林业科学 ›› 2024, Vol. 60 ›› Issue (6): 71-85.doi: 10.11707/j.1001-7488.LYKX20220277
刘元玺,王丽娜,吴俊文*,李世民
收稿日期:
2022-04-20
出版日期:
2024-06-25
发布日期:
2024-07-16
通讯作者:
吴俊文
基金资助:
Yuanxi Liu,Lina Wang,Junwen Wu*,Shimin Li
Received:
2022-04-20
Online:
2024-06-25
Published:
2024-07-16
Contact:
Junwen Wu
摘要:
目的: 研究云南松幼苗生长和非结构性碳水化合物(NSC)对持续干旱胁迫的响应,为该物种的种群动态与制定合理经营措施提供理论基础,同时也为干旱条件下人工林营造特别是苗木管护提供依据。方法: 2年生云南松苗进行盆栽试验,采用称重控水法,将土壤相对含水量分别控制在田间持水量的75%~85%(对照)、60%~70%(轻度干旱)、45%~55%(中度干旱)和30%~40%(重度干旱),分析不同干旱处理对幼苗地径、苗高、生物量积累与分配和NSC含量的影响。结果: 1) 随土壤干旱程度增加,幼苗地径和苗高增长量、针叶、茎、粗根和整株生物量均逐渐降低;但细根生物量逐渐增加,重度干旱下显著增加22.79%。2) 随土壤气候程度增加,幼苗针叶、茎和粗根NSC含量均有不同程度的增加,重度干旱下显著增加10.89%、45.37%、30.70%,细根NSC含量则出现不同程度的降低;各器官可溶性糖与淀粉的比例存在干旱胁迫响应差异,且比值均大于1;淀粉是云南松幼苗最主要的NSC贮藏形式,主要贮藏于茎和粗根。3) 干旱胁迫下,云南松幼苗的生物量和NSC器官分配比例变化规律相似,即随土壤干旱程度增加,叶的生物量和NSC分配比例逐渐减小,茎、细根的生物量和NSC分配比例逐渐增加,粗根的生物量和NSC分配比例则先下降后上升。4) 幼苗生长与非结构性碳水化合物普遍存在显著相关;可塑性和PCA分析表明,苗高和地径的可塑性指数相对较小,而针叶生物量、细根生物量比、茎淀粉、针叶和茎可溶性糖/淀粉的可塑性指数较高,在主成分上的载荷较大。结论: 干旱胁迫显著抑制云南松幼苗生长。当碳供应受干旱胁迫限制时,存在生长和NSC储存之间的权衡,即生物量和NSC 减少对针叶的分配,但增加对细根的分配,是导致云南松幼苗生长缓慢的重要原因。云南松幼苗主要通过调节针叶和细根生长、增加茎贮存淀粉、针叶和茎维持NSC动态平衡来适应干旱环境。
中图分类号:
刘元玺,王丽娜,吴俊文,李世民. 云南松幼苗生物量和非结构性碳水化合物特征的干旱响应[J]. 林业科学, 2024, 60(6): 71-85.
Yuanxi Liu,Lina Wang,Junwen Wu,Shimin Li. Non-Structural Carbohydrate and Biomass Characteristics of Pinus yunnanensis Seedlings under Continuous Drought Stress[J]. Scientia Silvae Sinicae, 2024, 60(6): 71-85.
表1
持续干旱对云南松幼苗生长指标的影响①"
处理Treatment | 苗高Plant height/cm | 地径Ground diameter/mm | |||||
0 d | 60 d | 增长量Increment | 0 d | 60 d | 增长量Increment | ||
CK | 21.02±1.75a | 31.70±1.80a | 10.68±0.99a | 19.22±0.53 a | 22.36±0.49a | 3.14±0.35a | |
LD | 20.35±1.46a | 28.90±0.85a | 8.55±0.53a | 18.04±0.47a | 20.35±0.65b | 2.31±0.58ab | |
MD | 21.33±1.70a | 27.53±0.50ab | 6.20±0.48b | 18.80±0.56a | 20.10±0.50b | 1.30±0.19b | |
SD | 20.66±1.75a | 23.45±0.37b | 2.79±0.38c | 18.32±0.30a | 19.58±0.17b | 1.26±0.23b |
曹 言, 王 杰, 柴素盈, 等. 1970—2014年云南省气温日较差变化特征及影响因子. 水土保持研究, 2018, 25 (6): 100- 108. | |
Cao Y, Wang J, Chai S Y, et al. Variation Characteristics of Diurnal Temperature Range and ItsInfluencing Factors in Yunnan Province from 1970 to 2014. Research of Soil and Water Conservation, 2018, 25 (6): 100- 108. | |
陈志成, 万贤崇. 虫害叶损失造成的树木非结构性碳减少与树木生长、死亡的关系研究进展. 植物生态学报, 2016, 40 (9): 958- 968.
doi: 10.17521/cjpe.2015.0443 |
|
Chen Z C, Wan X C. The relationship between the reduction of nonstructural carbohydrate induced by defoliator and the growth and mortality of trees. Chinese Journal of Plant Ecology, 2016, 40 (9): 958- 968.
doi: 10.17521/cjpe.2015.0443 |
|
程 平, 赵明玉, 李 宏, 等. 旱胁迫对苹果树生长、光合特性及果实品质的影响. 云南大学学报(自然科学版), 2022, 44 (2): 405- 414. | |
Cheng P, Zhao M Y, Li H, et al. Effects of drought stress on the growth, photosynthetic characteristics and fruit quality of apple trees fruit quality. Journal of Yunnan University (Natural Sciences Edition), 2022, 44 (2): 405- 414. | |
崔 鹏, 黄海霞, 杨琦琦. 2020. 裸果木幼苗生物量和抗氧化酶活性对土壤干旱胁迫的响应. 中国水土保持科学, 18(5): 112−118. | |
Cui P, Huang H X, Yang Q Q. 2020. Response of biomass and antioxidant enzyme activities of Gymnocarpos przewalskii seedlings to drought stress. Science of Soil and Water Conservation, 18(5): 112−118.. [in Chinese] | |
樊玉坤, 兰芹英, 侯林林, 等. 2018. 云南松种子萌发特性及幼苗抗旱性研究进展. 种子, 37(2): 47−51. | |
Fan Y K, Lan Q Y, Hou L L, et al. 2018. Research Progress of Seed Germination Characteristics and Seedling Drought Resistance of Pinus yunnanensis Franch. Seed, 37(2): 47−51. [in Chinese] | |
高成杰, 崔 凯, 张春华, 等. 2020. 干旱胁迫对不同种源云南松幼苗生物量与根系形态的影响. 西北林学院学报, 35(3): 9−16. | |
Gao C J, Cui K, Zhang C H, et al. 2020. Effects of drought stress on biomass and root morphology of Pinus yunnanensis seedlings from different provenances. Journal of Northwest Forestry University, 35(3): 9−16. [in Chinese] | |
谷加存. 2011. 中国东北主要造林树种细根寿命及影响因子研究. 哈尔滨: 东北林业大学. | |
Gu J C. 2011. Fine root longevity and influencing factors in temperate tree species in northeastern China.Harbin: Northeast Forestry University. [in Chinese] | |
郭 樑, 吴杨波, 李莲芳, 等. 水分对云南松苗木生理生化特性的影响[J]. 西北林学院学报, 2016, 31(05): 78-84. | |
Guo L, Wu Y B, Li L F et al. 2016. Effects of Watering Control on Physiological and Biochemical Traits of Pinus yunnanensis Seedlings. Journal of Northwest Forestry University, 31(05): 78-84. [in Chinese] | |
姜 黎, 赵振勇, 田长彦. 模拟干旱胁迫与温度对野榆钱菠菜种子发芽特性和幼苗生长的影响. 中国草地学报, 2021, 43 (12): 27- 32. | |
Jiang L, Zhao Z Y, Tian C Y. Simulation of drought stress and temperature on seed germination characteristics and seedling growth Atriplex aucheri Moq. Chinese Journal of Grassland, 2021, 43 (12): 27- 32. | |
马 玥, 苏宝玲, 韩艳刚, 等. 岳桦幼苗光合特性和非结构性碳水化合物积累对干旱胁迫的响应. 应用生态学报, 2021, 32(02): 513-520. | |
Ma Y, Su B L, Han Y G, et al. Response of photosynthetic characteristics and non-structural carbohydrate accumulation of Betula ermanii seedlings to drought stress. Chinese Journal of Applied Ecology, 2021, 32(2): 513-520. [in Chinese] | |
倪妍妍, 胡 军, 刘建锋, 等. 不同地理种源栓皮栎幼苗生长与物质分配的变化趋势. 西北植物学报, 2017, 37 (3): 534- 540.
doi: 10.7606/j.issn.1000-4025.2017.03.534 |
|
Ni Y Y, Hu J, Liu J F, et al. The Trends in Growth and Substance Allocation in Quercus variabil is Seedlings from Five Provenances. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37 (3): 534- 540.
doi: 10.7606/j.issn.1000-4025.2017.03.534 |
|
庞世龙, 欧芷阳, 申文辉, 等. 干旱胁迫对蚬木幼苗表型可塑性的影响. 中南林业科技大学学报, 2017, 37(05): 21-25. | |
Pang S L, Ou Z Y, Shen W H, et al. Effect of drought stress on phenotypic plasticity of Excentrodendron hsienmu seedlings. Journal of Central South University of Forestry & Technology, 2017, 37(05): 21-25. [in Chinese] | |
潘庆民, 韩兴国, 白永飞, 等. 植物非结构性贮藏碳水化合物的生理生态学研究进展. 植物学通报, 2002, (01): 30- 38. | |
Pan Q M, Han X G, Bai Y F. Advances in Physiology and Ecology Studies on Stored Non-Structure Carbohydrates in Plants. Chinese Bulletin of Botany, 2002, (01): 30- 38. | |
祁 琳, 郭龙梅, 刘尤德, 等. 刺槐幼苗非结构性碳水化合物对NaCl胁迫的动态响应. 林业科学, 2022, 58 (01): 32- 42. | |
Qi L, Guo L M, Liu Y D, et al. Responses of Non-Structural Carbohydrates in Robinia pseudoacacia Seedlings to NaCl. StressScientia Silvae Sinicae, 2022, 58 (01): 32- 42. | |
单立山, 李 毅, 石万里, 等. 2015. 土壤水分胁迫对红砂幼苗生长和渗透调节物质的影响. 水土保持通报, 35(6): 106. | |
Shang L S, Li Y, Shi Wanli, et al. 2015. Effects ofsoil water stress on growth and osmotic adjustment substances of Reaumuria songarica seedlings. Soil and Water Conservation Bulletin, 35(6) : 106. [in Chinese] | |
孙 琪, 蔡年辉, 和润喜, 等. 干旱胁迫下云南松苗木的水分及其生理变化. 西部林业科学, 2017, 46 (02): 96- 100. | |
Sun Q, Cai N H, He R X, et al. Effects of Drought Stress on the Seedling Physiology of Pinus yunnanensis Franch. Journal of West China Forestry Science, 2017, 46 (02): 96- 100. | |
王凯悦, 陈芳泉, 黄五星. 2019. 植物干旱胁迫响应机制研究进展. 中国农业科技导报, 21(2): 19-25. | |
Wang K Y, Cheng F Q, Huang W X. 2019. Research Advance on Drought Stress Response Mechanism in Plants Journal of Agricultural Science and Technology, 21(2): 19-25. [in Chinese] | |
王 婷, 魏 虹, 周 翠, 等. 落羽杉根系有机酸与NSC代谢对三峡消落带水位变化的响应. 生态学报, 2018, 38 (9): 3004- 3013. | |
Wang T, Wei H, Zhou C, et al. Responses of root organic acids and nonstructural carbohydrates of Taxodium distichum to water-level changes in the hydro-fluctuation belt of the Three Gorges Reservoir. Acta Ecologica Sinica, 2018, 38 (9): 3004- 3013. | |
王学奎, 黄见良. 2018. 植物生理生化实验原理和技术 (第3版) 北京: 高等教育出版社. | |
Wang X K, Huang J L. 2018. Principles and Techniques of Physical Physiological and Biochemical Experiments (3rd ed)Beijing Higher Education Press. [in Chinese] | |
汪 越, 刘 楠, 任 海, 等. 紫背天葵(Begonia fimbristipula Hance)叶片形态和生理生态特征对不同光强的响应. 生态环境学报, 2015, 24 (6): 957- 964. | |
Wang Y, Liu N, Ren H, et al. Responses of Leaf Morphological and Physiological Characteristics of Begonia fimbristipula Hance to Light Intensity. Ecology and Environmental Sciences, 2015, 24 (6): 957- 964. | |
王宗琰, 王 凯, 姜 涛, 等. 2018. 油松幼苗非结构性碳水化合物对干旱胁迫的阶段性响应. 植物研究, 38(3): 460-466. | |
Wang Z Y, Wang K, Jiang T, et al. 2018. Staged Responses of Non-structural Carbohydrates of Pinus tabulaeformis Seedlings to Drought Stress. Bulletin of Botanical Research, 38(3): 460-466. [in Chinese] | |
吴俊文, 刘 珊, 李吉跃, 等. 干旱胁迫下广东石漠化地区造林树种光合和耗水特性. 生态学报, 2016, 36 (11): 3429- 3440. | |
Wu J W, Liu S, Li J Y, et al. Photosynthetic and water consumption of tree species utilized for afforestation of rocky desert in Guangdong Province. Acta Ecologica Sinica, 2016, 36 (11): 3429- 3440. | |
吴丽君, 李志辉. 不同种源赤皮青冈幼苗生长和生理特性对干旱胁迫的响应. 生态学杂志, 2014, 33 (4): 996- 1003. | |
Wu L J, Li Z H. Response of growth and physiological characteristics of Cyclobalanopsis gilva seedlings from different provenances to drought stress. Chinese Journal of Ecology, 2014, 33 (4): 996- 1003. | |
徐 飞, 郭卫华, 徐伟红, 等. 刺槐幼苗形态、生物量分配和光合特性对水分胁迫的响应. 北京林业大学学报, 2010, 32 (1): 24- 30. | |
Xu F, Guo W H, Xu W H, et al. Effects of water stress on morphology, biomass a llocation and photosynthes is in Robinia pseudoacacia seedlings. Journal of Beijing Forestry University, 2010, 32 (1): 24- 30. | |
杨 斌, 彭长辉, 张 贤, 等. 干旱胁迫对刺槐幼苗叶片氮含量、光合速率及非结构性碳水化合物的影响. 应用与环境生物学报, 2019, 25(06): 1261−1269. | |
Yang B, Peng C H, Zhan X, et al. 2019. Effects of drought stress on leaf nitrogen content, rate of photosynthesis, and non-structural carbohydrates in Robinia pseudoacacia L seedlings. Chinese Journal of Applied and Environmental Biology, 25(6): 1261−1269. [in Chinese] | |
杨 蕊, 王 龙, 高 瑞, 等. 基于标准化降水指数的云南冬春干旱特征分析. 中国农村水利水电, 2017, (4): 36- 40, 44. | |
Yang R, WangL, Gao R D, et al. Analysis of characteristics of winter and spring drought in yunnan province based on standardized precipitation index. China Rural Water and Hydropower, 2017, (4): 36- 40, 44. | |
殷东生, 魏晓慧. 2019. 干旱胁迫对风箱果幼苗生长、光合生理和抗氧化酶活性的影响. 东北林业大学学报, 47(01): 26−29, 34. | |
Yin D S, Wei X H. 2019. Influence of drought stress on growth, photosynthetic physiology and antioxidant enzyme activities of Physocarpus amurensis seedlings. Journal of Northeast Forestry University, 47(01): 26−29, 34. [in Chinese] | |
张 雕, 刘敏婕, 刘卫东, 等. 干旱胁迫对‘菊花桃’幼苗生长及生理特性的影响. 经济林研究, 2021, 39 (1): 211- 219. | |
Zhan D, Liu M J, Liu W D, et al. Effects of drought stress on the growth and physiological characteristics of Prunus persica cv.Juhuatao seedlings. Non-wood Forest Research, 2021, 39 (1): 211- 219. | |
张 婷. 2018. 干旱胁迫对刺槐和油松幼苗非结构性碳水化合物的影响. 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心). | |
Zhang T. 2018. Effects of drought stress on nonstructural carbohydrates in Robinia pseudoacacia and Pinus tabuliformis saplings. Research Center of Soil and Water Conservation and Ecological Environment, University of Chinese Academy of Sciences and Ministry of Education. [in Chinese] | |
朱铁霞, 高 阳, 高 凯, 李志华. 干旱胁迫下菊芋各器官生物量及物质分配规律. 生态学报, 2019, 39 (21): 8021- 8026. | |
Zhu T X, Gao Y, Gao K, Li Z H. Organ biomass and resource allocation in response to drought stress in Jerusalem artichoke. Acta Ecologica Sinica, 2019, 39 (21): 8021- 8026. | |
Ammer C 2003. Growth and biomass partitioning of Fagus sylvatica L and Quercus robur L seedlings in response to shading and small changes in the R/FR-ratio of radiation. Annals of Forest Science, 60, 163−171. | |
Bradshaw A D. Unravelling phenotypic plasticity why should we bother. New Phytologist, 2006, 170 (4): 644- 648.
doi: 10.1111/j.1469-8137.2006.01761.x |
|
Brodribb T J, McAdam SAM. Passive origins of stomatal control in vascular plants. Science, 2011, 331, 582- 585.
doi: 10.1126/science.1197985 |
|
Choat B, Jansen S, Brodribb T J, et al. Global convergence in the vulnerability of forests to drought. Nature, 2012, 491 (7426): 752- 755.
doi: 10.1038/nature11688 |
|
Deng X, Xiao W, Shi Z, et al. Combined Effects of Drought and Shading on Growth and Non-Structural Carbohydrates in Pinus massoniana Lamb. Seedlings. Forests, 2019, 11 (1): 18.
doi: 10.3390/f11010018 |
|
Dosio G A A, Tardieu F, Turc O. Floret initiation, tissue expansion and carbon availability at the meristem of the sunflower capitulum as affected by water or light deficits. New Phytologis, 2011, 189, 94- 105.
doi: 10.1111/j.1469-8137.2010.03445.x |
|
Gaylord M L, Kolb T E, Pockman W T, et al. Drought pre-disposes pion-juniper woodlands to insect attacks and mortality. New Phytologist, 2013, 198, 567- 578.
doi: 10.1111/nph.12174 |
|
Gessler A, Schaub M, Mcdowell N G. 2016. The role of nutrients in drought-induced tree mortality and recovery. New Phytologist, 214(2): 513-520. | |
Hartmann H, Ziegler W, Kolle O, et al. Thirst beats hunger-declining hydration during drought prevents carbon starvation in Norway spruce saplings. New Phytologist, 2013, 200, 340- 349.
doi: 10.1111/nph.12331 |
|
Hasibeder R, Fuchslueger L, Richter A, et al. Summer drought alters carbon allocation to roots and root respiration in mountain grassland. New Phytologist, 2015, 205, 1117- 1127.
doi: 10.1111/nph.13146 |
|
Huang J, Hammerbacher A, Weinhold A, et al. Eyes on the future-Evidence for trade-offs between growth, storage and defense in Norway spruce. New Phytologist, 2019, 222, 144- 158.
doi: 10.1111/nph.15522 |
|
Klein T, Hoch G, Yakir D, et al. Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest. Tree physiology, 2014, 34, 981- 992.
doi: 10.1093/treephys/tpu071 |
|
Maguire A J, Kobe, et al. Drought and shade deplete non-structural carbohydrate reserves in seedlings of five temperate tree species. Ecology and Evolution, 2016, 5, 5711- 5721. | |
Markestei L, Poorter M L. Seedling Root Morphology and Biomass Allocation of 62 Tropical Tree Species in Relation to Drought- and Shade-Tolerance. Ecology, 2009, 97, 311- 325.
doi: 10.1111/j.1365-2745.2008.01466.x |
|
Marod D, Kutintara U, Tanaka H, et al. Effects of drought and fire on seedling survival and growth under contrasting light conditions in a tropical forest. Journal of Vegetation Science, 2004, 15 (5): 691- 700.
doi: 10.1111/j.1654-1103.2004.tb02311.x |
|
Martin P J, Stephens W. Willow growth in response to nutrients and moisture on a clay landfill cap soil. I Growth and biomass production. Bioresource Technology, 2006, 97, 437- 448.
doi: 10.1016/j.biortech.2005.03.003 |
|
McDowell N G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology, 2011, 155, 1051- 1059.
doi: 10.1104/pp.110.170704 |
|
McDowell N, Pockman W T, Allen C D, Breshears, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?. New Phytologist, 2008, 178, 719- 739. | |
Modrzy´nski J, Chmura D J, Tjoelker M G. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species. Tree Physiology, 2015, 35, 879- 893.
doi: 10.1093/treephys/tpv053 |
|
Myers J A, Kitajima K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. Ecology, 2007, 95, 383- 395.
doi: 10.1111/j.1365-2745.2006.01207.x |
|
O’Brien M J, Leuzinger S, Philipso C D, et al. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nature Climate Change, 2014, 4 (8): 710- 714.
doi: 10.1038/nclimate2281 |
|
Palacio S, Hoch G, Sala A, et al. 2013. Does carbon storage limit tree growth? New Phytologist, 120, 1096-1100. | |
Petrussa E, Boscutti F, Vianello A, et al. 2017. "Last in-first out": Seasonal variations of non-structural carbohydrates, glucose-6-phospate and ATP, in tubers of two Arum species. Plant Biology, 20(2): 346-356. | |
Piper, F I. Drought induces opposite changes in the concentration of non-structural carbohydrates of two evergreen Nothofagus species of differential drought resistance. Annals of Forest Science, 2011, 68 (2): 415- 424.
doi: 10.1007/s13595-011-0030-1 |
|
Pons T L, Poorter H. The effect of irradiance on the carbon balance and tissue characteristics of five herbaceous species differing in shade-tolerance. Frontiers in Plant Science, 2014, 5, 1- 14. | |
Poorter H, Nagel O. 2000. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review. Australian Journal of Plant Physiology. 27: 595−607. | |
Poorter H, Niklas K J, Reich, P B, et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 2012, 193, 30- 50.
doi: 10.1111/j.1469-8137.2011.03952.x |
|
Poorter L, Kitajima K. Carbohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology, 2007, 88, 1000- 1011.
doi: 10.1890/06-0984 |
|
Prieto P, Peñuelas J, Llusià J. et al. Effects of experimental warming and drought on biomass accumulation in a Mediterranean shrubland. Plant Ecology, 2009, 205, 179- 191.
doi: 10.1007/s11258-009-9608-1 |
|
Rolletschek H, Weschke W, Weber H. Energy state and its control on seed development: Starch accumulation is associated with high ATP and steep oxygen gradients within barley grains. Journal of Experimental Botany, 2004, 55 (401): 1351.
doi: 10.1093/jxb/erh130 |
|
Sala A, Piper F, Hoch G. Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytologist, 2010, 186, 274- 281.
doi: 10.1111/j.1469-8137.2009.03167.x |
|
Silva E N, Ferreira-Silva S L, Viégas R A, et al. The role of organic and inorganic solutes in the osmotic adjustment of drought-stressed Jatropha curcas plants. Environmental and Experimental Botany, 2010, 69 (3): 279- 285.
doi: 10.1016/j.envexpbot.2010.05.001 |
|
Smith A M, Stitt M. Coordination of carbon supply and plant growth. Plant Cell Environ, 2007, 30, 1126- 1149.
doi: 10.1111/j.1365-3040.2007.01708.x |
|
Wiley E, Helliker, B. Are-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytologist, 2012, 195, 285- 289.
doi: 10.1111/j.1469-8137.2012.04180.x |
|
Wu F, Bao W, Li F, et al. Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings. Environmentaland Experimental Bottany, 2008, 63, 248- 255. | |
Xue S L, Wang Q C, Sun X X, et al. Effects of shading on the photosynthetic characteristics, growth, and biomass allocation in Fraxinus mandshurica and Quercus mongolica. Bulletin. of Botanical. Research, 2012, 32, 354- 359. | |
Yang B, Peng C, Harrison S P, et al. 2018. Allocation mechanisms of non-structural carbohydrates of Robinia pseudoacacia L. seedlings in response to drought and waterlogging. Forests, 9(12), 754. | |
Zhang L, Xu W H, Ouyang Z Y, et al. Determination of priority nature conservation areas and human disturbances in the Yangtze River Basin, China. Journal for Nature Conservation, 2014, 22 (4): 326- 336.
doi: 10.1016/j.jnc.2014.02.007 |
[1] | 王烨,李广德,刘国彬,廖婷,郭丽琴,姚砚武,曹均. 毛白杨人工林物候特征和生长对施肥的可塑性响应[J]. 林业科学, 2023, 59(5): 32-40. |
[2] | 谷瑞,徐森,陈双林,郭子武,杨丽婷. 美丽箬竹鞭段侧芽萌发生长的碳素制约作用[J]. 林业科学, 2022, 58(9): 70-78. |
[3] | 倪妍妍,简尊吉,徐瑾,曾立雄,阮宏华,雷蕾,肖文发,李迈和. 马尾松非结构性碳库大小及分配的纬向变化[J]. 林业科学, 2022, 58(8): 41-52. |
[4] | 吴东山,贾婕,陈虎,颜培栋,徐荣勋,杨柳琴,杨章旗. 利用HS-SPME-GC/MS法分析横坑切梢小蠹危害细叶云南松诱导抗性挥发物质[J]. 林业科学, 2021, 57(6): 103-110. |
[5] | 徐军亮,竹磊,师志强,武靖,章异平. 栓皮栎粗根和茎干中非结构性碳水化合物含量的调配关系[J]. 林业科学, 2021, 57(1): 200-206. |
[6] | 荣俊冬,凡莉莉,陈礼光,张迎辉,何天友,陈凌艳,宋鲲鹏,郑郁善. 不同施氮模式和施氮量对福建柏幼苗生物量分配和根系生长的影响[J]. 林业科学, 2020, 56(7): 175-184. |
[7] | 申佳艳,李帅锋,黄小波,王绍武,苏建荣. 金沙江流域不同海拔处云南松生态弹性及生长衰退过程[J]. 林业科学, 2020, 56(6): 1-11. |
[8] | 洪琮浩,洪震,雷小华,汪俊峰,闫道良. 氮添加对长序榆C、N、P养分含量及非结构性碳水化合物含量的影响[J]. 林业科学, 2020, 56(6): 186-192. |
[9] | 王凯,宋琪,张日升,张大鹏,孙菊. 科尔沁沙地防护林主要树种的非结构性碳水化合物分布特征[J]. 林业科学, 2020, 56(12): 39-48. |
[10] | 陈奕帆,付晓莉,王辉民,戴晓琴,寇亮,陈伏生,卜文圣. 林下植被清除对不同径级中龄杉木生长速率的影响机制[J]. 林业科学, 2020, 56(11): 21-30. |
[11] | 李杨, 许飞云. 不同含水率云南松声发射信号特征[J]. 林业科学, 2019, 55(6): 96-102. |
[12] | 方加兴, 武承旭, 卢文娟, 刘福, 张苏芳, 张真, 孔祥波. 横坑切梢小蠹林间危害与诱捕量之间的相关性分析[J]. 林业科学, 2019, 55(4): 129-135. |
[13] | 钱杨, 孙洪刚, 董汝湘, 姜景民. 针叶树碳水化合物分配研究进展[J]. 林业科学, 2018, 54(1): 141-153. |
[14] | 刘万德, 苏建荣, 李帅锋, 郎学东, 黄小波, 张志钧. 云南普洱季风常绿阔叶林主要树种非结构性碳水化合物变异分析[J]. 林业科学, 2017, 53(6): 1-9. |
[15] | 姜准, 刘丹一, 陈贝贝, 高海银, 刘春红, 张增悦, 邹旭, 李根前. 中国沙棘克隆生长对造林密度的早期响应及其生物量分配调节机制[J]. 林业科学, 2017, 53(10): 29-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||