林业科学 ›› 2023, Vol. 59 ›› Issue (12): 125-136.doi: 10.11707/j.1001-7488.LYKX20230447
吴祝华1(),宋娟2(
),朱树林3,赵邢4,杨学祥4,任嘉红5,陈凤毛1,*(
)
收稿日期:
2023-09-28
出版日期:
2023-12-25
发布日期:
2024-01-08
通讯作者:
陈凤毛
E-mail:nlwuzhu@njfu.edu.cn;Sjj818388@outlook.com;cfengmao@126.com
基金资助:
Zhuhua Wu1(),Juan Song2(
),Shulin Zhu3,Xing Zhao4,Xuexiang Yang4,Jiahong Ren5,Fengmao Chen1,*(
)
Received:
2023-09-28
Online:
2023-12-25
Published:
2024-01-08
Contact:
Fengmao Chen
E-mail:nlwuzhu@njfu.edu.cn;Sjj818388@outlook.com;cfengmao@126.com
摘要:
目的: 在枫香根际接种植物促生微生物(PGPM),研究PGPM对土壤理化性质和枫香叶色的影响以及对枫香根际微生物群落组成结构和多样性特征的改变,探明外源PGPM对植物和土壤微生物的影响。方法: 以句容市句容林场长势一致的7年生枫香为对象,通过田间接种试验并利用Illumina MiSeq高通量测序技术研究接种黏质沙雷氏菌(NJ2D)、摩西斗管囊霉(BJ04)对枫香根际土壤理化性质、叶色参数及根际土壤微生物群落结构和多样性特征的影响。结果: 1) 处理组的枫香根际土壤全氮、全磷、土壤有机质、有效磷含量、土壤含水率(%)和土壤pH较对照均显著提高(P < 0.05);2) 单接种BJ04菌剂的枫香叶片中叶绿素a、叶绿素b、总叶绿素和类胡萝卜素含量均较对照显著提高(P < 0.05),而双接种NJ2D+BJ04菌剂枫香叶片的花青素含量显著提高(P < 0.05);3) 对照与处理组的枫香根际微生物多样性也存在显著差异(P < 0.05),其中,单接种NJ2D、BJ04和双接种NJ2D+BJ04菌剂的枫香根际细菌的OTU(操作分类单元)数量较对照均显著增加(P < 0.05),而丛枝菌根真菌(AMF)的OTU数量较对照均显著降低(P < 0.05);4) 根际微生物高通量测序结果显示,放线菌门、变形菌门、绿弯菌门、酸杆菌门和芽单胞菌门为枫香根际土壤中主要优势细菌菌群;球囊霉属、根生囊霉属和Dominikia为枫香根际土壤中主要AMF的优势菌群。接种处理后,枫香根际的酸杆菌门、绿弯菌门和浮霉菌门的物种丰度较对照均显著减小(P < 0.05),而变形菌门和放线菌门的物种丰度较对照则显著增加(P < 0.05)。结论: 接种解磷菌、丛枝菌根真菌以及复合菌剂NJ2D+BJ04均可改善土壤微环境,并对枫香秋季叶色变化产生影响。
中图分类号:
吴祝华,宋娟,朱树林,赵邢,杨学祥,任嘉红,陈凤毛. 植物促生微生物对枫香叶色素组成和根际微生物群落的影响[J]. 林业科学, 2023, 59(12): 125-136.
Zhuhua Wu,Juan Song,Shulin Zhu,Xing Zhao,Xuexiang Yang,Jiahong Ren,Fengmao Chen. Effects of Plant Growth-Promoting Microorganisms on Rhizosphere Microbial Community and the Leaf Pigment Composition of Liquidambar formosana[J]. Scientia Silvae Sinicae, 2023, 59(12): 125-136.
表1
促生微生物对枫香根际土壤理化性质的影响(n=3)①"
处理Treatment | 全氮含量 Total nitrogen content /(g·kg?1) | 全磷含量 Total phosphorus content /(g·kg?1) | 全钾含量 Total potassium content /(g·kg?1) | 有机质含量 Organic matter content /(g·kg?1) | 有效磷含量 Available phosphorus content /(mg·kg?1) | 含水率 Water content (%) | pH |
CK | 0.82±0.03b | 0.114±0.00 b | 14.25±0.09a | 7.14 ±0.18c | 0.22±0.02d | 2.5±0.2b | 6.88±0.12d |
NJ2D | 0.94±0.05ab | 0.116 ±0.002ab | 13.99±0.65a | 9.78 ±0.26b | 0.78 ±0.02b | 2.8±0.1ab | 8.40±0.08a |
BJ04 | 0.88±0.06b | 0.120 ±0.001a | 14.93±0.42a | 13.21±0.99a | 1.05 ±0.03a | 3.0±0.1a | 7.22 ±0.03c |
NJ2D+BJ04 | 1.09±0.07a | 0.119 ±0.001ab | 13.96±0.62a | 13.88 ±0.67a | 0.31 ±0.03c | 3.1±0.5a | 7.88±0.05b |
表2
枫香根际土壤微生物多样性指数"
项目Item | 多样性指数Diversity | CK | NJ2D | BJ04 | NJ2D+BJ04 |
细菌 Bacteria | chao1 | 3 345.01 ±105.89b | 4 335.96 ±158.30a | 4 239.23 ±78.57 a | 4 379.43 ±266.44 a |
Shannon | 9.24 ±0.05b | 9.69 ±0.09a | 9.54 ±0.10 a | 9.68 ±0.11 a | |
goods_coverage | 0.987 ±0.000a | 0.981 ±0.001b | 0.982 ±0.001 b | 0.986 ±0.001a | |
AMF | chao1 | 286.93 ±1.08a | 227.25 ±10.42c | 251.07 ±5.06 b | 232.32 ±8.20 bc |
Shannon | 3.62 ±0.03b | 3.40 ±0.06c | 4.03 ±0.04 a | 3.89 ±0.02 a | |
goods_coverage | 0.999 ±0.000a | 0.999 ±0.000a | 0.999 ±0.000 a | 0.999 ±0.000 a |
图5
接种促生菌对枫香根际土壤微生物群落组成与环境因子、叶色素间的PCA分析 TN:全氮含量Total nitrogen content; TP:全磷含量Total phosphorus content; TK:全钾含量Total potassium content; AP:有效磷含量Available phosphorus content; Soc:土壤有机质含量 Soil organic matter content; Wt:水分含量 Water content; Chla:叶绿素a Chlorophyll a; Chlb:叶绿素b Chlorophyll b; Tchl:总叶绿素 Total chlorophyll; Anth:花青素Anthocyanin; Caro:类胡萝卜素Carotenoids."
表3
不同接种处理下土壤微生物群落与土壤理化性质、叶色素间的Pearson相关性分析①"
指标Item | pH | 含水率 Water content | 有效磷含量 Available phosphorus | 有机质含量 Organic matter | 全钾含量 Total potassium |
土壤全磷含量 Total phosphorus content | ?0.323 | ?0.072 | 0.214 | 0.495 | 0.235 |
土壤全氮含量 Total nitiogen content | ?0.037 | 0.296 | ?0.351 | 0.632** | 0.497 |
类胡萝卜素含量 Carotenoids content | ?0.683** | 0.174 | 0.662** | 0.160 | 0.168 |
花青素含量 Anthocyanin content | 0.087 | 0.128 | ?0.491 | 0.477 | ?0.203 |
叶绿素a含量 Chlorophyll a content | ?0.654* | 0.207 | 0.649** | 0.242 | 0.136 |
叶绿素b含量 Chlorophyll b content | ?0.637** | 0.211 | 0.654* | 0.252 | 0.128 |
总叶绿素含量 Total chlorophyll content | ?0.650** | 0.208 | 0.650* | 0.245 | 0.134 |
chao1(Bacteria) | 0.538 | 0.014 | 0.073 | 0.042 | 0.030 |
chao1(AMF) | ?0.789** | ?0.125 | 0.175 | ?0.298 | 0.011 |
江 聂, 姜卫兵, 翁忙玲, 等. 枫香的园林特性及其开发利用. 江西农业学报, 2008, 20(12), 46- 49.
doi: 10.19386/j.cnki.jxnyxb.2008.12.016 |
|
Jiang N, Jiang W B, Weng M L, et al. Landscape characters of Liquidambar formosana and its exploitation. Acta Agriculturae Jiangxi, 2008, 20(12), 46- 49.
doi: 10.19386/j.cnki.jxnyxb.2008.12.016 |
|
王冬雪, 孙海菁, 德永军, 等. 不同光质处理对枫香幼苗叶色的影响. 林业科学研究, 2019, 32(4), 158- 164.
doi: 10.13275/j.cnki.lykxyj.2019.04.021 |
|
Wang D X, Sun H Q, De Y J, et al. Change of leaf color of Liquidambar formosana seedlings under different light quality treatments. Forest Research, 2019, 32(4), 158- 164.
doi: 10.13275/j.cnki.lykxyj.2019.04.021 |
|
宋 娟, 吴祝华, 翁行良, 等. 2021. 枫香根际丛枝菌根真菌多样性. 林业科学, 57(9): 98−109. | |
Song J, Wu Z H, Weng X L, et al. 2021. Diversity of arbuscular mycorrhizal fungi in rhizosphere of Liquidambar formosana. Scientia Silvae Sinicae, 57(9): 98−109. | |
宋 娟, 徐国芳, 赵 邢, 等. 枫香根际解有机磷细菌筛选及其促生效应(英文). 南京林业大学学报(自然科学版), 2020, 44 (3): 95- 104. | |
Song J, Xu G F, Zhao X, et al. Screening of indigenous phosphate-solubilizing bacteria from Liquidambar formosana Hance rhizosphere and its potential applications for improving plant growth. Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44 (3): 95- 104. | |
Augé R M, Toler H D, Saxton A M 2014. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis. Frontiers in Plant Science, 5:562. | |
Biermann B, Linderman R G. Use of vesicular-arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytologist, 1983, 95(1), 97- 105.
doi: 10.1111/j.1469-8137.1983.tb03472.x |
|
Bonfante P, Genre A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nature Communications, 2010, 1, 48.
doi: 10.1038/ncomms1046 |
|
Caporaso J G, Lauber C L, Walters W A, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal, 2012, 6(8), 1621- 1624.
doi: 10.1038/ismej.2012.8 |
|
Catão E C P, Lopes F A C, Araújo J F, et al. Soil acidobacterial 16S rRNA gene sequences reveal subgroup level differences between Savanna-Like Cerrado and Atlantic Forest Brazilian Biomes. International Journal of Microbiology, 2014, 2014, 156341. | |
Chen M, Arato M, Borghi L, et al. 2018. Beneficial services of arbuscular mycorrhizal fungi - from ecology to application. Frontiers in Plant Science, 9:1270. | |
Colanero S, Perata P, Gonzali S 2018. The atroviolacea gene encodes an R3-MYB protein repressing anthocyanin synthesis in tomato plants. Frontiers in Plant Science, 9:830. | |
Daniell T J, Husband R, Fitter A H, et al. Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiology Ecology, 2001, 36(2/3), 203- 209.
doi: 10.1111/j.1574-6941.2001.tb00841.x |
|
Deng L, Wang K, Li J, et al. Effect of soil moisture and atmospheric humidity on both plant productivity and diversity of native grasslands across the Loess Plateau, China. Ecological Engineering, 2016, 94, 525- 531.
doi: 10.1016/j.ecoleng.2016.06.048 |
|
Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10(10), 996- 998.
doi: 10.1038/nmeth.2604 |
|
Güsewell S. 2004. N : P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164(2): 243−266. | |
Guyonnet J P, Vautrin F, Meiffren G, et al. 2017. The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites. FEMS Microbiology Ecology, 93(4):10. | |
Hu J, Chen G, Zhang Y, et al. Anthocyanin composition and expression analysis of anthocyanin biosynthetic genes in kidney bean pod. Plant Physiology and Biochemistry, 2015, 97, 304- 312.
doi: 10.1016/j.plaphy.2015.10.019 |
|
Islam R, Trivedi P, Madhaiyan M, et al. Isolation, enumeration, and characterization of diazotrophic bacteria from paddy soil sample under long-term fertilizer management experiment. Biology and Fertility of Soils, 2010, 46(3), 261- 269.
doi: 10.1007/s00374-009-0425-4 |
|
Jeanbille M, Buée M, Bach C, et al. Soil parameters drive the structure, diversity and metabolic potentials of the bacterial communities across temperate beech forest soil sequences. Microbial Ecology, 2016, 71(2), 482- 493.
doi: 10.1007/s00248-015-0669-5 |
|
Kõljalg U, Nilsson R H, Abarenkov K, et al. Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology, 2013, 22(21), 5271- 5277.
doi: 10.1111/mec.12481 |
|
Leff J W, Jones S E, Prober S M, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences, 2015, 112(35), 10967- 10972.
doi: 10.1073/pnas.1508382112 |
|
Li Y, Fang J, Qi X, et al. Combined analysis of the fruit metabolome and transcriptome reveals candidate genes involved in flavonoid biosynthesis in Actinidia arguta. International Journal of Molecular Sciences, 2018, 19(5), 1471.
doi: 10.3390/ijms19051471 |
|
Mendes R, Garbeva P, Raaijmakers J M 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms . FEMS Microbiology Reviews, 37(5): 634−663. | |
Misra N, Gupta G, Jha P N 2012. Assessment of mineral phosphate-solubilizing properties and molecular characterization of zinc-tolerant bacteria . Journal of Basic Microbiology, 52(5): 549−558. | |
Msimbira L A, Smith D L . 2020. The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses . Frontiers in Sustainable Food Systems, 4:106. | |
Olsen S R. Estimation of available phosphorus in soils by extraction with sodium bicarbonate//: US Department of Agriculture. 1954. (2022−10−10). https://www.semanticscholar.org/paper/Estimation-of-available-phosphorus-in-soils-by-with-Olsen/681a42d80a5dd02d2917a7ec4af079916c576f29. | |
Pellegrino E, Bedini S, Avio L, et al. Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil Biology and Biochemistry, 2011, 43(2), 367- 376.
doi: 10.1016/j.soilbio.2010.11.002 |
|
Page A, Miller R, Keeney D . 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties[C]. Madison, WI, USA: Soil Science Society of America: 539−594. | |
Petsch d K 2016. Causes and consequences of biotic homogenization in freshwater ecosystems. International Review of Hydrobiology, 101(3/4): 113−122. | |
Pollet T, HumberT J F, Tadonléké R D .2014. Planctomycetes in lakes: poor or strong competitors for phosphorus? Applied and Environmental Microbiology, 80(3): 819-828. | |
Porra R J, Thompson W A, Kriedemann P E. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics [J], 975(3): 384−394. | |
Qi T, Song S, Ren Q, et al. 2011. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. The Plant Cell , 23(5): 1795−1814. | |
Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 2012, 41(database issue), 590- 596.
doi: 10.1093/nar/gks1219 |
|
Ren C, Zhao F, Kang D, et al. Linkages of C: N: P stoichiometry and bacterial community in soil following afforestation of former farmland. Forest Ecology and Management, 2016, 376, 59- 66.
doi: 10.1016/j.foreco.2016.06.004 |
|
Rosell R, Gasparoni J, Lal J, et al. 2001. Assessment methods for soil carbon[M]. Florida: Lewis Publishers: 349−359. | |
Selvakumar G, Mohan M, Kundu S, et al. Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Letters in Applied Microbiology, 2008, 46(2), 171- 175. | |
Shekhar N, Bhattacharya D, Kumar D, et al. Biocontrol of wood-rotting fungi with Streptomyces violaceusniger XL-2. Canadian Journal of Microbiology, 2006, 52(9), 805- 808.
doi: 10.1139/w06-035 |
|
Siddiqui Z A, Akhtar M S. Effects of fertilizers, AM fungus and plant growth promoting rhizobacterium on the growth of tomato and on the reproduction of root-knot nematode Meloidogyne incognita. Journal of Plant Interactions, 2008, 3(4), 263- 271.
doi: 10.1080/17429140802272717 |
|
Song Y, Wu K, Dhaubhadel S, et al. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity. Biochem Biophys Res Commun, 2010, 396 (2): 187- 192.
doi: 10.1016/j.bbrc.2010.03.119 |
|
Stahl W, Sies H. Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2005, 1740(2), 101- 107.
doi: 10.1016/j.bbadis.2004.12.006 |
|
Ting A, Meon S, Kadir J, et al. Induction of host defence enzymes by the endophytic bacterium Serratia marcescens, in banana plantlets. Pans Pest Articles & News Summaries, 2010, 56(2): 183−188. | |
Wang M, Zheng Q, Shen Q, et al. The critical role of potassium in plant stress response. International Journal of Molecular Sciences, 2013, 14(4), 7370- 7390.
doi: 10.3390/ijms14047370 |
|
Wani S P, Gopalakrishnan S. Plant growth-promoting microbes for sustainable agriculture[C]// Sayyed R Z, Reddy M S, Antonius S. Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture. Singapore: Springer Singapore, 2019: 19−45. 10.1007/978-981-13-6790-8_2. | |
Willis A, Rodrigues B F, Harris P J C. The ecology of arbuscular mycorrhizal fungi. Critical Reviews in Plant Sciences, 2013, 32(1), 1- 20.
doi: 10.1080/07352689.2012.683375 |
|
Xiong W, Zhao Q, Zhao J, et al. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing. Microbial Ecology, 2015, 70(1), 209- 218.
doi: 10.1007/s00248-014-0516-0 |
|
Xu L, Han Y, Yi M, et al. Shift of millet rhizosphere bacterial community during the maturation of parent soil revealed by 16S rDNA high-throughput sequencing. Applied Soil Ecology, 2019, 135, 157- 165.
doi: 10.1016/j.apsoil.2018.12.004 |
|
Yamada T, Sekiguchi Y. Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi 'Subphylum I' with natural and biotechnological relevance. Microbes and Environments, 2009, 24 (3): 205- 216. | |
Yang Y, Wang N, Guo X, et al. Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. PLoS ONE, 2017, 12(5), e0178425.
doi: 10.1371/journal.pone.0178425 |
[1] | 周莎,马寰菲,王洁莹,任成杰,郭垚鑫,王俊,赵发珠. 我国森林土壤微生物生物量碳的纬度分布特征及影响因子[J]. 林业科学, 2022, 58(2): 49-57. |
[2] | 彭金根,龚金玉,范玉海,张华,张银凤,白宇清,王艳梅,谢利娟. 毛棉杜鹃根际与非根际土壤微生物群落多样性[J]. 林业科学, 2022, 58(2): 89-99. |
[3] | 常旭东,金光泽. 地形和土壤因子对红松活立木腐朽的影响[J]. 林业科学, 2022, 58(11): 71-82. |
[4] | 宋娟,吴祝华,翁行良,赵邢,杨学祥,唐荣林,曹兵,巫昱,沈厚宇,任嘉红,陈凤毛. 枫香根际丛枝菌根真菌多样性[J]. 林业科学, 2021, 57(9): 98-109. |
[5] | 胡文杰,庞宏东,胡兴宜,黄发新,杨佳伟,徐丽君,龚苗. 竹林密度和施肥种类对幕阜山区毛竹笋产量和品质及土壤理化性质的影响[J]. 林业科学, 2021, 57(12): 32-42. |
[6] | 侯文军,邹明,李宝福,俞元春. 施用草甘膦对桉树人工林土壤理化性质的影响[J]. 林业科学, 2020, 56(8): 20-26. |
[7] | 高磊,王建国,王章训,李猷,鞠瑞亭. 危险性害虫枫香刺小蠹的形态特征及发生现状[J]. 林业科学, 2020, 56(3): 193-198. |
[8] | 徐雪蕾, 孙玉军, 周华, 张鹏, 胡杨, 王新杰. 间伐强度对杉木人工林林下植被和土壤性质的影响[J]. 林业科学, 2019, 55(3): 1-12. |
[9] | 周伟, 王文杰, 何兴元, 张波, 肖路, 王琼, 吕海亮, 魏晨辉. 哈尔滨城市绿地土壤肥力及其空间特征[J]. 林业科学, 2018, 54(9): 9-17. |
[10] | 王舒甜, 张金池, 郑丹扬, 王金平, 李伟强. 钟山风景区土壤环境对人为踩踏扰动的响应[J]. 林业科学, 2017, 53(8): 9-16. |
[11] | 林文树, 穆丹, 王丽平, 邵立郡, 吴金卓. 针阔混交林不同演替阶段表层土壤理化性质与优势林木生长的相关性[J]. 林业科学, 2016, 52(5): 17-25. |
[12] | 段剑, 王凌云, 杨洁, 喻驰方, 万佳蕾, 刘忠. 马尾松与枫香根际土壤浸提物的化学成分[J]. 林业科学, 2015, 51(8): 8-15. |
[13] | 王建军, 张波, 张望舒. 枫香新品种‘金珏’[J]. 林业科学, 2015, 51(10): 154-154. |
[14] | 李伟, 崔丽娟, 王小文, 赵欣胜, 张曼胤, 高常军, 张岩. 太湖岸带湿地土壤动物群落结构与土壤理化性质的关系[J]. 林业科学, 2013, 49(7): 106-113. |
[15] | 韩文娟, 何景峰, 张文辉, 李景侠. 黄龙山林区油松人工林林窗对幼苗根系生长及土壤理化性质的影响[J]. 林业科学, 2013, 49(11): 16-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||