林业科学 ›› 2025, Vol. 61 ›› Issue (1): 70-80.doi: 10.11707/j.1001-7488.LYKX20230538
收稿日期:
2023-11-13
出版日期:
2025-01-25
发布日期:
2025-02-09
通讯作者:
覃林
E-mail:nilniq@163.com
基金资助:
Received:
2023-11-13
Online:
2025-01-25
Published:
2025-02-09
Contact:
Lin Qin
E-mail:nilniq@163.com
摘要:
目的: 构建气候敏感的杉木天然林林分进界模型,为该区域天然次生林实施科学修复和抚育措施进而提高林分质量、助力“双碳”战略目标实现提供科学指导。方法: 基于湖南省第八次(2009年)和第九次(2014年)国家森林资源连续清查数据,筛选出杉木天然林样地784块,选取林分因子、立地因子和气象因子作为协变量,以负二项(NB)模型为基础模型,考虑到进界数据过度离散的特点,引入零膨胀模型和Hurdle模型,构建零膨胀泊松(ZIP)模型、零膨胀负二项(ZINB)模型、Hurdle-泊松(HP)模型和Hurdle-负二项(HNB)模型。为解决重复测量和分层导致可能存在的数据自相关性和异方差性问题,在上述5种模型基础上,引入样地所在县域作为随机效应,构建广义非线性混合效应模型,采用十折交叉验证法对模型进行检验。结果: 单木所属树种的胸高断面积(Bai)、土层厚度(ST)、海拔(EL)和年均降水量(MAP)均显著影响杉木林分进界。负二项复合模型(NB、ZINB和HNB模型)在模拟杉木林分进界方面的表现明显优于泊松复合模型(ZIP和HP模型);ZINB和HNB模型的拟合效果优于NB模型,ZINB模型的拟合效果略优于HNB模型;引入县域随机效应后,NB、ZIP、ZINB和HP模型的拟合效果均显著优于基础模型,其中以ZINB 混合效应模型拟合效果最好,十折交叉验证结果进一步证明混合效应模型优于基础模型。结论: 单木所属树种的胸高断面积、土层厚度、海拔和年均降水量是影响林木进界概率和数量的重要因子,构建的气候敏感的杉木天然林林分进界模型具有一定生物学意义和统计可靠性,可为该区域气候变化背景下的天然次生林生态修复和中幼林抚育间伐提供科学依据,有助于精准提升森林质量,助力“双碳”战略目标如期实现。
中图分类号:
何江,覃林. 气候敏感的杉木天然林林分进界模型[J]. 林业科学, 2025, 61(1): 70-80.
Jiang He,Lin Qin. Climate-Sensitive Tree Recruitment Model for Natural Cunninghamia lanceolata Forests[J]. Scientia Silvae Sinicae, 2025, 61(1): 70-80.
表1
杉木样地主要林分因子统计量"
变量 Variables | 变量符号 Variable symbol | 最小值 Min. | 最大值 Max. | 平均值 Mean | 标准差 Std. |
单木所属树种的胸高断面积 Basal area of the tree species/m2 | Bai | 0 | 1.63 | 0.16 | 0.23 |
林分平均年龄Mean age/a | A | 2 | 79 | 20.19 | 9.91 |
林分平均胸径Quadratic mean diameter/cm | Dg | 6.30 | 21.70 | 11.60 | 2.86 |
林分断面积Basal area /(m2·hm?2) | BA | 1.51 | 40.33 | 10.87 | 6.91 |
林分密度Stand density/(trees·hm?2) | NT | 149.93 | 3 523.24 | 1 015.75 | 541.34 |
海拔Elevation/m | EL | 23 | 478.98 | 292.98 | |
坡度Slope /(°) | SL | 0 | 60 | 27.46 | 10.61 |
土层厚度Soil thickness/cm | ST | 8 | 150 | 62.35 | 20.85 |
腐殖质厚度Humus thickness/cm | HT | 0 | 52 | 5.80 | 6.21 |
表2
气候变量描述及其统计量"
变量名称Variable | 描述 Description | 最小值 Min. | 最大值 Max. | 平均值 Mean | 标准差 Std. |
MAT | 年均气温Mean annual temperature/℃ | 11.52 | 19.28 | 17.01 | 1.17 |
MWMT | 最热月平均气温Mean warmest month temperature/℃ | 22.22 | 30.90 | 27.75 | 1.59 |
MCMT | 最冷月平均气温Mean coldest month temperature/℃ | ?0.88 | 7.62 | 4.48 | 1.02 |
TD | 平均温差Temperature difference between MWMT and MCMT/℃ | 17.98 | 25.72 | 23.27 | 1.21 |
MAP | 年均降水量Mean annual precipitation/℃ | 1 045.40 | 2 371.20 | 1 439.79 | 197.48 |
AHM | 湿热指数Annual heat:moisture index (MAT+10)/(MAP/1 000) | 11.08 | 26.10 | 19.54 | 2.71 |
DD_0 | 0 ℃以下天数Degree-days below 0 ℃, chilling degree-days/d | 1.80 | 98.00 | 9.61 | 9.00 |
DD5 | 5 ℃以上天数Degree-days above 5 ℃, growing degree-days/d | 2 810.80 | 5 193.00 | 4 437.81 | 381.34 |
DD_18 | 18 °C以下天数Degree-days below 18 ℃, heating degree-days/d | 1 074.80 | 2 709.40 | 1 511.71 | 208.85 |
DD18 | 18 °C以上天数Degree-days above 18 ℃, cooling degree-days/d | 346.80 | 1 615.40 | 1 152.86 | 232.15 |
NFFD | 无霜期天数The number of frost-free days/d | 274.80 | 354.40 | 339.35 | 8.97 |
PAS | 上一年8月至当年7月间的降雪量 Precipitation as snow between August in previous year and July in current year/mm | 1.80 | 59.80 | 6.21 | 5.24 |
EMT | 30年来的极端低温Extreme minimum temperature over 30 years/℃ | ?11.10 | ?0.60 | ?3.97 | 1.46 |
EXT | 30年来的极端高温Extreme maximum temperature over 30 years/℃ | 30.50 | 37.80 | 35.78 | 1.13 |
Eref | 哈格里夫降水指数Hargreaves reference evaporation | 855.40 | 1 329.60 | 1 167.90 | 58.05 |
CMD | 哈格里夫水分缺失指数Hargreaves climatic moisture deficit | 25.80 | 331.40 | 195.44 | 55.70 |
表3
杉类林分进界基础模型拟合结果①"
参数Parameter | NB模型 NB model | ZIP模型 ZIP model | ZINB模型 ZINB model | HP模型 HP model | HNB模型 HNB model | |
计数部分 Count component | 截距Intercept | ?11.138 (3.602**) | ?10.980 (0.880***) | ?11.080 (3.226***) | ?10.980 (0.880***) | ?13.129 (3.809***) |
Bai | 2.486 (0.307***) | 0.324 (0.065***) | 0.707 (0.294*) | 0.321 (0.065***) | 0.416 (0.322) | |
ST | 0.016 (0.003***) | 0.006 (0.001***) | 0.012 (0.004***) | 0.006 (0.001***) | 0.011 (0.004*) | |
ln(EL) | ?0.555 (0.109***) | ?0.361 (0.026***) | ?0.551 (0.110***) | ?0.360 (0.026***) | ?0.464 (0.126***) | |
ln(MAP) | 1.970 (0.518***) | 2.023 (0.125***) | 2.082 (0.453***) | 2.023 (0.125***) | 2.303 (0.532***) | |
log(θ) | ?0.673 (0.074***) | ?0.850 (0.203***) | ||||
零部分 Zero component | 截距Intercept | ?0.027 (0.072***) | 1.713 (0.220***) | 0.020 (0.071) | ?1.247 (0.249***) | |
Bai | ?376.290 (114.996**) | 4.752 (0.580***) | ||||
ST | 0.011 (0.004**) | |||||
AIC | 3 375.47 | 5 845.79 | 3 135.69 | 5 846.55 | 3 305.60 | |
BIC | 3 403.46 | 5 873.77 | 3 173.01 | 5 874.53 | 3 347.58 | |
logLik | ?1 681.74 (df=6) | ?2 916.89 (df=6) | ?1 559.85 (df=8) | ?2 917.27 (df=6) | ?1 643.80 (df=9) |
表4
杉木进界混合效应模型的参数估计与拟合统计"
参数 Parameter | NB混合效应模型 NB generalised nonlinear mixed-effects model | ZIP混合效应模型 ZIP generalised nonlinear mixed-effects model | ZINB混合效应模型 ZINB generalised nonlinear mixed-effects model | HP混合效应模型 HP generalised nonlinear mixed-effects model | HNB混合效应模型 HNB generalised nonlinear mixed-effects model | |
计数部分 Count component | 截距Intercept | ?9.552 (4.646*) | ?2.093 (2.046) | ?10.059 (3.880**) | ?2.294 (1.995) | ?12.969 (4.066**) |
Bai | 2.559 (0.448***) | 0.251 (0.072***) | 0.744 (0.298*) | 0.235 (0.072**) | 0.441 (0.323) | |
ST | 0.014 (0.004**) | 0.004 (0.001**) | 0.010 (0.004**) | 0.004 (0.001**) | 0.010 (0.005*) | |
ln(EL) | ?0.436 (0.149**) | ?0.164 (0.059**) | ?0.533 (0.127***) | ?0.165 (0.058**) | ?0.449 (0.135***) | |
ln(MAP) | 1.651 (0.688*) | 0.628 (0.316*) | 1.935 (0.561***) | 0.665 (0.308*) | 2.272 (0.576***) | |
零部分 Zero component | 截距Intercept | -0.076 (0.074) | 1.712 (0.219***) | -0.020 (0.071) | 1.247 (0.249***) | |
Bai | ?385.152 (117.560**) | ?4.752 (0.580***) | ||||
ST | ?0.011 (0.004**) | |||||
σ2 | 0.227 | 0.302 | 0.091 | 0.258 | 0.031 | |
AIC | 3 366.42 | 5 480.53 | 3 133.31 | 5 489.88 | 3 307.25 | |
BIC | 3 399.07 | 5 513.19 | 3 175.29 | 5 522.53 | 3 353.90 | |
logLik | ?1 676.21 (df=7) | ?2 733.27 (df=7) | ?1 557.66 (df=9) | ?2 737.94 (df=7) | ?1 643.63 (df=10) | |
χ2 | 11.05*** | 367.25*** | 4.38* | 358.67*** | 0.35 |
郭常酉, 郭宏仙, 王宝华. 基于气候因子的杉木单木胸径生长模型构建. 南京林业大学学报(自然科学版), 2023, 47 (1): 47- 56. | |
Guo C Y, Guo H X, Wang B H. Study on increment model of individual-tree diameter of Cunninghamia lanceolata in consideration of climatic factors. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47 (1): 47- 56. | |
雷相东, 陆元昌, 张会儒, 等. 抚育间伐对落叶松云冷杉混交林的影响. 林业科学, 2005, 41 (4): 78- 85.
doi: 10.3321/j.issn:1001-7488.2005.04.014 |
|
Lei X D, Lu Y C, Zhang H R, et al. Effects of thinning on mixed stands of Larix olgensis, Abies nephrolepis and Picea jazoensis. Scientia Silvae Sinicae, 2005, 41 (4): 78- 85.
doi: 10.3321/j.issn:1001-7488.2005.04.014 |
|
李春明, 李利学. 基于零膨胀模型及混合效应模型相结合的蒙古栎林林木进界模拟研究. 北京林业大学学报, 2020, 42 (6): 59- 67.
doi: 10.12171/j.1000-1522.20190216 |
|
Li C M, Li L X. Simulating study on tree recruitment of Quercus mongolica based on zero-inflated model and mixed effect model methods. Journal of Beijing Forestry University, 2020, 42 (6): 59- 67.
doi: 10.12171/j.1000-1522.20190216 |
|
马 武, 雷相东, 徐 光, 等. 蒙古栎天然林生长模型的研究——Ⅳ. 进界生长模型. 西北农林科技大学学报(自然科学版), 2015, 43 (5): 58- 64. | |
Ma W, Lei X D, Xu G, et al. Growth models for natural Mongolian oak forests—Ⅳ. Recruitment model. Journal of Northwest A & F University (Natural Science Edition), 2015, 43 (5): 58- 64. | |
张海平, 李凤日, 董利虎, 等. 基于气象因子的白桦天然林单木直径生长模型. 应用生态学报, 2017, 28 (6): 1851- 1859. | |
Zhang H P, Li F R, Dong L H, et al. Individual tree diameter increment model for natural Betula platyphylla forests based on meteorological factors. Chinese Journal of Applied Ecology, 2017, 28 (6): 1851- 1859. | |
张晓红, 张会儒, 卢 军, 等. 目标树抚育间伐对蒙古栎天然次生林生长的初期影响. 林业科学, 2020, 56 (10): 83- 92.
doi: 10.11707/j.1001-7488.20201009 |
|
Zhang X H, Zhang H R, Lu J, et al. Early effects of crop tree release tending on growth of natural secondary Quercus mongolica forest. Scientia Silvae Sinicae, 2020, 56 (10): 83- 92.
doi: 10.11707/j.1001-7488.20201009 |
|
祝子枭, 刘兆刚, 董灵波, 等. 环境因子对大兴安岭天然落叶松次生林主要树种更新的影响. 东北林业大学学报, 2020, 48 (6): 135- 141.
doi: 10.3969/j.issn.1000-5382.2020.06.026 |
|
Zhu Z X, Liu Z G, Dong L B, et al. Effects of environmental factors on regeneration of major species in larch secondary forest of Daxing’an Mountains. Journal of Northeast Forestry University, 2020, 48 (6): 135- 141.
doi: 10.3969/j.issn.1000-5382.2020.06.026 |
|
Adame P, del Rìo M, Cañellas I. Ingrowth model for Pyrenean oak stands in north-western Spain using continuous forest inventory data. European Journal of Forest Research, 2010, 129 (4): 669- 678.
doi: 10.1007/s10342-010-0368-1 |
|
Affleck D L. Poisson mixture models for regression analysis of stand-level mortality. Canadian Journal of Forest Research, 2006, 36 (11): 2994- 3006.
doi: 10.1139/x06-189 |
|
Anderson D R. 2008. Model based inference in the life sciences: a primer on evidence. New York, NY: Springer Science & Business Media. | |
Barry S C, Welsh A H. Generalized additive modelling and zero inflated count data. Ecological Modelling, 2002, 157 (2/3): 179- 188. | |
Boswell M T, Patil G P. Chance mechanisms generating the negative binomial distributions. Random Counts in Scientific Work, 1970, 1, 3- 22. | |
Botkin D B, Janak J F, Wallis J R. Some ecological consequences of a computer model of forest growth. The Journal of Ecology, 1972, 60 (3): 849- 872.
doi: 10.2307/2258570 |
|
Cunningham R B, Lindenmayer D B. Modeling count data of rare species: some statistical issues. Ecology, 2005, 86 (5): 1135- 1142.
doi: 10.1890/04-0589 |
|
Fortin M, Bedard S, DeBlois J, et al. Predicting individual tree mortality in northern hardwood stands under uneven-aged management in southern Québec, Canada. Annals of Forest Science, 2008, 65 (2): 205/1- 205/11. | |
Gregorie T G. Generalized error structure for forestry yield models. Forest Science, 1987, 33 (2): 423- 444.
doi: 10.1093/forestscience/33.2.423 |
|
Hijmans R J, Cameron S E, Parra J L, et al. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 2005, 25 (15): 1965- 1978.
doi: 10.1002/joc.1276 |
|
Kangas A, Maltamo M. 2006. Forest inventory. Dordrecht: Springer. | |
Karazsia B T, van Dulmen M H M. Regression models for count data: illustrations using longitudinal predictors of childhood injury. Journal of Pediatric Psychology, 2008, 33 (10): 1076- 1084.
doi: 10.1093/jpepsy/jsn055 |
|
Kunstler G, Thuiller W, Curt T, et al. Fagus sylvatica L. recruitment across a fragmented Mediterranean Landscape, importance of long distance effective dispersal, abiotic conditions and biotic interactions. Diversity and Distributions, 2007, 13 (6): 799- 807.
doi: 10.1111/j.1472-4642.2007.00404.x |
|
Lambert D. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 1992, 34 (1): 1- 14.
doi: 10.2307/1269547 |
|
Lenoir J, Gégout J C, Pierrat J C, et al. Differences between tree species seedling and adult altitudinal distribution in mountain forests during the recent warm period (1986—2006). Ecography, 2009, 32 (5): 765- 777.
doi: 10.1111/j.1600-0587.2009.05791.x |
|
Lexerød N L. Recruitment models for different tree species in Norway. Forest Ecology and Management, 2005, 206 (1/2/3): 91- 108. | |
Li R X, Weiskittel A R, Kershaw J A Jr. Modeling annualized occurrence, frequency, and composition of in growth using mixed-effects zero-inflated models and permanent plots in the Acadian forest region of north America. Canadian Journal of Forest Research, 2011, 41 (10): 2077- 2089.
doi: 10.1139/x11-117 |
|
Liu W S, Cela J. 2008. Count data models in SAS. Journal of the American Medical Informatics Association, doi:10.1136/amiajnl-2013-001804. | |
Mullahy J. Specification and testing of some modified count data models. Journal of Econometrics, 1986, 33 (3): 341- 365.
doi: 10.1016/0304-4076(86)90002-3 |
|
Peñuelas J, Ogaya R, Boada M, et al. Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography, 2007, 30 (6): 829- 837.
doi: 10.1111/j.2007.0906-7590.05247.x |
|
Quan N T. The prediction sum of squares as a general measure for regression diagnostics. Journal of Business & Economic Statistics, 1988, 6 (4): 501- 504. | |
Russell M B, Westfall J A, Woodall C W. Modeling browse impacts on sapling and tree recruitment across forests in the northern United States. Canadian Journal of Forest Research, 2017, 47 (11): 1474- 1481.
doi: 10.1139/cjfr-2017-0155 |
|
Sagnard F, Pichot C, Dreyfus P, et al. Modelling seed dispersal to predict seedling recruitment: Recolonization dynamics in a plantation forest. Ecological Modelling, 2007, 203 (3/4): 464- 474. | |
Shifley S R, Ek A R, Burk T E. A generalized methodology for estimating forest in growth at multiple threshold diameters. Forest Science, 1993, 39 (4): 776- 798.
doi: 10.1093/forestscience/39.4.776 |
|
Shifley S R, Fan Z F, Kabrick J M, et al. Oak mortality risk factors and mortality estimation. Forest Ecology and Management, 2006, 229 (1/2/3): 16- 26. | |
Vanclay J K. Modelling regeneration and recruitment in a tropical rain forest. Canadian Journal of Forest Research, 1992, 22 (9): 1235- 1248.
doi: 10.1139/x92-165 |
|
Vanclay J K. Synthesis: growth models for tropical forests: a synthesis of models and methods. Forest Science, 1995, 41 (1): 7- 42.
doi: 10.1093/forestscience/41.1.7 |
|
Vuong Q H. Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 1989, 57, 307- 333.
doi: 10.2307/1912557 |
|
Wang T L, Wang G Y, Innes J L, et al. ClimateAP: an application for dynamic local downscaling of historical and future climate data in Asia Pacific. Frontiers of Agricultural Science and Engineering, 2017, 4 (4): 448- 458.
doi: 10.15302/J-FASE-2017172 |
|
Wang W W, Chen X Y, Zeng W S, et al. Development of a mixed-effects individual-tree basal area increment model for oaks (Quercus spp. ) considering forest structural diversity. Forests, 2019, 10 (6): 474.
doi: 10.3390/f10060474 |
|
Wang W W, Wang J J, Meng J H. A climate-sensitive mixed-effects tree recruitment model for oaks (Quercus spp. ) in Hunan Province, south-central China. Forest Ecology and Management, 2023, 528, 120631.
doi: 10.1016/j.foreco.2022.120631 |
|
Xiang W, Lei X D, Zhang X Q. Modelling tree recruitment in relation to climate and competition in semi-natural Larix-Picea-Abies forests in northeast China. Forest Ecology and Management, 2016, 382, 100- 109.
doi: 10.1016/j.foreco.2016.09.050 |
|
Yang Y Q, Huang S. Two-stage ingrowth models for four major tree species in Alberta. European Journal of Forest Research, 2015, 134 (6): 991- 1004.
doi: 10.1007/s10342-015-0904-0 |
|
Zeileis A, Kleiber C, Jackman S. Regression models for count data inR. Journal of Statistical Software, 2008, 27 (8): 1- 25. | |
Zell J, Rohner B, Thürig E, et al. Modeling ingrowth for empirical forest prediction systems. Forest Ecology and Management, 2019, 433, 771- 779.
doi: 10.1016/j.foreco.2018.11.052 |
|
Zhang X Q, Chhin S, Fu L Y, et al. Climate-sensitive tree height-diameter allometry for Chinese fir in southern China. Forestry: an International Journal of Forest Research, 2019, 92 (2): 167- 176.
doi: 10.1093/forestry/cpy043 |
|
Zhang X Q, Lei Y C, Cai D X, et al. Predicting tree recruitment with negative binomial mixture models. Forest Ecology and Management, 2012, 270, 209- 215.
doi: 10.1016/j.foreco.2012.01.028 |
[1] | 杨淑雅,王镜如,朱滢滢,伊力塔,刘美华. 杉木与浙江楠混交对根系分泌物和丛枝菌根真菌群落结构的影响[J]. 林业科学, 2024, 60(9): 59-68. |
[2] | 都亚敏,李珠,蒋佳荔,殷方宇,吕建雄. 吸湿解吸循环过程中木材水分吸附特性[J]. 林业科学, 2024, 60(9): 150-158. |
[3] | 李林鑫,杨贵云,郭昊澜,董强,李明,马祥庆,吴鹏飞. 繁殖方式对杉木幼苗根系不同序级生物量、形态性状和碳氮含量的影响[J]. 林业科学, 2024, 60(7): 47-55. |
[4] | 阮颖超,苏比·热西塔洪,林熙,李明,范少辉,冯随起,陈志云,马祥庆,何宗明. 修枝强度对杉木人工林无节材形成及质量的影响[J]. 林业科学, 2024, 60(6): 50-59. |
[5] | 吕梓晴, 段爱国. 不同产区杉木生物量与碳储量模型[J]. 林业科学, 2024, 60(2): 1-11. |
[6] | 罗光成,何潇,雷相东,吴璧芸,向玮. 长白落叶松人工林优势高广义代数差分生长模型[J]. 林业科学, 2024, 60(12): 1-12. |
[7] | 杨梦佳,邹显花,郭志娟,彭钊,何妍,彭志远,姚必达,黄国敏,朱丽琴,黄荣珍. 基于13C示踪的2个杉木家系幼苗光合碳分配动态[J]. 林业科学, 2024, 60(12): 35-46. |
[8] | 贾辉,朱敏,余再鹏,万晓华,傅彦榕,王思荣,邹秉章,黄志群. 亚热带树种在未成林造林地的凋落物量和周转与叶片性状的关系[J]. 林业科学, 2024, 60(1): 12-18. |
[9] | 李晓燕,段爱国,张建国. 不同产区杉木人工林初植密度对优势高生长的影响[J]. 林业科学, 2023, 59(8): 22-29. |
[10] | 屈彦成,江怡航,姜彦妍,张建国,罗安利,张雄清. 基于胸高处边材面积、胸径和冠基部直径的杉木单木叶生物量预测模型[J]. 林业科学, 2023, 59(7): 106-114. |
[11] | 赵文菲,曹小玉,谢政锠,庞一凡,孙亚萍,李际平,莫永俊,袁达. 基于结构方程模型的杉木公益林林分空间结构评价[J]. 林业科学, 2022, 58(8): 76-88. |
[12] | 李舟阳,陆文玲,钱旺,黄奕孜,林二培,黄华宏,童再康. 杉木根边缘细胞生物学特性及其对铝胁迫的响应[J]. 林业科学, 2022, 58(7): 73-81. |
[13] | 陈嘉琪,赵光宇,李仰龙,董玉红,厚凌宇,焦如珍. 杉木人工林土壤磷素形态及含量的林龄变化[J]. 林业科学, 2022, 58(5): 10-17. |
[14] | 史月冬,郑宏,叶代全,施季森,边黎明. 杉木生长性状的空间与竞争效应及其对遗传参数估计的影响[J]. 林业科学, 2022, 58(5): 75-84. |
[15] | 王淑真,梁晶晶,包明琢,潘菲,周垂帆. 不同林龄杉木林土壤磷形态与解磷菌变化[J]. 林业科学, 2022, 58(2): 58-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||