林业科学 ›› 2025, Vol. 61 ›› Issue (2): 62-73.doi: 10.11707/j.1001-7488.LYKX20240260
朱颖1,2,周昕宇1,3,冯育青2,4,*(),汪辉5,李欣2,4
收稿日期:
2024-05-10
出版日期:
2025-02-25
发布日期:
2025-03-03
通讯作者:
冯育青
E-mail:wetland_sz@163.com
基金资助:
Ying Zhu1,2,Xinyu Zhou1,3,Yuqing Feng2,4,*(),Hui Wang5,Xin Li2,4
Received:
2024-05-10
Online:
2025-02-25
Published:
2025-03-03
Contact:
Yuqing Feng
E-mail:wetland_sz@163.com
摘要:
目的: 提取苏州中心城区各类湿地空间要素,构建湿地生态网络,定量评价湿地生态网络韧性水平,以期为水网城市湿地生态网络韧性测度及空间保护规划提供科学依据。方法: 以苏州中心城区为例,基于“MSPA-Conefor-MCR-GM”模型构建水网城市湿地生态网络,运用复杂网络分析法,从结构、功能、组分3个维度选取能够反映湿地生态网络韧性特征及水平的指标,定量测度湿地生态网络韧性水平。结果: 1) 苏州中心城区提取出19处生态源地、171条潜在生态廊道和28条重要生态廊道,判别出137个生态节点,形成典型的网络状多组团多节点结构特征。其中,生态源地呈现“多中心、多组团”的空间分布特征,潜在生态廊道呈现“东北-中部密集网状、其他片区少或无”的空间分布特征,重要生态廊道呈现“东北-西南走向,局部网格状”的空间分布特点,生态节点形成“总体分散、局部紧密”的空间分布特征。2) 结构韧性方面,中心城区湿地生态网络平均聚类系数为0.04,网络平均度为3.12,无标度特征明显,聚集性较弱、连通性一般,结构韧性不足。3) 功能韧性方面,平均路径长度、网络效率值、节点结构孔平均值和k核指数平均值分别为5.47、0.19、0.41和2.02,节点之间独立路径平均数量尚可,网络多样性较高,但受城市建设影响,斑块间生态廊道较长,传递性、稳定性不足,协作性较弱。4) 组分韧性方面,节点介数中心性值为0~2 837.17,平均值为365.17,边介数中心性值为1~2 618.76,平均值为1 469.43,斑块、廊道重要性差异较大,空间异质性较强,组分韧性水平差异显著。结论: 苏州中心城区湿地生态网络韧性水平一般,结构韧性、功能韧性及组分韧性表现出不同的特征与水平。本研究结果可以作为该区域湿地生态保护与管理的本底参考。
中图分类号:
朱颖,周昕宇,冯育青,汪辉,李欣. 水网城市湿地生态网络韧性评价——以苏州中心城区为例[J]. 林业科学, 2025, 61(2): 62-73.
Ying Zhu,Xinyu Zhou,Yuqing Feng,Hui Wang,Xin Li. Resilience Evaluation of Wetland Ecological Network in Water Network City: a Case Study of Suzhou Central Urban Area[J]. Scientia Silvae Sinicae, 2025, 61(2): 62-73.
表1
水网城市生态阻力因子赋值及权重"
阻力因子 Resistance factor | 阻力值 Resistance value | 权重Weight | ||||
1 | 2 | 3 | 4 | 5 | ||
土地利用类型 Land use type | 湿地 Wetlands | 林地、草地 Forest, grassland | 耕地 Cultivated land | 未利用地 Unutilized land | 建设用地 Construction land | 0.25 |
植被覆盖度 Vegetation coverage | 0.80~1.00 | 0.60~0.80 | 0.50~0.60 | 0.20~0.50 | 0~0.20 | 0.15 |
水网密度 Water network density/(km·km–2) | 27.90~ 54.94 | 20.33~27.90 | 13.41~20.33 | 5.84~13.41 | 0~5.84 | 0.24 |
河道密度 Channel density/(km·km–2) | 1.85~3.65 | 1.26~1.85 | 0.77~1.26 | 0.30~0.77 | 0~0.30 | 0.20 |
路网密度 Road network density/(km·km–2) | 0~4.08 | 4.08~7.95 | 7.95~11.93 | 11.93~16.95 | 16.95~26.68 | 0.06 |
距建设用地距离 Distance from construction land/m | >2 500 | 1 500~2 500 | 1 000~1 500 | 500~1 000 | <500 | 0.10 |
表2
湿地生态网络韧性评价指标"
评价维度 Evaluation dimension | 反映特征 Reflective features | 指标 Indicator | 指标内涵 Indicator connotation | 参考文献 References |
结构韧性 Structural resilience | 聚集性Aggregation | 平均聚类系数 Average clustering coefficient | 反映网络整体的聚集程度,且平均聚类系数越大,节点间联系越紧密 Reflecting the overall clustering degree of the network, and the larger the average clustering coefficient, the closer the connections between nodes | |
连通性Connectivity | 平均度 Average degree | 反映网络的整体连通性,平均度越高,意味着网络的整体连通性越强 Reflecting the overall connectivity of the network, the higher the average degree, the stronger the overall connectivity of the network | ||
功能韧性Functional resilience | 多样性 Diversity | 平均路径长度 Average path length | 反映节点之间存在多种连接路径,以确保廊道有断裂危险时,能够保持 两个生态源之间的连接,值越大,多样性越强 Reflecting the existence of multiple connection paths between nodes to ensure that when there is a risk of breakage in the corridor, the connection between two ecological sources can be maintained. The larger the value, the stronger the diversity | |
传递性Transmissibility | 网络效率 Network efficiency | 反映生态网络物质能量流动的运行效率,值越大,生态流的迁移效率越高 Reflecting the operational efficiency of material and energy flow in ecological networks, the larger the value, the higher the migration efficiency of ecological flow | ||
协作性Collaboration | 节点结构孔 Node structure hole | 表示节点对网络中其他节点的依赖程度,反映了节点的区域协作能力, 值越小,对周围节点的功能约束越小,协作性越强 Indicates the degree of dependence of a node on other nodes in the network, reflecting the node’s regional cooperation ability. The smaller the value, the less functional constraints it has on surrounding nodes, and the stronger the cooperation | ||
稳定性 Stability | k核指数 K-core index | 反映生态系统在遇到干扰时保持稳定和持续运行的能力,值越高且 比例越大,网络功能越稳定 Reflecting the ability of ecosystems to maintain stability and continuous operation in the face of disturbances, the higher the value and the larger the proportion, the more stable the network function | ||
组分韧性 Component resilience | 斑块重要性Importance of plaques | 节点介数 中心性 Node betweenness centrality | 表示网络中任何两个节点间的最短路径经过某个节点的总次数, 代表生态网络中一个斑块在能量流动和信息传递中的重要性 The total number of times the shortest path between any two nodes in the network passes through a node, representing the importance of a patch in energy flow and information transmission in the ecological network | |
廊道重要性Importance of corridor | 边介数中心性 Edge betweenness centrality | 反映网络中节点和廊道的重要性,值越大,在应对人类活动干扰和栖息地退化方面的韧性越强,网络也越稳定 Reflecting the importance of nodes and corridors in the network, the larger the value, the stronger the resilience in dealing with human activity interference and habitat degradation, and the more stable the network |
戴代新, 薄茗洋, 戴开宇. 城市生态防减灾中人工智能技术应用的进展与逻辑框架. 灾害学, 2024, 39 (2): 145- 152.
doi: 10.3969/j.issn.1000-811X.2024.02.022 |
|
Dai D X, Bo M Y, Dai K Y. Progress and logical framework of the application of artificial intelligence technology in urban ecological disaster prevention and mitigation. Journal of Catastrophology, 2024, 39 (2): 145- 152.
doi: 10.3969/j.issn.1000-811X.2024.02.022 |
|
丁宇新, 干 靓. 上海城市水网景观连接度对生物多样性的影响研究. 上海城市规划, 2018, (4): 86- 90. | |
Ding Y X, Gan L. Study on the impact of landscape connectivity of urban water network on biodiversity in Shanghai. Shanghai Urban Planning, 2018, (4): 86- 90. | |
杜箫宇, 吕飞南, 王春雨, 等. 基于MSPA-Conefor-MCR的县域尺度生态网络构建——以延庆区为例. 应用生态学报, 2023, 34 (4): 1073- 1082. | |
Du X Y, L F N, Wang C Y, et al. Construction of county-scale ecological network based on MSPA-Conefor-MCR——a case study of Yanqing District. Chinese Journal of Applied Ecology, 2023, 34 (4): 1073- 1082. | |
樊柏青, 成玉宁. 乡村生态景观识别与生境网络优化——以南京市江宁区为例. 风景园林, 2023, 30 (4): 27- 33. | |
Fan B Q, Cheng Y N. Rural ecological landscape identification and habitat network optimization: a case study of Jiangning District, Nanjing. Landscape Architecture, 2023, 30 (4): 27- 33. | |
傅 强, 顾朝林. 基于生态网络的生态安全格局评价. 应用生态学报, 2017, 28 (3): 1021- 1029. | |
Fu Q, Gu C L. Evaluation of ecological security pattern based on ecological network. Chinese Journal of Applied Ecology, 2017, 28 (3): 1021- 1029. | |
何建华, 潘 越, 刘殿锋. 生态网络视角下武汉市湿地生态格局分析. 生态学报, 2020, 40 (11): 3590- 3601. | |
He J H, Pan Y, Liu D F. Ecological pattern analysis of wetlands in Wuhan from the perspective of ecological network. Acta Ecologica Sinica, 2020, 40 (11): 3590- 3601. | |
黄 梅, 刘晨曦, 俞晓莹, 等. 城市水生态网络韧性评价与优化策略——以长沙市为例. 经济地理, 2022, 42 (10): 52- 60. | |
Huang M, Liu C X, Yu X Y, et al. Evaluation and optimization strategy of resilience of urban water ecological network: a case study of Changsha City. Economic Geography, 2022, 42 (10): 52- 60. | |
李权荃, 金晓斌, 张晓琳, 等. 基于景观生态学原理的生态网络构建方法比较与评价. 生态学报, 2023, 43 (4): 1461- 1473. | |
Li Q Q, Jin X B, Zhang X L, et al. Comparison and evaluation of ecological network construction methods based on the principle of landscape ecology. Acta Ecologica Sinica, 2023, 43 (4): 1461- 1473. | |
李倩瑜, 唐立娜, 邱全毅, 等. 基于形态学空间格局分析和最小累积阻力模型的城市生态安全格局构建——以厦门市为例. 生态学报, 2024, 44 (6): 2284- 2294. | |
Li Q Y, Tang L N, Qiu Q Y, et al. Construction of urban ecological security pattern based on morphological spatial pattern analysis and minimum cumulative resistance model: a case study of Xiamen City. Acta Ecologica Sinica, 2024, 44 (6): 2284- 2294. | |
李子豪, 陈 卉, 万山霖, 等. 基于复杂网络理论的区域生态空间网络格局及稳定性测度——以长三角地区为例. 中国城市林业, 2021, 19 (5): 1- 8.
doi: 10.12169/zgcsly.2021.04.25.0002 |
|
Li Z H, Chen H, Wan S L, et al. Regional eco-spatial network pattern and stability measurement based on complex network theory: a case study of the Yangtze River Delta region. Journal of Chinese Urban Forestry, 2021, 19 (5): 1- 8.
doi: 10.12169/zgcsly.2021.04.25.0002 |
|
刘骏杰, 陈璟如, 来燕妮, 等. 基于景观格局和连接度评价的生态网络方法优化与应用. 应用生态学报, 2019, 30 (9): 3108- 3118. | |
Liu J J, Chen J R, Lai Y N, et al. Optimization and application of ecological network method based on landscape pattern and connectivity evaluation. Chinese Journal of Applied Ecology, 2019, 30 (9): 3108- 3118. | |
刘 阳, 欧小杨, 郑 曦. 整合绿地结构与功能性连接分析的城市生物多样性保护规划. 风景园林, 2022, 29 (1): 26- 33. | |
Liu Y, Ou X Y, Zheng X. Urban biodiversity conservation planning integrating green space structure and functional connection analysis. Landscape Architecture, 2022, 29 (1): 26- 33. | |
石 晶, 石培基, 王梓洋, 等. 基于复杂网络理论和电路模型的酒泉市生态网络优化. 应用生态学报, 2024, 35 (1): 237- 246. | |
Shi J, Shi P J, Wang Z Y, et al. Jiuquan ecological network optimization based on complex network theory and circuit model. Chinese Journal of Applied Ecology, 2024, 35 (1): 237- 246. | |
税 伟, 付 银, 林咏园, 等. 基于生态系统服务的城市生态安全评估、制图与模拟. 福州大学学报(自然科学版), 2019, 47 (2): 143- 152. | |
Shui W, Fu Y, Lin Y Y, et al. Urban ecological security assessment, mapping and simulation based on ecosystem services. Journal of Fuzhou University(Natural Science Edition), 2019, 47 (2): 143- 152. | |
王 崑, 马春旭, 郑伊含, 等. 基于MSPA模型和生态保护重要性评价的市域生态空间网络构建及优化. 水土保持通报, 2023, 43 (4): 220- 228,326. | |
Wang K, Ma C X, Zheng Y H, et al. Construction and optimization of municipal ecological spatial network based on MSPA model and ecological protection importance evaluation. Bulletin of Soil and Water Conservation, 2023, 43 (4): 220- 228,326. | |
王 敏, 宋昊洋, 朱 雯, 等. 国土空间规划背景下城市水网空间近自然修复规划策略与实践——以江苏省太仓市为例. 风景园林, 2022, 29 (12): 36- 42. | |
Wang M, Song H Y, Zhu W, et al. Planning strategy and practice of near-natural restoration of urban water network space under the background of land spatial planning——a case study of Taicang City, Jiangsu Province. Landscape Architecture, 2022, 29 (12): 36- 42. | |
王庆孝, 栗云召, 曲芷程, 等. 黄河口湿地生态网络构建与评价. 生态科学, 2022, 41 (6): 105- 113. | |
Wang Q X, Li Y Z, Qu Z C, et al. Construction and evaluation of wetland ecological network in the Yellow River Estuary. Ecological Science, 2022, 41 (6): 105- 113. | |
肖华斌, 张慧莹, 郭妍馨, 等. 服务高效导向下泰山区域山水林田湖草生命共同体生态网络构建研究. 中国园林, 2021, 37 (8): 103- 108. | |
Xiao H B, Zhang H Y, Guo Y X, et al. Research on the construction of ecological network of life community of mountains, rivers, forests, fields, lakes and grasses in Taishan region under the guidance of efficient service. Chinese Landscape Architecture, 2021, 37 (8): 103- 108. | |
许 涛, 樊鹤翔, 周可钦, 等. 基于MSPA-MCR-CIRCUIT的山西省运城市景观生态网络构建. 中国园林, 2024, 40 (3): 114- 118. | |
Xu T, Fan H H, Zhou K Q, et al. Construction of landscape ecological network of Yuncheng City in Shanxi Province based on MSPA-MCR-CIRCUIT. Journal of Chinese Architecture, 2024, 40 (3): 114- 118. | |
杨林哲, 牛 腾, 于 强, 等. 基于复杂网络理论的生态空间优化——以松花江流域为例. 北京林业大学学报, 2022, 44 (9): 91- 103. | |
Yang L Z, Niu T, Yu Q, et al. Ecological space optimization based on complex network theory: a case study of Songhua River Basin. Journal of Beijing Forestry University, 2022, 44 (9): 91- 103. | |
杨 迈, 郑 毅, 李晓琳, 等. 洱海流域生态网络构建与分析. 湿地科学, 2024, 22 (2): 254- 263. | |
Yang M, Zheng Y, Li X L, et al. Construction and analysis of ecological network in the Erhai River Basin. Wetland Science, 2024, 22 (2): 254- 263. | |
姚采云, 安 睿, 窦 超, 等. 基于MSPA与MCR模型的三峡库区林地生态网络构建与评价研究. 长江流域资源与环境, 2022, 31 (9): 1953- 1962. | |
Yao C Y, An R, Dou C, et al. Research on the construction and evaluation of forest ecological network in the Three Gorges Reservoir area based on MSPA and MCR model. Resources and Environment in the Yangtze River Basin, 2022, 31 (9): 1953- 1962. | |
于 强, 杨 斓, 岳德鹏, 等. 基于复杂网络分析法的空间生态网络结构研究. 农业机械学报, 2018, 49 (3): 214- 224. | |
Yu Q, Yang L, Yue D P, et al. Research on spatial ecological network structure based on complex network analysis. Transactions of the CSAM, 2018, 49 (3): 214- 224. | |
岳俞余, 高 璟. 基于社会生态系统视角的乡村聚落韧性评价——以河南省汤阴县为例. 小城镇建设, 2019, 37 (1): 5- 14. | |
Yue Y Y, Gao J. Evaluation of rural settlement resilience from the perspective of socio-ecological system: a case study of Tangyin County, Henan Province. Small Town Construction, 2019, 37 (1): 5- 14. | |
Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286 (5439): 509- 512.
doi: 10.1126/science.286.5439.509 |
|
Burt R S. 1992. Structural holes: the social structure of competition. Cambridge : Harvard University Press, 18-20. | |
Freeman L C. A set of measures of centrality based on betweenness. Sociometry, 1977, 40 (1): 35- 41.
doi: 10.2307/3033543 |
|
Girvan M, Newman M E J. Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 2002, 99 (12): 7821- 7826.
doi: 10.1073/pnas.122653799 |
|
Latora V, Marchiori M. Efficient behavior of small-world networks. Physical Review Letters, 2001, 87 (19): 198701.
doi: 10.1103/PhysRevLett.87.198701 |
|
Mao Q H, Xu L Y, Wu R W. Evolutionary game of stakeholders' behavioral strategies in wetland ecosystems from the vulnerability perspective. Environmental Science and Pollution Research, 2023, 30 (15): 43419- 43439.
doi: 10.1007/s11356-023-25300-5 |
|
Meng B, Liu J L, Bao K, et al. Water fluxes of Nenjiang River Basin with ecological network analysis: conflict and coordination between agricultural development and wetland restoration. Journal of Cleaner Production, 2019, 213, 933- 943.
doi: 10.1016/j.jclepro.2018.12.243 |
|
Vogt P. 2009. MSPA-guidos: Innovative methods in landscape pattern analysis. 2009 Latin America landscape ecology conference. Sao Paulo City: 42. JRC54964 | |
Wang Y J, Cheng S, Cheng Z Q, et al. Exploring the construction and analysis method of landscape spatial structure based on complex networks. Environment and Planning B: Urban Analytics and City Science, 2024, 51 (3): 745- 762.
doi: 10.1177/23998083231197496 |
|
Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks. Nature, 1998, 393 (6684): 440- 442.
doi: 10.1038/30918 |
|
Seidman S B. Network structure and minimum degree. Social Networks, 1983, 5 (3): 269- 287.
doi: 10.1016/0378-8733(83)90028-X |
|
Wu Z, Cheng S, Xu K Y, et al. Ecological network resilience evaluation and ecological strategic space identification based on complex network theory: a case study of Nanjing City. Ecological Indicators, 2024, 158, 111604.
doi: 10.1016/j.ecolind.2024.111604 |
|
Zhang Y, Tian N X, Chen A J, et al. Identification of a wetland ecological network for urban heat island effect mitigation in Changchun, China. Ecological Indicators, 2023, 150, 110248.
doi: 10.1016/j.ecolind.2023.110248 |
[1] | 张雨田,石军南,张怀清,吴炳伦. 洞庭湖湿地植被时空动态及其驱动力分析[J]. 林业科学, 2024, 60(8): 1-13. |
[2] | 王哲,刘阳,赵奋成,曾明,李福明,吴惠姗,李义良,廖仿炎,邓乐平,钟岁英,郭文冰. 不同促脂剂对湿地松家系的增脂效果及对生长的影响[J]. 林业科学, 2022, 58(9): 106-116. |
[3] | 刘林,张旭,余素君,孙洪刚,姜景民,王宇华. 湿地松材脂兼用林最优轮伐期的经济分析——以江西省景德镇市枫树山林场为例[J]. 林业科学, 2022, 58(4): 62-73. |
[4] | 房焕英,肖胜生,余小芳,熊永,欧阳勋志,秦晓蕾. 湿地松人工林土壤呼吸及其组分对模拟酸雨的响应[J]. 林业科学, 2021, 57(7): 20-31. |
[5] | 叶琳峰,李彦,王忠媛,陆世通,潘天天,陈森,谢江波. 湿润地区3种松属植物枝和根导水系统的效率-安全关系[J]. 林业科学, 2021, 57(7): 194-204. |
[6] | 安瑞志,张鹏,达珍,乔楠茜,汤秋月,巴桑. 西藏麦地卡湿地不同水文期原生动物优势种生态位及其种间联结性[J]. 林业科学, 2021, 57(2): 126-138. |
[7] | 谢锦莹,丁丽霞,王志辉,刘丽娟. 基于FCN与面向对象的滨海湿地植被分类[J]. 林业科学, 2020, 56(8): 98-106. |
[8] | 徐有明,周彩霞,林汉,陶吉云,张菊花. 湿地松树木形成层恢复活动期、活动期和休眠期原始细胞超微结构变化[J]. 林业科学, 2020, 56(10): 145-153. |
[9] | 陈丽霞,付建平,陆军,杨亮亮,丁长青. 内蒙古查干淖尔湿地夏季鸟类组成和变化趋势[J]. 林业科学, 2020, 56(1): 145-153. |
[10] | 马迎宾,张蓓蓓,徐庆,高德强,郝玉光,黄雅茹. 绍兴淡水湿地人工林优势树种水分利用策略[J]. 林业科学, 2019, 55(12): 140-150. |
[11] | 李楠, 姜明, 田雪, 金光泽. 富锦国家湿地公园的轮虫群落结构及水质评价[J]. 林业科学, 2019, 55(1): 47-55. |
[12] | 陈丽霞, 刘化金, 刘宇霖, 杨培宇, 张国钢, 陆军. 兴凯湖不同栖息地水鸟群落差异分析[J]. 林业科学, 2019, 55(1): 56-65. |
[13] | 刘洪霞, 管文轲, 扎依达·斯迪克, 张和钰, 吴天忠, 曹晓明, 张谱, 冯益明. 塔里木胡杨国家自然保护区湿地面积在生态输水工程前后的变化[J]. 林业科学, 2018, 54(9): 1-8. |
[14] | 陈志云, 牛安逸, 徐颂军, 马姣娇. 基于地学信息图谱的深圳湾湿地景观变化分析[J]. 林业科学, 2018, 54(3): 168-176. |
[15] | 陆梅, 田昆, 孙向阳, 任玉连, 王行, 彭淑娴. 纳帕海典型湿地土壤真菌群落特征的积水条件和干湿季节变化[J]. 林业科学, 2018, 54(2): 98-109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||