|
方旭, 王光辉, 杨化超, 等. 结合均值漂移分割与全卷积神经网络的高分辨遥感影像分类. 激光与光电子学进展, 2018. 55 (2): 446- 454.
|
|
Fang X , Wang G H , Yang H C , et al. High resolution remote sensing image classification combining with mean-shift segmentation and fully convolution neural network. Laser & Optoelectronics Progress, 2018. 55 (2): 446- 454.
|
|
和晓风, 林辉, 孙华, 等. 基于GF-1卫星东洞庭湖湿地类型信息提取. 中南林业科技大学学报, 2015. 35 (11): 10- 15.
|
|
He X F , Lin H , Sun H , et al. Wetland types information extraction form east Dongting Lake based on GF-1 satellite. Journal of Central South University of Forestry & Technology, 2015. 35 (11): 10- 15.
|
|
祁增营, 王京, 左正立. 湿地变化监测研究现状与展望. 遥感信息, 2012. 27 (6): 124- 132.
|
|
Qi Z Y , Wang J , Zuo Z L . Current status and prospect of researches on wetland change monitoring. Remote Sensing Information, 2012. 27 (6): 124- 132.
|
|
汤浩, 何楚. 全卷积网络结合改进的条件随机场-循环神经网络用于SAR图像场景分类. 计算机应用, 2016. 36 (12): 3436- 3441.
|
|
Tang H , He C . SAR image scene classification with fully convolutional network and modified conditional random field-recurrent neural network. Journal of Computer Applications, 2016. 36 (12): 3436- 3441.
|
|
王露. 2014.面向对象的高分辨率遥感影像多尺度分割参数及分类研究.长沙:中南大学硕士学位论文.
|
|
Wang L. 2014. Multi-scale segmentation parameters and classification of object-oriented high-resolution remote sensing images. Changsha: MS thesis of Central South University.[in Chinese]
|
|
徐逸之, 姚晓婧, 李祥, 等. 基于全卷积网络的高分辨遥感影像目标检测. 测绘通报, 2018. (1): 77- 82.
|
|
Xu Y Z , Yao X J , Li X , et al. Object detection in high resolution remote sensing images based on fully convolution networks. Bulletin of Surveying and Mapping, 2018. (1): 77- 82.
|
|
张春晓, 侯伟, 刘翔, 等. 基于面向对象和影像认知的遥感影像分类方法——以都江堰向峨乡区域为例. 测绘通报, 2010. (4): 11- 14.
|
|
Zhang C X , Hou W , Liu X , et al. Remote sensing image classification based on object-oriented and image cognition-a case study in Xiang'e, Dujiangyan. Bulletin of Surveying and Mapping, 2010. (4): 11- 14.
|
|
张猛, 曾永年, 朱永森. 面向对象方法的时间序列MODIS数据湿地信息提取——以洞庭湖流域为例. 遥感学报, 2017. 21 (3): 479- 492.
|
|
Zhang M , Zeng Y N , Zhu Y S . Wetland mapping of Donting Lake Basin based on time-series MODIS data and object-oriented method. Journal of Remote Sensing, 2017. 21 (3): 479- 492.
|
|
郑云云, 胡泓, 邵志芳. 典型滨海地植被演替研究进展. 湿地科学与管理, 2013. (4): 56- 60.
|
|
Zheng Y Y , Hu H , Shao Z F . Progress in studies of vegetation succession in typical coastal wetlands. Wetland Science & Management, 2013. (4): 56- 60.
|
|
周禹. 浅谈基于无人机遥感的湿地植被监测. 城市地理, 2017. (2): 79.
|
|
Zhou Y . Discussion on wetland vegetation monitoring based on UAV remote sensing. Cultural Geography, 2017. (2): 79.
|
|
周在明, 杨燕明, 陈本清. 基于无人机遥感监测滩涂湿地入侵种互花米草植被覆盖度. 应用生态学报, 2016. 27 (12): 3920- 3926.
|
|
Zhou Z M , Yang Y M , Chen B Q . Fractional vegetation cover of invasive Spartina alterniflora in coastal wetland using unmanned aerial vehicle(UAV) remote sensing. Chinese Journal of Applied Ecology, 2016. 27 (12): 3920- 3926.
|
|
Boon M A, Tesfsmichael S. 2017. Wetland vegetation integrity assessment with low altitude multispectral UAV imagery. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLⅡ-2/W6: 55-62.
|
|
Bittner K, Cui S, Reinartz P. 2017. Building extraction from remote sensing data using fully convolutional networks. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLⅡ-1/W1: 481-486.
|
|
Chavez P S , Berlin G L , Sowers L B . Statistical method for selecting Landsat MSS ratios. Journal of Applied Photographic Engineering, 1982. 8 (1): 23- 30.
|
|
Corcoran J M , Knight J F , Gallant A L . Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in northern Minnesota. Remote Sensing, 2013. 5 (7): 3212- 3238.
doi: 10.3390/rs5073212
|
|
Fu G , Liu C , Zhou R , et al. Classification for high resolution remote sensing imagery using a fully convolutional network. Remote Sensing, 2017. 9 (5): 498- 519.
doi: 10.3390/rs9050498
|
|
Johnson B , Xie Z . Unsupervised image segmentation evaluation and refinement using a multi-scale approach. ISPRS Journal of Photogrammetry & Remote Sensing, 2011. 66 (4): 473- 483.
|
|
Krizhevsky A , Sutskever I , Hinton G E . ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 2012. 25 (2): 1097- 1105.
|
|
Li R , Liu W , Yang L , et al. DeepUNet:a deep fully convolutional network for pixel-level sea-land segmentation. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2018. 11 (11): 3954- 3962.
|
|
Penger B W , Johnston C A , Loveland T R . Mapping an invasive plant, Phragmites australis, in coastal wetlands using the EO-1 Hyperion hyperspectral sensor. Remote Sensing of Environment, 2007. 108 (1): 74- 81.
doi: 10.1016/j.rse.2006.11.002
|
|
Piramanayagam S, Schwartzkopf W, Koehler F W, et al. 2016. Classification of remote sensed images using random forests and deep learning framework//SPIE remote sensing. Proceedings of the SPIE, 8.
|
|
Rao B R M , Dwivedi R S , Kushwaha S P S , et al. Monitoring the spatial extent of coastal wetlands using ERS-1 SAR data. International Journal of Remote Sensing, 1999. 20 (13): 2509- 2517.
doi: 10.1080/014311699211903
|
|
Shelhamer E , Long J , Darrel T . Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017. 39 (4): 640- 651.
doi: 10.1109/TPAMI.2016.2572683
|
|
Sherrah J. 2016. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery.arXiv ID: 1606.02585.
|
|
Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. Computer Science. arXiv preprint arXiv: 1409.1556.
|
|
Sun W , Wang R . Fully convolutional networks for semantic segmentation of very high resolution remotely sensed images combined with DSM. IEEE Geoscience & Remote Sensing Letters, 2018. 99, 1- 5.
|
|
Szegedy C, Liu W, Jia Y, et al. 2015. Going deeper with convolutions//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-9.
|