林业科学 ›› 2024, Vol. 60 ›› Issue (10): 40-49.doi: 10.11707/j.1001-7488.LYKX20230001
• 研究论文 • 上一篇
柳利利1,2,3(),韩磊1,2,3,*,王娜娜1,2,3,周鹏4,马云蕾1,2,3,马军4
收稿日期:
2023-01-03
出版日期:
2024-10-25
发布日期:
2024-11-05
通讯作者:
韩磊
E-mail:Lili242073@163.com
基金资助:
Lili Liu1,2,3(),Lei Han1,2,3,*,Nana Wang1,2,3,Peng Zhou4,Yunlei Ma1,2,3,Jun Ma4
Received:
2023-01-03
Online:
2024-10-25
Published:
2024-11-05
Contact:
Lei Han
E-mail:Lili242073@163.com
摘要:
目的: 探究柠条和新疆杨在纯林和混交林中的水分利用策略,分析这2个树种在混交林中的水分利用关系、土壤水利用率的影响因子以及种植方式对土壤水分环境的影响,为旱区防护林的林分结构优化调控提供理论指导。方法: 于2018年生长季(5—10月),在宁夏河东沙区选择柠条纯林、新疆杨纯林和柠条+新疆杨混交林,利用氢氧稳定同位素技术和IsoSource混合模型,分析柠条和新疆杨在纯林和混交林中的水分来源,采用相似性比例指数(PS指数)计算柠条和新疆杨在混交林中的水分利用关系;同时,监测土壤含水量、土壤养分和根系生物量,并利用结构方程模型(SEM)量化不同因子对林地植物土壤水利用率的影响;计算土壤储水量、土壤水分亏缺和土壤水消耗率,分析柠条、新疆杨纯林及混交林对土壤水分环境的影响。结果: 1) 在纯林和混交林中,整个生长季的柠条的主要水分来源土层基本一致,而新疆杨则表现出不一致性。2) 混交林中柠条和新疆杨在整个生长季的相似性比例指数(PS)为62.75%,表明两者之间存在较弱的水分竞争,在生长季不同时期,2个树种的主要水分来源土层不同,能通过水分利用的时间和空间分离来应对干旱。3) 土壤含水量对3个林地的植物土壤水利用率的总效应最高,土壤含水量和土壤养分与柠条纯林的土壤水利用率呈极显著负相关(P<0.01),而与混交林中柠条的土壤水利用率呈极显著正相关(P<0.01),与新疆杨纯林和混交林的植物土壤水利用率呈显著正相关(P<0.05);根系生物量对3个林地的植物土壤水利用率呈显著正相关(P<0.05)。4) 混交林土壤储水量高于柠条和新疆杨纯林,而土壤水分亏缺和土壤水消耗率低于柠条和新疆杨纯林。结论: 柠条在纯林和混交林中的水分利用策略基本一致,新疆杨在纯林和混交林中的水分利用策略存在差异;混交林中的柠条和新疆杨通过时间和空间上的水分利用的差异来应对干旱,且混交林相比纯林可更有效降低土壤干旱化风险;土壤含水量和土壤养分是影响3个林地植物土壤水利用率的主要因素。
中图分类号:
柳利利,韩磊,王娜娜,周鹏,马云蕾,马军. 宁夏河东沙区柠条和新疆杨在纯林和混交林中的水分利用策略[J]. 林业科学, 2024, 60(10): 40-49.
Lili Liu,Lei Han,Nana Wang,Peng Zhou,Yunlei Ma,Jun Ma. Water Use Strategies of Caragana korshinskii and Populus bolleana in Pure and Mixed Plantations in the Eastern Sandy Land of the Yellow River in Ningxia[J]. Scientia Silvae Sinicae, 2024, 60(10): 40-49.
表1
样地基本特征"
树种 Tree species | 种植方式 Planting pattern | 经纬度 Latitude and longitude | 株行距 Planting spacing | 平均树高 Average tree height /m | 冠幅 Crown area | 地径 Ground diameter /cm | 胸径 Diameter at breast height /cm | 郁闭度 Canopy density |
柠条 C. korshinskii | 纯林Pure | 38°6′12″N, 106°22′2″E | 3 m × 4 m | 1.56 ± 0.15 | 2.40 m × 1.83 m | 1.33 ± 0.39 | — | 0.58 |
混交Mixed | 38°6′2″N, 106°22′36″E | 3 m × 4 m | 1.87 ± 0.09 | 2.52 m × 1.95 m | 1.61 ± 0.15 | — | 0.69 | |
新疆杨 P. bolleana | 混交Mixed | 38°6′2″N, 106°22′29″E | 3 m × 4 m | 8.12 ± 1.21 | 2.99 m × 2.12 m | — | 7.82 ± 0.33 | 0.69 |
纯林Pure | 38°5′49″N, 106°22′25″E | 3 m× 4 m | 7.23 ± 1.09 | 2.72 m × 2.16 m | — | 7.13 ± 0.49 | 0.55 |
图5
不同林地的土壤水利用率的影响因素路径分析 实线和虚线分别代表正路径系数和负路径系数, 线粗细代表路径系数相对大小, 数字代表总作用效应, R2表示变量方差被解释比例 The solid line and the dotted line represent the positive path coefficient and the negative path coefficient respectively, the line thickness represents the relative size of the path coefficient, and the number represents the total effect. R2 represents the proportion of variance explained. * P<0.05; ** P<0.01;*** P<0.001; A和B分别表示柠条和新疆杨: A and B represent Caragana korshinskii and Populus bolleana, respectively. Ck-pure: 柠条纯林C. korshinskii pure plantation; Pb-pure: 新疆杨纯林P. bolleana pure plantation; Mixed: 柠条×新疆杨混交林C. korshinskii × P. bolleana mixed plantation."
图6
不同林地的土壤储水量、土壤水分亏缺和土壤水消耗率 不同大写字母代表同一土层不同林地之间差异显著,不同小写字母代表同一林地不同土层之间差异显著(P<0.05)。Different capital letters in the figure indicate that there were significant differences between different plantations in the same soil depths, and different lowercase letters indicate that there were significant differences between different soil depths in the same plantations."
鲍士旦. 2000. 土壤农化分析. 3版. 北京: 中国农业出版社. | |
Bao S D. 2000. Soil and agricultural chemistry analysis. 3rd ed. Beijing: China Agriculture Press. [in Chinese] | |
高 阳, 韩 磊, 柳利利, 等. 宁夏河东沙地不同坡度柠条锦鸡儿(Caragana korshinskii)水分利用策略差异. 干旱区地理, 2022, 45 (4): 1212- 1223.
doi: 10.12118/j.issn.1000-6060.2021.495 |
|
Gao Y, Han L, Liu L L, et al. Differences in water use strategies of Caragana korshinskii at different slopes in the east sandy land of the Yellow River in Ningxia. Arid Land Geography, 2022, 45 (4): 1212- 1223.
doi: 10.12118/j.issn.1000-6060.2021.495 |
|
高 媛, 周星辰, 孙牧笛, 等. 宁夏白芨滩国家级自然保护区苦豆子内生真菌多样性及生态分布. 草地学报, 2016, 24 (6): 1309- 1317. | |
Gao Y, Zhou X C, Sun M D, et al. Diversity and ecological distribution of endophytic fungi of Sophora alopecuroides L. from Baijitan National Nature Reserve of Ningxia. Acta Agrestia Sinica, 2016, 24 (6): 1309- 1317. | |
高 宇, 樊 军, 彭小平, 等. 2014. 水蚀风蚀交错区典型植被土壤水分消耗和补充深度对比研究. 生态学报, 34(23): 7038-7046. | |
Gao Y, Fan J, Peng X P, et al. , 2014. Soil water depletion and infiltration under the typical vegetation in the waterwind erosion crisscross region. Acta Ecologica Sinica, 34(23): 7038-7046. [in Chinese] | |
李婷婷, 吴水荣, 王林龙, 等. 国内外混交林研究进展. 世界林业研究, 2022, 35 (5): 42- 48. | |
Li T T, Wu S R, Wang L L, et al. Domestic and international research progress and future perspective on mixed forest. World Forestry Research, 2022, 35 (5): 42- 48. | |
柳利利, 韩 磊, 高 阳, 等. 宁夏河东沙区刺槐和丝绵木水分利用策略. 生态学报, 2023, 43 (2): 812- 825. | |
Liu L L, Han L, Gao Y, et al. Water use strategies of Robinia pseudoacacia and Euonymus bungeanus in the East Sandy Land of the Yellow River in Ningxia, China. Acta Ecologica Sinica, 2023, 43 (2): 812- 825. | |
刘子赫, 贾国栋, 刘自强, 等. 北京山区侧柏用水来源随水分条件变化的多时间尺度. 林业科学, 2022, 58 (3): 40- 47. | |
Liu Z H, Jia G D, Liu Z Q, et al. Water source change of Platycladus orientalis under different water regimes in Beijing mountainous area: a multi-timescale study. Scientia Silvae Sinicae, 2022, 58 (3): 40- 47. | |
马迎宾, 张蓓蓓, 徐 庆, 等. 绍兴淡水湿地人工林优势树种水分利用策略. 林业科学, 2019, 55 (12): 140- 150. | |
Ma Y B, Zhang B B, Xu Q, et al. Water use strategy of dominant tree species in freshwater wetland plantations in Shaoxing. Scientia Silvae Sinicae, 2019, 55 (12): 140- 150. | |
彭丽萍, 戴 岳, 师庆东. 新疆准东荒漠区5种典型植物水分来源. 干旱区研究, 2018, 35 (5): 1146- 1152. | |
Peng L P, Dai Y, Shi Q D. Water sources of five typical plant species in desert in the east Junggar Basin, Xinjiang. Arid Zone Research, 2018, 35 (5): 1146- 1152. | |
任婧宇, 乔雨宁, 闫璐瑶, 等. 黄土丘陵区主要树种土壤水分动态变化特征及影响因子. 水土保持研究, 2022, 29 (6): 73- 80,89. | |
Ren J Y, Qiao Y N, Yan L Y, et al. Dynamic changes and influencing factors of soil moisture of main tree species in Loess Hilly Region. Research of Soil and Water Conservation, 2022, 29 (6): 73- 80,89. | |
苏鹏燕, 张明军, 王圣杰, 等. 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源. 应用生态学报, 2020, 31 (6): 1835- 1843. | |
Su P Y, Zhang M J, Wang S J, et al. Water sources of riparian plants based on stable hydrogen and oxygen isotopes in Lanzhou section of the Yellow River, China. Chinese Journal of Applied Ecology, 2020, 31 (6): 1835- 1843. | |
宋 超, 余琦殷, 王瑞霞, 等. 基于植被覆盖度的宁夏灵武白芨滩自然保护区防风固沙功能时空变化研究. 生态学报, 2021, 41 (8): 3131- 3143. | |
Song C, Yu Q Y, Wang R X, et al. Spatio-temporal variation of windbreak and sand fixation functions based on vegetation coverage in Baijitan National Nature Reserve, Ningxia. Acta Ecologica Sinica, 2021, 41 (8): 3131- 3143. | |
王松伟, 郭忠升. 多年生人工柠条林生长对土壤水分的影响. 水土保持研究, 2020, 27 (3): 70- 75. | |
Wang S W, Guo Z S. Effects of perennial Caragana korshinskii kom on soil moisture. Research of Soil and Water Conservation, 2020, 27 (3): 70- 75. | |
张 宇, 张明军, 王圣杰, 等. 基于稳定氧同位素确定植物水分来源不同方法的比较. 生态学杂志, 2020, 39 (4): 1356- 1368. | |
Zhang Y, Zhang M J, Wang S J, et al. Comparison of different methods for determining plant water sources based on stable oxygen isotope. Chinese Journal of Ecology, 2020, 39 (4): 1356- 1368. | |
曾勰婷, 彭正萍, 彭云峰. 基于结构方程模型的玉米施氮量-光合产物-产量关系研究. 农业工程学报, 2016, 32 (10): 98- 104.
doi: 10.11975/j.issn.1002-6819.2016.10.014 |
|
Zeng X T, Peng Z P, Peng Y F. Structural equation model analyzing relationship among N application carbon hydrate product-grain yield of maize. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32 (10): 98- 104.
doi: 10.11975/j.issn.1002-6819.2016.10.014 |
|
张永旺, 万珊珊, 王 俊, 等. 黄土高原植被演替过程中土壤水分亏缺. 水土保持研究, 2020, 27 (5): 120- 125,132. | |
Zhang Y W, Wan S S, Wang J, et al. Soil water direct during vegetation succession on the Loess Plateau. Research of Soil and Water Conservation, 2020, 27 (5): 120- 125,132. | |
Angert A L, Huxman T E, Chesson P, et al. Functional tradeoffs determine species coexistence via the storage effect. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106 (28): 11641- 11645. | |
Chen L D, Wang J P., Wei W, et al. Effects of landscape restoration on soil water storage and water use in the Loess Plateau Region, China. Forest Ecology and Management, 2010, 259 (7): 1291- 1298.
doi: 10.1016/j.foreco.2009.10.025 |
|
Castillo J D, Comas C, Voltas J, et al. Dynamics of competition over water in a mixed oak-pine Mediterranean forest: spatio-temporal and physiological components. Forest Ecology and Management, 2016, 382, 214- 224.
doi: 10.1016/j.foreco.2016.10.025 |
|
Chen B J W, Xu C, Liu M S, et al. Neighbourhood-dependent root distributions and the consequences on root separation in arid ecosystems. Journal of Ecology, 2020, 108, 1635- 1648.
doi: 10.1111/1365-2745.13360 |
|
Craig H. Isotopic variations in meteoric waters. Science, 1961, 133, 1702- 1703.
doi: 10.1126/science.133.3465.1702 |
|
Dawson T E, Ehleringer J R. Streamside trees that do not use stream water. Nature, 1991, 350 (6316): 335- 337.
doi: 10.1038/350335a0 |
|
Dawson T E, Pate J S, 1996. Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic rootmorphology: a stable isotope investigation. Oecologia, 107(1): 13−20. | |
Germon A, Laclau J P, Robin A, et al. 2020. Tamm Review: Deep fine roots in forest ecosystems: Why dig deeper? Forest Ecology and Management, 466: 118135. | |
Hoekstra N J, Finn J A, Hofer D, et al. The effect of drought and interspecific interactions on depth of water uptake in deep-and shallow-rooting grassland species as determined by δ18O natural abundance. Biogeosciences, 2014, 11, 4493- 4506.
doi: 10.5194/bg-11-4493-2014 |
|
Han L, Liu L L, Peng L, et al. Mixing of tree species with the same water use strategy might lead to deep soil water deficit. Forest Ecology and Management, 2023, 534, 120876.
doi: 10.1016/j.foreco.2023.120876 |
|
Imada S, Yamanaka N, Tamai S. Water table depth affects Populus alba fine root growth and whole plant biomass. Functional Ecology, 2010, 22 (6): 1018- 1026. | |
Jia Y H, Shao M A. Dynamics of deep soil moisture in response to vegetational restoration on the Loess Plateau of Ch-ina. Journal of Hydrology, 2014, 519, 523- 531.
doi: 10.1016/j.jhydrol.2014.07.043 |
|
Liu W J, Liu W Y, Li P J, et al. Dry season water uptake by two dominant canopy tree species in a tropical seasonal rainforest of Xishuangbanna, SW China. Agricultural and Forest Meteorology, 2010, 150 (3): 380- 388.
doi: 10.1016/j.agrformet.2009.12.006 |
|
Liu B X, Shao M A. Modeling soil-water dynamics and soil–water carrying capacity for vegetation on the Loess Platea-u, China. Agricultural Water Management, 2015, 159, 176- 184.
doi: 10.1016/j.agwat.2015.06.019 |
|
Li H J, Si B C, Wu P T, et al. Water mining from the deep critical zone by apple trees growing on loess. Hydrological Processes, 2019, 33 (2): 320- 327.
doi: 10.1002/hyp.13346 |
|
Magh R K, Eiferle C, Burzlaff T, et al. Competition for water rather than facilitation in mixed beech-fir forests after drying-wetting cycle. Journal of Hydrology, 2020, 587, 124944.
doi: 10.1016/j.jhydrol.2020.124944 |
|
Muñoz-Villers L E, Holwerda F, Alvarado-Barrientos M S, et al. Reduced dry season transpiration is coupled with shallow soil water use in tropical montane forest trees. Oecologia, 2018, 188 (25): 303- 317. | |
Musa A, Zhang Y H, Cao J, et al. Relationship between root distribution characteristics of Mongolian pine and the soil water content and groundwater table in Horqin Sandy Land, China. Trees, 2019, 33 (4): 1203- 1211.
doi: 10.1007/s00468-019-01852-3 |
|
Moreno-Gutierrez C, Dawson T E, Nicolas E, et al. Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem. New Phytologist, 2012, 196 (2): 489- 496.
doi: 10.1111/j.1469-8137.2012.04276.x |
|
Phillips D L, Gregg J W. Source partitioning using stable isotopes: coping with too many sources. Oecologia, 2003, 136 (2): 261- 269.
doi: 10.1007/s00442-003-1218-3 |
|
Renninger H J, Carlo N J, Clark K L, et al. Resource use and efficiency, and stomatal responses to environmental drivers of oak and pine species in an Atlantic Coastal Plain forest. Frontiers in Plant Science, 2015, 6, 297. | |
Silvertown J, Araya Y, Gowing D. Hydrological niches in terrestrial plant communities: a review. Journal of Ecology, 2015, 103, 93- 108. | |
Tang Y K, Wu X, Chen Y M, et al. Water use strategies for two dominant tree species in pure and mixed plantations of the semiarid Chinese Loess Plateau. Ecohydrology, 2018, 11 (4): e1943.
doi: 10.1002/eco.1943 |
|
Trogisch S, Salmon Y, He J S, et al. Spatio-temporal water uptake patterns of tree saplings are not altered by interspeci-fic int-eraction in the early stage of a subtropical forest. Forest Ecology and Management, 2016, 367, 52- 61. | |
Wang B R, Zhao X D, Liu Y, et al. Using soil aggregate stability and erodibility to evaluate the sustainability of large-scale afforestation of Robinia pseudoacacia and Caragana korshinskii in the Loess Plateau. Forest Ecology and Management, 2019, 450, 117491.
doi: 10.1016/j.foreco.2019.117491 |
|
Wang J, Fu B J, Wang L X, et al. Water use characteristics of the common tree species in different plantation types in the Loess Plateau of China. Agricultural and Forest Meteorology, 2020, 288-289, 108020.
doi: 10.1016/j.agrformet.2020.108020 |
|
Wu Q F, Si B C, He H L, et al. Determining regional-scale groundwater recharge with GRACE and GLDAS. Remote Sensbasel, 2019, 11 (2): 154.
doi: 10.3390/rs11020154 |
|
Wei X, Liang W. Regulation of stand density alters forest structure and soil moisture during afforestation with Robinia pseudoacacia L. and Pinus tabulaeformis Carr. On the Loess Plateau. Forest Ecology and Management, 2021, 491, 119196.
doi: 10.1016/j.foreco.2021.119196 |
|
Wu H W, Li X Y, Jiang Z Y, et al. Contrasting water use pattern of introduced and native plants in an alpine desert ecosystem, Northeast Qinghai-Tibet Plateau. China. Science of the Total Environment, 2016, 542, 182- 191.
doi: 10.1016/j.scitotenv.2015.10.121 |
|
Wu W J, Li H J, Feng H, et al. Precipitation dominates the transpiration of both the economic forest (Malus pumila) and ecological forest (Robinia pseudoacacia) on the Loess Plateau after about 15 years of water depletion in deep soil. Agricultural and Forest Meteorology, 2021, 297 (15): 108244. | |
Xia Z C, He Y, Korpelainen H, et al. Sex-specific interactions shape root phenolics and rhizosphere microbial communities in Populus cathayana. Forest Ecology and Management, 2022, 504, 119857.
doi: 10.1016/j.foreco.2021.119857 |
|
Yang B, Wen X F, Sun X M, et al. Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian Monsoon Region. Agricultural and Forest Meteorology, 2015, 201, 218- 228.
doi: 10.1016/j.agrformet.2014.11.020 |
|
Zhang C, Li X, Wu H, et al. Differences in water-use strategies along an aridity gradient between two coexisting desert shrubs (Reaumuria soongorica and Nitraria sphaerocarpa): isotopic approaches with physiological evidence. Plant and Soil, 2017, 419 (1/2): 169- 187.
doi: 10.1007/s11104-017-3332-8 |
[1] | 崔朝伟,彭丽鸿,马东旭,王佳琪,江祥庆,江先桂,马祥庆,林开敏. 间伐对杉木人工林土壤微生物残体碳的影响[J]. 林业科学, 2023, 59(5): 41-52. |
[2] | 赵文菲,曹小玉,谢政锠,庞一凡,孙亚萍,李际平,莫永俊,袁达. 基于结构方程模型的杉木公益林林分空间结构评价[J]. 林业科学, 2022, 58(8): 76-88. |
[3] | 普慧梅,李源,吴锦奎,马泽,宋维峰. 哈尼梯田水源区3种典型植被下不同水体的氢氧稳定同位素特征及相互关系[J]. 林业科学, 2022, 58(5): 1-9. |
[4] | 刘晨,张春雨,赵秀海. 采伐干扰对吉林蛟河针阔混交林生产力稳定性的影响[J]. 林业科学, 2022, 58(3): 1-9. |
[5] | 黄元, 杨洁, 秦悦婷, 石亚男, 温亚利. 森林旅游背景下游客的生态公益林保护行为意愿[J]. 林业科学, 2021, 57(10): 145-156. |
[6] | 张连刚,支玲,王光玉,李娅. 农户对退耕还林工程满意度的影响因素及提升路径——基于云南省鹤庆县和贵州省织金县的调查数据[J]. 林业科学, 2019, 55(12): 123-132. |
[7] | 刘自强, 余新晓, 贾国栋, 李瀚之, 路伟伟, 侯贵荣. 北京山区侧柏利用水分来源对降水的响应[J]. 林业科学, 2018, 54(7): 16-23. |
[8] | 王绍飞, 赵西宁, 高晓东, 霍高鹏, 潘燕辉. 黄土丘陵区盛果期苹果树土壤水分利用策略[J]. 林业科学, 2018, 54(10): 31-38. |
[9] | 高德强, 徐庆, 张蓓蓓, 陈婕, 刘世荣. 降水对鼎湖山季风常绿阔叶林土壤水氘特征的影响[J]. 林业科学, 2017, 53(4): 1-8. |
[10] | 张蓓蓓, 徐庆, 姜春武. 安庆地区大气降水氢氧同位素特征及水汽来源[J]. 林业科学, 2017, 53(12): 20-29. |
[11] | 刘自强, 余新晓, 贾国栋, 贾剑波, 娄源海, 张坤. 北京山区侧柏和栓皮栎的水分利用特征[J]. 林业科学, 2016, 52(9): 22-30. |
[12] | 张连刚, 支玲, 张静, 谢彦明. 林业专业合作组织满意度的多层次模糊综合评价[J]. 林业科学, 2014, 50(8): 154-161. |
[13] | 薛彩霞, 姚顺波, 于金娜. 基于结构方程模型的农户经营非木质林产品行为的影响因素分析——以四川省雅安市农户为例[J]. 林业科学, 2013, 49(12): 136-146. |
[14] | 容丽;;王世杰;俞国松;邓晓琪;冉景丞. 荔波喀斯特森林4种木本植物水分来源的稳定同位素分析[J]. 林业科学, 2012, 48(7): 14-22. |
[15] | 孙守家;孟平;张劲松;万贤崇. 利用氘同位素研究太行山南麓枣树水分利用的季节性变化[J]. 林业科学, 2011, 47(5): 46-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||