journal of Wildland Fire, 2005, 14 (4): 379- 384.
doi: 10.1071/WF05040 |
|
Vega J A, Fontúrbel T, Merino A, et al. Testing the ability of visual indicators of soil burn severity to reflect changes in soil chemical and microbial properties in pine forests and shrubland. Plant and Soil, 2013, 369 (1/2): 73- 91. | |
Wan P, Zhao X, Ou Z, et al. Forest management practices change topsoil carbon pools and their stability. Science of The Total Environment, 2023, 902, 166093.
doi: 10.1016/j.scitotenv.2023.166093 |
|
Wu J, Zhu J, Li W, et al. Estimation of the PM2.5 health effects in China during 2000-2011. Environmental Science and Pollution Research, 2017, 24 (11): 10695- 10707.
doi: 10.1007/s11356-017-8673-6 |
|
Xu L, Guo H, Boyd C M, et al. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proceedings of the National Academy of Sciences, 2015, 112 (1): 37- 42.
doi: 10.1073/pnas.1417609112 |
|
Yang W, Zhang B, Wu Y, et al. Effects of soil drought and nitrogen deposition on BVOC emissions and their O3 and SOA formation for Pinus thunbergii. Environmental Pollution, 2023, 316, 120693.
doi: 10.1016/j.envpol.2022.120693 |
|
Yang X, Ma Y, Wang G, et al. Characterization of pollutants emitted during burning of eight main tree species in subtropical China. Atmospheric Environment, 2019, 215, 116899.
doi: 10.1016/j.atmosenv.2019.116899 |
|
Zhan X, Huang Z, Tigabu M, et al. 2025. Plants can directly absorb carbon derived from deposition of wildfire smoke. Plant and Soil, 1−15. | |
Zhang C, Guo H, Huang H, et al. Atmospheric nitrogen deposition and its responses to anthropogenic emissions in a global hotspot region. Atmospheric Research, 2021b, 248, 105137.
doi: 10.1016/j.atmosres.2020.105137 |
|
Zhang M, Wang W, Tang L, et al. Impacts of prescribed burning on urban forest soil: minor changes in net greenhouse gas emissions despite evident alterations of microbial community structures. Applied Soil Ecology, 2021a, 158, 103780.
doi: 10.1016/j.apsoil.2020.103780 |
|
Zhu Z, Ma Y, Tigabu M, et al. Effects of forest fire smoke deposition on soil physico-chemical properties and bacterial community. Science of the Total Environment, 2024, 909, 168592.
doi: 10.1016/j.scitotenv.2023.168592 |
[1] | 刘明彤,庄和必,王紫彤,石帅宾,刘晓娟,林二培,胡现铬,黄华宏. 杉木次生壁发育调控转录因子基因ClNAC40的生物学功能[J]. 林业科学, 2025, 61(2): 131-141. |
[2] | 何江,覃林. 气候敏感的杉木天然林林分进界模型[J]. 林业科学, 2025, 61(1): 70-80. |
[3] | 杨淑雅,王镜如,朱滢滢,伊力塔,刘美华. 杉木与浙江楠混交对根系分泌物和丛枝菌根真菌群落结构的影响[J]. 林业科学, 2024, 60(9): 59-68. |
[4] | 都亚敏,李珠,蒋佳荔,殷方宇,吕建雄. 吸湿解吸循环过程中木材水分吸附特性[J]. 林业科学, 2024, 60(9): 150-158. |
[5] | 李林鑫,杨贵云,郭昊澜,董强,李明,马祥庆,吴鹏飞. 繁殖方式对杉木幼苗根系不同序级生物量、形态性状和碳氮含量的影响[J]. 林业科学, 2024, 60(7): 47-55. |
[6] | 阮颖超,苏比·热西塔洪,林熙,李明,范少辉,冯随起,陈志云,马祥庆,何宗明. 修枝强度对杉木人工林无节材形成及质量的影响[J]. 林业科学, 2024, 60(6): 50-59. |
[7] | 吕梓晴, 段爱国. 不同产区杉木生物量与碳储量模型[J]. 林业科学, 2024, 60(2): 1-11. |
[8] | 杨梦佳,邹显花,郭志娟,彭钊,何妍,彭志远,姚必达,黄国敏,朱丽琴,黄荣珍. 基于13C示踪的2个杉木家系幼苗光合碳分配动态[J]. 林业科学, 2024, 60(12): 35-46. |
[9] | 柳利利,韩磊,王娜娜,周鹏,马云蕾,马军. 宁夏河东沙区柠条和新疆杨在纯林和混交林中的水分利用策略[J]. 林业科学, 2024, 60(10): 40-49. |
[10] | 贾辉,朱敏,余再鹏,万晓华,傅彦榕,王思荣,邹秉章,黄志群. 亚热带树种在未成林造林地的凋落物量和周转与叶片性状的关系[J]. 林业科学, 2024, 60(1): 12-18. |
[11] | 李晓燕,段爱国,张建国. 不同产区杉木人工林初植密度对优势高生长的影响[J]. 林业科学, 2023, 59(8): 22-29. |
[12] | 屈彦成,江怡航,姜彦妍,张建国,罗安利,张雄清. 基于胸高处边材面积、胸径和冠基部直径的杉木单木叶生物量预测模型[J]. 林业科学, 2023, 59(7): 106-114. |
[13] | 崔朝伟,彭丽鸿,马东旭,王佳琪,江祥庆,江先桂,马祥庆,林开敏. 间伐对杉木人工林土壤微生物残体碳的影响[J]. 林业科学, 2023, 59(5): 41-52. |
[14] | 吴祝华,宋娟,朱树林,赵邢,杨学祥,任嘉红,陈凤毛. 植物促生微生物对枫香叶色素组成和根际微生物群落的影响[J]. 林业科学, 2023, 59(12): 125-136. |
[15] | 赵文菲,曹小玉,谢政锠,庞一凡,孙亚萍,李际平,莫永俊,袁达. 基于结构方程模型的杉木公益林林分空间结构评价[J]. 林业科学, 2022, 58(8): 76-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||