欢迎访问林业科学,今天是

林业科学 ›› 2025, Vol. 61 ›› Issue (2): 62-73.doi: 10.11707/j.1001-7488.LYKX20240260

• 研究论文 • 上一篇    下一篇

水网城市湿地生态网络韧性评价——以苏州中心城区为例

朱颖1,2,周昕宇1,3,冯育青2,4,*(),汪辉5,李欣2,4   

  1. 1. 苏州科技大学 苏州 215011
    2. 江苏太湖湿地生态系统定位观测站 苏州 215000
    3. 上海浦东新区绿化管理事务中心 上海 201210
    4. 苏州市湿地保护管理站 苏州 215000
    5. 南京林业大学 南京 210037
  • 收稿日期:2024-05-10 出版日期:2025-02-25 发布日期:2025-03-03
  • 通讯作者: 冯育青 E-mail:wetland_sz@163.com
  • 基金资助:
    教育部人文社科研究规划基金(23YJAZH231)

Resilience Evaluation of Wetland Ecological Network in Water Network City: a Case Study of Suzhou Central Urban Area

Ying Zhu1,2,Xinyu Zhou1,3,Yuqing Feng2,4,*(),Hui Wang5,Xin Li2,4   

  1. 1. Suzhou University of Science and Technology Suzhou 215011
    2. Jiangsu Taihu Lake Wetland Ecosystem Positioning Observation and Research Station Suzhou 215000
    3. Shanghai Pudong New Area Greening Management Affairs Centre Shanghai 201210
    4. Suzhou Wetland Conservation and Management Station Suzhou 215000
    5. Nanjing Forestry University Nanjing 210037
  • Received:2024-05-10 Online:2025-02-25 Published:2025-03-03
  • Contact: Yuqing Feng E-mail:wetland_sz@163.com

摘要:

目的: 提取苏州中心城区各类湿地空间要素,构建湿地生态网络,定量评价湿地生态网络韧性水平,以期为水网城市湿地生态网络韧性测度及空间保护规划提供科学依据。方法: 以苏州中心城区为例,基于“MSPA-Conefor-MCR-GM”模型构建水网城市湿地生态网络,运用复杂网络分析法,从结构、功能、组分3个维度选取能够反映湿地生态网络韧性特征及水平的指标,定量测度湿地生态网络韧性水平。结果: 1) 苏州中心城区提取出19处生态源地、171条潜在生态廊道和28条重要生态廊道,判别出137个生态节点,形成典型的网络状多组团多节点结构特征。其中,生态源地呈现“多中心、多组团”的空间分布特征,潜在生态廊道呈现“东北-中部密集网状、其他片区少或无”的空间分布特征,重要生态廊道呈现“东北-西南走向,局部网格状”的空间分布特点,生态节点形成“总体分散、局部紧密”的空间分布特征。2) 结构韧性方面,中心城区湿地生态网络平均聚类系数为0.04,网络平均度为3.12,无标度特征明显,聚集性较弱、连通性一般,结构韧性不足。3) 功能韧性方面,平均路径长度、网络效率值、节点结构孔平均值和k核指数平均值分别为5.47、0.19、0.41和2.02,节点之间独立路径平均数量尚可,网络多样性较高,但受城市建设影响,斑块间生态廊道较长,传递性、稳定性不足,协作性较弱。4) 组分韧性方面,节点介数中心性值为0~2 837.17,平均值为365.17,边介数中心性值为1~2 618.76,平均值为1 469.43,斑块、廊道重要性差异较大,空间异质性较强,组分韧性水平差异显著。结论: 苏州中心城区湿地生态网络韧性水平一般,结构韧性、功能韧性及组分韧性表现出不同的特征与水平。本研究结果可以作为该区域湿地生态保护与管理的本底参考。

关键词: 湿地, 湿地生态网络, 复杂网络分析法, 韧性评价, 水网城市

Abstract:

Objective: Extract the spatial elements of various types of wetlands in in Suzhou central urban area, construct the wetland ecological network, quantitatively evaluate the resilience level of the wetland ecological network, and provide a scientific basis for the resilience measurement and spatial conservation planning of wetland ecological networks in water network city. Method: Taking the central urban area of Suzhou as an example, a water network urban wetland ecological network is constructed based on the “MSPA-Conefor-MCR-GM” model. The complex network analysis method is used to select indicators that can reflect the resilience characteristics and levels of the wetland ecological network. The resilience level of the wetland ecological network is quantitatively measured from three dimensions: structure, function, and composition, and key wetland patches and ecological corridors in the region are identified. Result: 1) 19 ecological source areas, 171 potential ecological corridors and 28 important ecological corridors were extracted from the central urban area of Suzhou, and 137 ecological nodes were identified, forming a typical network like multi cluster and multi node structural feature. Among them, ecological source areas exhibit spatial distribution characteristics of “multi center, multi cluster”, potential ecological corridors exhibit spatial distribution characteristics of“northeast-central dense network ,other regions exhibit minimal or negligible”, important ecological corridors exhibit spatial distribution characteristics of“northeast-southwest orientation, partially grid-like”, and ecological nodes form spatial distribution characteristics of “overall dispersion, local compactness”. 2) In terms of structural resilience, the average clustering coefficient of the wetland ecological network in the central urban area is 0.04, the average degree of the network is 3.12, and the scale-free characteristics are obvious. The aggregation is weak, the connectivity is average, and the structural resilience is insufficient. 3) In terms of functional resilience, the average path length, network efficiency value, average node structure hole value, and average k-core index value are 5.47, 0.19, 0.41, and 2.02, respectively. The average number of independent paths between nodes is still acceptable, and the network diversity is high. However, due to the impact of urban construction, the corridors between patches are relatively long, with insufficient transmission and stability, and weak collaboration. 4) In terms of component resilience, the node centrality range is 0?2 837.17, with an average value of 365.17, and the edge centrality range is 1?2 618.76, with an average value of 1 469.43. There are significant differences in the importance of plaques and corridors, with strong spatial heterogeneity and significant differences in component resilience levels. Conclusion: The resilience level of the wetland ecological network in the central urban area of Suzhou is generally average, with different characteristics and levels of structural resilience, functional resilience, and component resilience. The research results can serve as a baseline reference for wetland ecological protection and management in this area.

Key words: wetlands, wetland ecological network, complex network analysis method, resilience evaluation, water network city

中图分类号: