欢迎访问林业科学,今天是

林业科学 ›› 2024, Vol. 60 ›› Issue (7): 28-39.doi: 10.11707/j.1001-7488.LYKX20230296

• • 上一篇    下一篇

辽西地区樟子松人工林生产力和水分利用效率对气候变化的响应及预测

管崇帆1,2,3,高翔1,2,3,李志鹏1,2,3,胡晓创1,2,3,胡美均1,2,3,张劲松1,2,3,孟平1,2,3,蔡金峰2,孙守家1,2,3,*()   

  1. 1. 中国林业科学研究院林业研究所 国家林草局林木培育重点实验室 北京 100091
    2. 南京林业大学 南方现代林业协同创新中心 南京 210037
    3. 河南黄河小浪底关键带国家野外科学观测研究站 济源454650
  • 收稿日期:2023-07-06 出版日期:2024-07-25 发布日期:2024-08-19
  • 通讯作者: 孙守家 E-mail:.ssj1011@163.com
  • 基金资助:
    国家重点研发计划项目(2020YFA0608101);中央级公益性科研院所基本科研业务费专项资金(CAFYBB2022ZA00102)。

Response and Prediction of Productivity and Water Use Efficiency of Pinus sylvestris var. mongolica Plantations in Western Liaoning Province to Climate Change

Chongfan Guan1,2,3,Xiang Gao1,2,3,Zhipeng Li1,2,3,Xiaochuang Hu1,2,3,Meijun Hu1,2,3,Jinsong Zhang1,2,3,Ping Meng1,2,3,Jinfeng Cai2,Shoujia Sun1,2,3,*()   

  1. 1. Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration Research Institute of Forestry, Chinese Academy of Forestry Beijing 100091
    2. Collaborative Innovation Center of Sustainable Forestry in Southern China Nanjing Forest University Nanjing 210037
    3. Henan Xiaolangdi Earth Critical Zone National Research Station on the Middle Yellow River Jiyuan 454650
  • Received:2023-07-06 Online:2024-07-25 Published:2024-08-19
  • Contact: Shoujia Sun E-mail:.ssj1011@163.com

摘要:

目的: 预测未来气候背景下辽宁西部黑水林场樟子松人工林总初级生产力(GPP)和生态系统内禀水分利用效率(iWUE)的变化趋势及差异,为樟子松人工林的可持续管理与科学经营提供科学参考。方法: 对BIOME-BGC模型中影响GPP和蒸散(ET)的参数进行敏感性分析,利用参数估计(PEST)结合涡度数据对模型进行参数调整,获得模拟生态系统总初级生产力(GPPm)和模拟生态系统内禀水分利用效率(iWUEm),以稳定同位素和遥感数据进行比对,预测本世纪末黑水林场樟子松GPPm和iWUEm对气候变化和CO2浓度增加的响应。结果: 细根与叶片碳分配比是同时影响BIOME-BGC模型中GPP和ET的高敏感性参数,叶片和细根年周转率是中敏感性参数。对敏感性参数进行校正后,模型输出的GPP模拟值更趋近于实测值。iWUEm与遥感生态系统内禀水分利用效率(iWUEy)、单株内禀水分利用效率(iWUEd)均呈显著相关(P<0.05)。在增温情景下,樟子松GPPm升高,但在降水和CO2增加情景下GPPm变化不显著,不同情景下的iWUEm与GPPm变化相似但变幅更大。在RCP2.6、RCP4.5和RCP8.5情景下,樟子松GPPm与基线相比呈上升趋势且差异显著,但在RCP2.6和RCP4.5情景下iWUEm与基线差异不显著,仅在RCP8.5情景下极显著升高(P<0.01)。结论: 参数校正后的BIOME-BGC模型能够准确模拟黑水林场樟子松GPPm和iWUEm,未来GPPm与iWUEm变化趋势的差异暗示iWUE的气候变化响应机制比GPP更复杂,其不仅受气候变化影响,还可能与当地立地条件有关。

关键词: BIOME-BGC模型, 总初级生产力, 内禀水分利用效率, 气候响应, 情景模式

Abstract:

Objective: This study aims to predict the changes in gross primary productivity (GPP) and inherent water use efficiency (iWUE) of Pinus sylvestris var. mongolica plantations in Heishui forest station in western Liaoning Province under future different climatic conditions. Method: A sensitivity analysis was conducted on the parameters affecting GPP and evapotranspiration (ET) in the BIOME-BGC model. Parameter estimation (PEST) combined with eddy covariance data of GPP was used to adjust the model parameters, to obtain the simulated gross primary productivity (GPPm) and simulated inherent water use efficiency (iWUEm). The result of stable isotope measurement was compared with remote sensing data. The responses of GPPm and iWUEm of P. sylvestris var. mongolica in the Heishui forest station to climate change and increasing CO2 concentration by the end of this century were also predicted. Result: The carbon allocation ratio between fine roots and leaves was a highly sensitive parameter affecting both GPP and ET in the BIOME-BGC model, while the turnover rates of leaves and fine roots were moderately sensitive parameters. After calibration of the sensitive parameters, the simulated values of GPP were closer to the observed values. The simulated iWUEm was significantly correlated with the inherent water use efficiency (iWUEy) obtained by remote sensing and the individual inherent water use efficiency (iWUEd) with isotopic measurement (P<0.05). Under warming, GPPm increased, but under reduced precipitation and increased CO2, GPPm did not change significantly. The iWUEm showed similar trends in different scenarios, but with larger variations. Under the RCP2.6, RCP4.5, and RCP8.5 scenarios, GPPm of P. sylvestris var. mongolica significantly increased compared to the baseline, with significant differences among scenarios. However, iWUEm did not differ significantly from the baseline under RCP2.6 and RCP4.5, but increased significantly under RCP8.5 (P<0.01). Conclusion: The BIOME-BGC model, after calibration, can accurately simulate GPPm and iWUEm of P. sylvestris var. mongolica in the Heishui forest station. The differences in the future trends of GPPm and iWUEm suggest that the response mechanism of iWUE to climate change is more complex than that of GPP, and iWUE is not only influenced by climate change, but also by local site conditions.

Key words: BIOME-BGC model, gross primary productivity (GPP), inherent water use efficiency (iWUE), climate response, scene mode

中图分类号: