林业科学 ›› 2024, Vol. 60 ›› Issue (8): 95-108.doi: 10.11707/j.1001-7488.LYKX20240136
王一君1,陈立欣1,3,陈左司南1,2,张志强1,3,4,*(),许行1,姚飞5,陈胜楠1
收稿日期:
2024-03-11
出版日期:
2024-08-25
发布日期:
2024-09-03
通讯作者:
张志强
E-mail:zhqzhang@bjfu.edu.cn
基金资助:
Yijun Wang1,Lixin Chen1,3,Zuosinan Chen1,2,Zhiqiang Zhang1,3,4,*(),Hang Xu1,Fei Yao5,Shengnan Chen1
Received:
2024-03-11
Online:
2024-08-25
Published:
2024-09-03
Contact:
Zhiqiang Zhang
E-mail:zhqzhang@bjfu.edu.cn
摘要:
目的: 以杨树人工林生态系统为研究对象,研究环境因子与内源性昼夜节律对树木叶片水分生理和树干液流的生物物理调控机制,旨在揭示树木水分生理过程(叶片气孔导度、叶片蒸腾、叶片水势和树干液流)在夜间对不同环境稳定性条件的响应模式和影响因素。方法: 对位于北京市顺义区潮白河沿岸的欧美杨人工林,在生长季期间选定7个晴朗的昼夜,连续监测3棵样树的叶片气体交换和叶片水势。同时,使用热扩散探针技术监测样树的树干液流密度变化,同步记录环境因子变化,并使用日落后历时量化昼夜节律的影响。结果: 1)夜间出现树木气孔开放的现象,叶片蒸腾和液流同步发生。夜间环境稳定(v=0且?VPD ≤0.1 kPa)条件下,树木水分生理指标主要受大气和土壤温度影响(P<0.05),且较弱。夜间液流与叶片气孔导度显著负相关(P<0.01),表明液流主要用于茎干补水。2)夜间环境波动(v>0或?VPD≥0.1 kPa)条件下,叶片气孔导度和树干液流密度受大气温度(Ta)和VPD的正向调控,与空气湿度(RH)显著负相关(P<0.05),且Ta为主导影响因素。叶水势主要受Ta、土壤含水量(SWC)和温度(ST)的共同影响。夜间液流与叶片气孔导度、蒸腾速率和水势显著正相关(R2=0.67)。3)日间环境波动较强,叶片水分生理指标与树干液流密度的相关性显著高于夜间,但叶片气孔导度与VPD呈负相关,且气孔导度与液流密度之间表现出解耦现象(P=0.078)。4)以日落后历时为表征的昼夜节律对树木水分生理指标的作用方式随夜间环境稳定性变化而不同。在夜间环境稳定条件下,日落后历时显著影响叶片气孔导度、叶片水势和叶片蒸腾(P<0.01);而在夜间环境波动条件下,该因子对叶片水分生理指标的影响程度均有所降低且对气孔导度和叶片水势的影响不显著(P1=0.066, P2=0.08),说明夜间环境波动影响了昼夜节律对树木水分生理过程的作用方式和程度。结论: 在夜间不同环境稳定性条件下,树木水分生理的生物物理过程和调控机制有显著差异,当环境因子波动较小时,树木水分生理过程受昼夜节律调控形成了显著的夜间模式,此时应考虑其对植物水分的影响。本研究强调了昼夜节律在调控林木水利用中的关键作用,并建议制定基于时间和环境稳定性的灌溉策略,以优化水分管理和应对气候变化。
中图分类号:
王一君,陈立欣,陈左司南,张志强,许行,姚飞,陈胜楠. 夜间不同环境稳定性条件下杨树水分生理过程的生物物理控制[J]. 林业科学, 2024, 60(8): 95-108.
Yijun Wang,Lixin Chen,Zuosinan Chen,Zhiqiang Zhang,Hang Xu,Fei Yao,Shengnan Chen. Biophysical Control of Water Physiological Processes in Poplar under Various Nighttime Environmental Stability Conditions[J]. Scientia Silvae Sinicae, 2024, 60(8): 95-108.
表1
试验样木基本信息①"
样树编号 Tree No. | 胸径 DBH/cm | 树高 Tree height/m | 冠幅 Canopy diameter/m | 树冠投影面积 Crown projected area/m2 | 边材面积 Sapwood area/cm2 | |
东 西 East-west | 南 北 North-south | |||||
1 | 14 | 16 | 4.12 | 3.26 | 10.55 | 72.86 |
2 | 14.2 | 19.2 | 4.04 | 2.93 | 9.30 | 74.76 |
3 | 19.98 | 21.6 | 3.3 | 4.39 | 11.38 | 139.23 |
4 | 26.23 | 22.4 | 5.26 | 3.83 | 15.82 | 228.54 |
5 | 30.99 | 25.12 | 7.14 | 6.15 | 34.49 | 309.62 |
6 | 25.7 | 22.56 | 5.47 | 5.42 | 23.29 | 220.20 |
7* | 36.53 | 21.9 | 7.46 | 6.8 | 39.84 | 417.72 |
8 | 40.28 | 19.2 | 9.16 | 8.14 | 58.56 | 499.07 |
9* | 30.59 | 22.5 | 4.66 | 8.98 | 32.87 | 302.38 |
10* | 33.97 | 20.7 | 5.90 | 9.8 | 45.41 | 365.96 |
表2
变量类别和名称"
类别 Category | 全称 Full name | 简写 Abbreviation | 单位 Unit |
树木水分生理指标 Tree water physiological indicators | 气孔导度 Stomatal conductance | gs | mol·m?2 s?1 |
蒸腾速率 Transpiration rate | Tr | mmol·m?2 s?1 | |
叶片水势 Leaf water potential | Ψ | MPa | |
树干液流密度 Sap flux density | Js | g·cm?2 s?1 | |
环境因子 Environmental factors | 太阳辐射 Solar radiation | Rs | W·m?2 |
风速 Wind speed | v | m·s?1 | |
大气温度 Air temperature | Ta | ?C | |
空气相对湿度 Relative humidity | RH | % | |
饱和水汽压差 Vapor pressure deficit | VPD | kPa | |
土壤含水量 Soil water content | SWC | m3·m?3 | |
土壤水势 Soil water potential | SWP | kPa | |
土壤温度 Soil temperature | ST | ?C | |
昼夜节律因子 Circadian rhythm factors | 日落后历时 Hours after dusk | tnight | h |
表4
环境分组信息①"
环境分组 Environmental grouping | 分组依据 Basis for grouping | 树木水分生理指标 Tree water physiological indicators | 环境因子 Environmental factors |
NU | Rs<5 W·m?2 & | gs, Tr, Ψ, Js | v, Ta, RH, VPD, SWC, SWP, ST, (tnight) |
NS | Rs<5 W·m?2 & ΔVPD<0.1 kPa | gs, Tr, Ψ, Js | Ta, RH, VPD, SWC, SWP, ST, (tnight) |
DT | Rs≥5 W·m?2 | gs, Tr, Ψ, Js | Rs, v, Ta, RH, VPD, VWC, SWP, ST |
图2
不同环境分组关键气象因子特征及显著性差异比较 NU: 夜间微气候波动环境 Nighttime fluctuating microclimate environment; NS: 夜间微气候稳定环境Nighttime stable microclimate environment; DT: 日间环境Daytime environment.*表示独立样本t检验中显著性P<0.05,**表示P<0.01.* indicates significant difference at P<0.05, ** indicates significant difference at P<0.01 in the independent sample t-test."
图4
不同环境分组水分生理指标的大小及差异 *表示独立样本t检验中显著性P<0.05,**表示P<0.01. * indicates significant difference at P<0.05, ** indicates significant difference at P<0.01 in the independent sample t-test. ns表示P>0.05。ns indicates P>0.05. 柱状图高度表示平均值大小,误差线表示数据的标准差。Histogram heights represent mean values, error bars represent standard deviation."
表7
植物水分生理偏最小二乘回归结果①"
环境分组 Environmental grouping | 自变量Independent variables | ||||||||
因变量 Dependent variables | 环境因子 Environmental factors | 黄昏后历时 Hours after dusk | 环境因子和黄昏后历时 Environmental factors and hours after dusk | ||||||
R2 | RMSEP | SRC | P | R2 | RMSEP | ||||
NU | gs | 0.333 | 0.68 | ?0.17 | 0.066 | 0.356 | 0.68 | ||
Tr | 0.484 | ?0.215 | 0.018 | 0.506 | |||||
Ψ | 0.462 | ?0.12 | 0.080 | 0.373 | |||||
Js | 0.851 | ?0.289 | 0.001 | 0.869 | |||||
NS | gs | 0.388 | 0.29 | 1.241 | 0.000 | 0.755 | 0.26 | ||
Tr | 0.119 | 1.17 | 0.007 | 0.456 | |||||
Ψ | 0.816 | 0.398 | 0.006 | 0.844 | |||||
Js | 0.711 | ?0.031 | 0.868 | 0.709 | |||||
DT | gs | 0.440 | 1.51 | — | — | — | — | ||
Tr | 0.564 | ||||||||
Ψ | 0.827 | ||||||||
Js | 0.859 |
图5
不同环境分组偏最小二乘回归标准化回归系数热图 显著(P<0.05)的回归系数在图中标识具体数值,灰色填充表示该模型中无此自变量。Significant (P<0.05) regression coefficients are identified with specific values in the chart, and grey fill indicates the absence of this independent variable in the model.NU: 夜间微气候波动环境 Nighttime fluctuating microclimate environment; NS: 夜间微气候稳定环境Nighttime stable microclimate environment; DT: 日间环境Daytime environment. Rs: 太阳辐射 Solar radiation; v: 风速 Wind speed; Ta: 大气温度 Air temperature; RH: 空气相对湿度 Relative humidity; VPD: 饱和水汽压差 Vapor pressure deficit; SWC: 土壤含水量 Soil water content; SWP: 土壤水势 Soil water potential; ST: 土壤温度 Soil temperature.gs: 叶片气孔导度 Leaf stomatal conductance; Tr: 叶片蒸腾速率 Leaf-level transpiration rate; Ψ: 叶片水势 Leaf water potential; Js: 树干液流密度 Sap flux density."
曹生奎, 冯 起, 司建华, 等. 植物叶片水分利用效率研究综述. 生态学报, 2009, 29 (7): 3882- 3892.
doi: 10.3321/j.issn:1000-0933.2009.07.051 |
|
Cao S K, Feng Q, Si J H, et al. Summary on the plant water use efficiency at leaf level. Acta Ecologica Sinica, 2009, 29 (7): 3882- 3892.
doi: 10.3321/j.issn:1000-0933.2009.07.051 |
|
范云翔, 邸 楠, 刘 洋, 等. 毛白杨茎干夜间液流时空动态及其环境影响因子. 植物生态学报, 2023, 47 (2): 262- 274. | |
Fan Y X, Di N, Liu Y, et al. Spatiotemporal dynamics of nocturnal sap flow of Populus tomentosa and environmental impact factors. Journal of Plant Ecology, 2023, 47 (2): 262- 274. | |
高惠璇. 两个多重相关变量组的统计分析(3)(偏最小二乘回归与PLS过程). 数理统计与管理, 2002, 21 (2): 58- 64. | |
Gao H X. Statistical analyses for multiple correlation variables of two sets (3) (partial least-sguares regression and PLS procedure). Journal of Applied Statistics and Management, 2002, 21 (2): 58- 64. | |
贾国栋, 陈立欣, 李瀚之, 等. 北方土石山区典型树种耗水特征及环境影响因子. 生态学报, 2018, 38 (10): 3441- 3452. | |
Jia G D, Chen L X, Li H Z, et al. The effect of environmental factors on plant water consumption characteristics in a northern rocky mountainous area. Acta Ecologica Sinica, 2018, 38 (10): 3441- 3452. | |
孔 喆, 陈胜楠, 律 江, 等. 欧美杨单株液流昼夜组成及其影响因素分析. 林业科学, 2020, 56 (3): 8- 20.
doi: 10.11707/j.1001-7488.20200302 |
|
Kong Z, Chen S N, Lü J, et al. Characteristics of Populus euramericana sap flow over day and night and its influencing factors. Scientia Silvae Sinicae, 2020, 56 (3): 8- 20.
doi: 10.11707/j.1001-7488.20200302 |
|
李光莹, 祖姆热提·于苏甫江, 董正武, 等. 古尔班通古特沙漠西南缘地区多枝柽柳(Tamarix ramosissima)生理特性对沙堆不同堆积阶段的响应. 生态学报, 2024, 44 (8): 1- 14. | |
Li G Y, Zumrat·Yusufjan, Dong Z W, et al. Response of physiological characteristics of Tamarix ramosissima to different accumulation stages of cones in the southwestern margin of Gurbantungut Desert. Acta Ecologica Sinica, 2024, 44 (8): 1- 14. | |
罗丹丹, 王传宽, 金 鹰. 植物水分调节对策: 等水与非等水行为. 植物生态学报, 2017, 41 (9): 1020- 1032.
doi: 10.17521/cjpe.2016.0366 |
|
Luo D D, Wang C K, Jin Y. Plant water-regulation strategies: isohydric versus anisohydric behavior. Journal of Plant Ecology, 2017, 41 (9): 1020- 1032.
doi: 10.17521/cjpe.2016.0366 |
|
罗丹丹, 王传宽, 金 鹰. 木本植物水力系统对干旱胁迫的响应机制. 植物生态学报, 2021, 45 (9): 925- 941.
doi: 10.17521/cjpe.2021.0111 |
|
Luo D D, Wang C K, Jin Y. Response mechanisms of hydraulic systems of woody plants to drought stress. Journal of Plant Ecology, 2021, 45 (9): 925- 941.
doi: 10.17521/cjpe.2021.0111 |
|
魏鸾葳, 陈左司南, 陈胜楠, 等. 降雨对河岸生态系统杨树树干液流及其环境控制的影响. 水土保持学报, 2023, 37 (4): 284- 293. | |
Wei L W, Chen Z S N, Chen S N, et al. Effects of rainfall on sap flow and its environmental controls in a riparian poplar plantation ecosystem. Journal of Soil and Water Conservation, 2023, 37 (4): 284- 293. | |
徐志彬. 2022. 北方三种常见针叶树种蒸腾耗水特征及其环境响应和生理控制. 北京: 北京林业大学. | |
Xu Z B. 2022. Environmental responses and physiological controls of transpiration of three common coniferous tree species in North China. Beijing: Beijing Forestry University. [in Chinese] | |
Bai Y, Li X Y, Liu S M, et al. Modelling diurnal and seasonal hysteresis phenomena of canopy conductance in an oasis forest ecosystem. Agricultural and Forest Meteorology, 2017, 246, 98- 110.
doi: 10.1016/j.agrformet.2017.06.006 |
|
Barbour M M, Buckley T N. 2007. The stomatal response to evaporative demand persists at night in Ricinus communis plants with high nocturnal conductance. Plant, Cell & Environment, 30(6): 711–721. | |
Barbour M M, Cernusak L A, Whitehead D, et al. Nocturnal stomatal conductance and implications for modelling δ18O of leaf-respired CO2 in temperate tree species. Functional Plant Biology, 2005, 32 (12): 1107- 1121.
doi: 10.1071/FP05118 |
|
Battin T J, Lauerwald R, Bernhardt E S, et al. River ecosystem metabolism and carbon biogeochemistry in a changing world. Nature, 2023, 613 (7944): 449- 459.
doi: 10.1038/s41586-022-05500-8 |
|
Buckley T N. 2019. How do stomata respond to water status? New Phytologist, 224(1): 21–36. | |
Bucci S J, Scholz F G, Goldstein G, et al. Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species. Tree Physiology, 2004, 24 (10): 1119- 1127.
doi: 10.1093/treephys/24.10.1119 |
|
Caird M A, Richards J H & Donovan L A, 2007. Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiology, 143(1): 4–10. | |
Chen Z S N, Zhang Z Q, Sun G, et al. Biophysical controls on nocturnal sap flow in plantation forests in a semi-arid region of northern China. Agricultural and Forest Meteorology, 2020, 284, 107904.
doi: 10.1016/j.agrformet.2020.107904 |
|
Chowdhury F I, Arteaga C, Alam M S, et al. Drivers of nocturnal stomatal conductance in C3 and C4 plants. Science of the Total Environment, 2022, 814, 151952.
doi: 10.1016/j.scitotenv.2021.151952 |
|
Clearwater M J, Meinzer F C, Andrade J L, et al. Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiology, 1999, 19 (10): 681- 687.
doi: 10.1093/treephys/19.10.681 |
|
Cochard H, Coll L, Le Roux X, et al. Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut. Plant Physiology, 2002, 128 (1): 282- 290.
doi: 10.1104/pp.010400 |
|
Cunningham S C. Stomatal sensitivity to vapour pressure deficit of temperate and tropical evergreen rainforest trees of Australia. Trees, 2004, 18 (4): 399- 407. | |
Daley M J, Phillips N G. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest. Tree Physiology, 2006, 26 (4): 411- 419.
doi: 10.1093/treephys/26.4.411 |
|
Dawson T E, Burgess S S O, Tu K P, et al. Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiology, 2007, 27 (4): 561- 575.
doi: 10.1093/treephys/27.4.561 |
|
Dodd A N, Salathia N, Hall A, et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science, 2005, 309 (5734): 630- 633.
doi: 10.1126/science.1115581 |
|
Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33, 317- 345.
doi: 10.1146/annurev.pp.33.060182.001533 |
|
Forster M A. 2014. How significant is nocturnal sap flow? Tree Physiology, 34(7): 757–765. | |
Franks P J, Drake P L, Froend R H. 2007. Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant, Cell & Environment, 30(1): 19–30. | |
Fricke W. 2019. Night-time transpiration–favouring growth? Trends in Plant Science, 24(4): 311–317. | |
Fuentes S, Mahadevan M, Bonada M, et al. Night-time sap flow is parabolically linked to midday water potential for field-grown almond trees. Irrigation Science, 2013, 31 (6): 1265- 1276.
doi: 10.1007/s00271-013-0403-3 |
|
Goldstein G, Andrade J L, Meinzer F C, et al. 1998. Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant, Cell & Environment, 21(4): 397–406. | |
Gordon N D, McMahon T A, Finlayson B L, et al. 2004. Stream hydrology: an introduction for ecologists. New York: John Wiley and Sons. | |
Gould P D, Locke J C W, Larue C. et al. The molecular basis of temperature compensation in the Arabidopsis circadian clock. The Plant Cell, 2006, 18 (5): 1177- 1187.
doi: 10.1105/tpc.105.039990 |
|
Granier A, Bobay V, Gash J H C, et al. Vapour flux density and transpiration rate comparisons in a stand of Maritime pine (Pinus pinaster Ait. ) in Les Landes forest. Agricultural and Forest Meteorology, 1990, 51 (3): 309- 319. | |
Green S R, McNaughton K G, Clothier B E. Observations of night-time water use in kiwifruit vines and apple trees. Agricultural and Forest Meteorology, 1989, 48 (3): 251- 261. | |
Grossiord C, Buckley T N, Cernusak L A, et al. Plant responses to rising vapor pressure deficit. New Phytologist, 2020, 226 (6): 1550- 1566.
doi: 10.1111/nph.16485 |
|
Hasanuzzaman M, Zhou M & Shabala S, 2023. How does stomatal density and residual transpiration contribute to osmotic stress tolerance? Plants, 12(3): 494. | |
Haworth M, Marino G, Loreto F, et al. Integrating stomatal physiology and morphology: evolution of stomatal control and development of future crops. Oecologia, 2021, 197 (4): 867- 883.
doi: 10.1007/s00442-021-04857-3 |
|
Hogg E H, Hurdle P A. Sap flow in trembling aspen: implications for stomatal responses to vapor pressure deficit. Tree Physiology, 1997, 17 (8-9): 501- 509.
doi: 10.1093/treephys/17.8-9.501 |
|
Howard A R, Donovan L A. Helianthus nighttime conductance and transpiration respond to soil water but not nutrient availability. Plant Physiology, 2007, 143 (1): 145- 155.
doi: 10.1104/pp.106.089383 |
|
Huang C W, Domec J C, Ward E J, et al. The effect of plant water storage on water fluxes within the coupled soil–plant system. New Phytologist, 2017, 213 (3): 1093- 1106.
doi: 10.1111/nph.14273 |
|
Huang J T, Zhou Y X, Yin L H, et al. Climatic controls on sap flow dynamics and used water sources of Salix psammophila in a semi-arid environment in northwest China. Environmental Earth Sciences, 2015, 73 (1): 289- 301.
doi: 10.1007/s12665-014-3505-1 |
|
Jasechko S, Sharp Z D, Gibson J J, et al. Terrestrial water fluxes dominated by transpiration. Nature, 2013, 496 (7445): 347- 350.
doi: 10.1038/nature11983 |
|
Kim D, Oren R, Oishi A C, et al. Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest. Agricultural and Forest Meteorology, 2014, 187, 62- 71.
doi: 10.1016/j.agrformet.2013.11.013 |
|
Körner C. 1994. Scaling from species to vegetation: the usefulness of functional groups//Schulze E-D, Mooney H A, eds. Biodiversity and ecosystem function. Berlin, Heidelberg: Springer,117−140. | |
Liu X M, Luo Y Z, Zhang D, et al. 2011. Recent changes in pan-evaporation dynamics in China. Geophysical Research Letters, 38(13): L13404-1–L13404-4. | |
Lombardozzi D L, Zeppel M J B, Fisher R A, et al. Representing nighttime and minimum conductance in CLM4.5 global hydrology and carbon sensitivity analysis using observational constraints. Geoscientific Model Development, 2017, 10 (1): 321- 331.
doi: 10.5194/gmd-10-321-2017 |
|
Martínez-Vilalta J, Poyatos R., Aguadé D, et al. A new look at water transport regulation in plants. New Phytologis, 2014, 204 (1): 105- 115.
doi: 10.1111/nph.12912 |
|
McCarthy H R, Pataki D E. Drivers of variability in water use of native and non-native urban trees in the greater Los Angeles area. Urban Ecosystems, 2010, 13 (4): 393- 414.
doi: 10.1007/s11252-010-0127-6 |
|
Mcculloh K A, Johnson D M, Meinzer F C, et al. 2014. The dynamic pipeline: hydraulic capacitance and xylem hydraulic safety in four tall conifer species. Plant, Cell and Environment, 37(5): 1171–1183. | |
McVicar T R, Roderick M L, Donohue R J, et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. Journal of Hydrology, 2012, 416/417, 182- 205.
doi: 10.1016/j.jhydrol.2011.10.024 |
|
Morison J I L, Baker N R, Mullineaux P M, et al. Improving water use in crop production. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 363 (1491): 639- 658. | |
Muchow R C, Fisher M J, Ludlow M M, et al. Stomatal behaviour of kenaf and sorghum in a semiarid tropical environment. II. during the day. Functional Plant Biology, 1980, 7 (5): 621- 628.
doi: 10.1071/PP9800621 |
|
Neumann R B, Cardon Z G, Teshera-Levye J, et al. 2014. Modelled hydraulic redistribution by sunflower (Helianthus annuus L. ) matches observed data only after including night-time transpiration. Plant, Cell & Environment, 37(4): 899–910. | |
Nobel P S. 1999. Physicochemical & environmental plant physiology. Pittsburgh: Academic Press. | |
Oren R, Sperry J S, Katul G G, et al. 1999. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant, Cell & Environment, 22(12): 1515–1526. | |
Phillips N G, Ryan M G, Bond B J, et al. Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiology, 2003, 23 (4): 237- 245.
doi: 10.1093/treephys/23.4.237 |
|
Pivovaroff A L, Sack L & Santiago L S. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis. New Phytologist, 2014, 203 (3): 842- 850.
doi: 10.1111/nph.12850 |
|
Resco de Dios V. Circadian regulation and diurnal variation in gas exchange. Plant Physiology, 2017, 175 (1): 3- 4.
doi: 10.1104/pp.17.00984 |
|
Resco de Dios V, Chowdhury F I, Granda E, et al. Assessing the potential functions of nocturnal stomatal conductance in C3 and C4 plants. New Phytologist, 2019, 223 (4): 1696- 1706.
doi: 10.1111/nph.15881 |
|
Resco de Dios V, Díaz-Sierra R, Goulden M L, et al. Woody clockworks: circadian regulation of night-time water use in Eucalyptus globulus. New Phytologist, 2013, 200 (3): 743- 752.
doi: 10.1111/nph.12382 |
|
Resco de Dios V, Gessler A. Circadian regulation of photosynthesis and transpiration from genes to ecosystems. Environmental and Experimental Botany, 2018, 152, 37- 48.
doi: 10.1016/j.envexpbot.2017.09.010 |
|
Resco de Dios V, Gessler A, Ferrio J P, et al. Circadian rhythms have significant effects on leaf-to-canopy gas exchange under field conditions. GigaScience, 2016b, 5, 43.
doi: 10.1186/s13742-016-0149-y |
|
Resco de Dios V, Gessler A, Ferrio J P, et al. Circadian rhythms regulate the environmental responses of net CO2 exchange in bean and cotton canopies. Agricultural and Forest Meteorology, 2017, 239, 185- 191.
doi: 10.1016/j.agrformet.2017.03.014 |
|
Resco de Dios V, Goulden M L, Ogle K, et al. Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems. Global Change Biology, 2012, 18 (6): 1956- 1970.
doi: 10.1111/j.1365-2486.2012.02664.x |
|
Resco de Dios V, Loik M. E, Smith R, et al. 2016a. Genetic variation in circadian regulation of nocturnal stomatal conductance enhances carbon assimilation and growth. Plant, Cell & Environment, 39(1): 3–11. | |
Scholz F G, Phillips N G, Bucci S J, et al. 2011. Hydraulic capacitance: biophysics and functional significance of internal water sources in relation to tree size//Meinzer F C, Lachenbruch B, Dawson T E, eds. Size- and age-related changes in tree structure and function. Dordrecht: Springer, 341–361. | |
Tyree M T. Plant hydraulics: the ascent of water. Nature, 2003, 423 (6943): 923- 923.
doi: 10.1038/423923a |
|
Venturas M D, Sperry J S, Hacke U G. Plant xylem hydraulics: what we understand, current research, and future challenges. Journal of Integrative Plant Biology, 2017, 59 (6): 356- 389.
doi: 10.1111/jipb.12534 |
|
Wu S P, Gu X X, Zheng Y H, et al. Nocturnal sap flow as compensation for water deficits: an implicit water-saving strategy used by mangroves in stressful environments. Frontiers in Plant Science, 2023, 14, 1118970.
doi: 10.3389/fpls.2023.1118970 |
|
Wu Y Z, Zhang Y K, An J, et al. Sap flow of black locust in response to environmental factors in two soils developed from different parent materials in the lithoid mountainous area of North China. Trees, 2018, 32 (3): 675- 688.
doi: 10.1007/s00468-018-1663-6 |
|
Xu H, Zhang Z Q, Chen J Q, et al. Regulations of cloudiness on energy partitioning and water use strategy in a riparian poplar plantation. Agricultural and Forest Meteorology, 2018, 262, 135- 146.
doi: 10.1016/j.agrformet.2018.07.008 |
|
Yu K L, Goldsmith G R, Wang Y J, et al. Phylogenetic and biogeographic controls of plant nighttime stomatal conductance. New Phytologist, 2019, 222 (4): 1778- 1788.
doi: 10.1111/nph.15755 |
|
Zeppel M J B, Lewis J D, Phillips N G, et al. Consequences of nocturnal water loss: a synthesis of regulating factors and implications for capacitance, embolism and use in models. Tree Physiology, 2014, 34 (10): 1047- 1055.
doi: 10.1093/treephys/tpu089 |
|
Zeppel M, Tissue D, Taylor D, et al. Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies. Tree Physiology, 2010, 30 (8): 988- 1000.
doi: 10.1093/treephys/tpq053 |
|
Zhu M X, Xue W L, Xu H, et al. Diurnal and seasonal variations in soil respiration of four plantation forests in an urban park. Forests, 2019, 10 (6): 513.
doi: 10.3390/f10060513 |
[1] | 张凯,孙艳丽,隗骥超,范雅倩,韩小雪,李林,魏晓帅,李鑫豪,刘鹏,查天山. 北京山区大果榆树干液流的季节与昼夜环境调控[J]. 林业科学, 2023, 59(7): 24-34. |
[2] | 胡建文,王庆成. 早春树干液流用于白桦营养诊断的可行性[J]. 林业科学, 2022, 58(11): 174-180. |
[3] | 孔喆,陈胜楠,律江,陈立欣,张志强. 欧美杨单株液流昼夜组成及其影响因素分析[J]. 林业科学, 2020, 56(3): 8-20. |
[4] | 辛福梅, 闫小莉, 张长耀, 贾黎明. 西藏拉萨河谷区藏川杨和北京杨树干液流特征及其对环境因子的响应[J]. 林业科学, 2019, 55(2): 22-32. |
[5] | 胡兴波, 芦新建, 于洋, 贺康宁. 基于热扩散法的青海云杉冠层导度模拟[J]. 林业科学, 2018, 54(3): 8-18. |
[6] | 王艳兵, 王彦辉, 熊伟, 姚依强, 张桐, 李振华. 六盘山半干旱区华北落叶松树干液流速率及主要影响因子的坡位差异[J]. 林业科学, 2017, 53(6): 10-20. |
[7] | 宋秀华, 李传荣, 许景伟, 胡丁猛, 王超. 元宝枫、雪松挥发物释放的昼夜节律[J]. 林业科学, 2015, 51(4): 141-147. |
[8] | 魏晓玲, 程龙军, 窦锦青, 徐凤华. 巨桉EgrDREB2A基因结构及表达特性分析[J]. 林业科学, 2015, 51(2): 80-89. |
[9] | 彭小平, 樊军, 米美霞, 薛智德. 黄土高原水蚀风蚀交错区不同立地条件下旱柳树干液流差异[J]. 林业科学, 2013, 49(9): 38-45. |
[10] | 王文杰;孙伟;邱岭;祖元刚;刘伟. 不同时间尺度下兴安落叶松树干液流密度与环境因子的关系[J]. 林业科学, 2012, 48(1): 77-85. |
[11] | 丁访军;王兵;赵广东. 毛竹树干液流变化及其与气象因子的关系[J]. 林业科学, 2011, 47(7): 73-81. |
[12] | 亓玉飞;尹伟伦;夏新莉;孙尚伟. 修枝对欧美杨107杨水分生理的影响[J]. 林业科学, 2011, 47(3): 33-38. |
[13] | 梅婷婷;王传宽 赵平 蔡锡安 刘晓静;张全智. 木荷树干液流的密度特征[J]. 林业科学, 2010, 46(1): 40-47. |
[14] | 赵仲辉 康文星 田大伦 项文化 闫文德. 湖南会同杉木液流变化及其与环境因子的关系[J]. 林业科学, 2009, 12(7): 127-132. |
[15] | 于占辉. 陈云明 杜盛. 黄土高原半干旱区人工林刺槐展叶期树干液流动态分析*[J]. 林业科学, 2009, 12(4): 53-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||