欢迎访问林业科学,今天是

林业科学 ›› 2025, Vol. 61 ›› Issue (5): 199-206.doi: 10.11707/j.1001-7488.LYKX20240377

• 研究论文 • 上一篇    下一篇

基于局部自相关函数熵的木材砂光表面粗糙度视觉检测方法

祝亚,伍希志*(),黄渊硕   

  1. 中南林业科技大学机械与智能制造学院 长沙 410082
  • 收稿日期:2024-06-20 出版日期:2025-05-20 发布日期:2025-05-24
  • 通讯作者: 伍希志 E-mail:wuxizhi2006@126.com
  • 基金资助:
    湖南省自然科学基金项目(2024JJ5641);湖南省科技特派员服务乡村振兴项目(2023NK4285)。

Visual Detection Method of Wood Sanding Surface Roughness Based on Local Autocorrelation Function Entropy

Ya Zhu,Xizhi Wu*(),Yuanshuo Huang   

  1. College of Mechanical and Intelligent Manufacturing, Central South University of Forestry and Technology Changsha 410082
  • Received:2024-06-20 Online:2025-05-20 Published:2025-05-24
  • Contact: Xizhi Wu E-mail:wuxizhi2006@126.com

摘要:

目的: 针对传统接触式粗糙度仪测量木材砂光表面粗糙度时存在的测量误差大、操作繁琐、在线检测困难等问题,提出一种基于局部自相关函数熵(LAEnt)的木材砂光表面粗糙度视觉检测方法,为木材砂光表面粗糙度测量提供高效、准确的非接触式检测手段。方法: 首先,阐明局部自相关函数熵检测表面粗糙度的机理,建立局部自相关函数熵算法;然后,采用正交试验法开展木材砂光试验,获取砂光表面图像和表面粗糙度;最后,探究砂带目数、砂带速度、气鼓轮进给量等因素对木材砂光表面粗糙度的影响,分析局部自相关函数熵和自相关函数熵(AEnt)与表面粗糙度的相关性,基于砂光表面的局部自相关函数熵和自相关函数熵数据,利用支持向量机(SVM)分别建立木材砂光表面粗糙度检测模型SVM-LAEnt和SVM-AEnt。结果: 砂带目数对木材砂光表面粗糙度的影响最显著,砂带目数与表面粗糙度呈强负相关,砂带速度和气鼓轮进给量对表面粗糙度的影响相对较小;局部自相关函数熵与木材砂光表面粗糙度呈显著线性相关,相关系数为0.973 3;且LAEnt特征提取效率显著优于AEnt,单张图像运算时间仅为AEnt的2.95%;基于SVM的建模结果表明,SVM-LAEnt模型拟合平均相对误差为2.56%(最大11.22%),预测平均相对误差为5.13%(最大11.30%),均优于SVM-AEnt模型(平均拟合相对误差8.98%,最大拟合相对误差20.68%,平均预测相对误差15.08%,最大预测相对误差31.13%)。结论: 局部自相关函数能够描述木材砂光表面的纹理特征和粗糙程度,在检测表面粗糙度时,采用局部自相关函数熵可更好地表征表面粗糙度。

关键词: 木材砂光, 表面粗糙度, 局部自相关函数, 熵, 支持向量机

Abstract:

Objective: To solve the problems of large measurement error, cumbersome operation, and difficult online detection in traditional contact roughness meters for measuring wood sanding surface roughness, this paper proposed a visual detection method based on local autocorrelation function entropy (LAEnt). Method: Firstly, the mechanism of detecting surface roughness using LAEnt was studied, and a local autocorrelation function entropy algorithm was established; Then, the orthogonal experimental method was used for wood sanding experiments to obtain sanding surface images and surface roughness values; Finally, the influence of factors such as the mesh number of sanding belts, sanding belt speed, and air drum feed rate on the surface roughness of wood sanding was studied. The correlation between LAEnt or autocorrelation function entropy (AEnt) and surface roughness was analyzed. Based on the local autocorrelation function entropy and autocorrelation function entropy data of the sanding surface images, support vector machine (SVM) was used to establish wood sanding surface roughness detection models SVM-LAEnt and SVM-AEnt, respectively. Result: The granularity of the sanding belt has the most significant impact on the surface roughness of wood sanding. There is a strong negative correlation between the granularity and the surface roughness. In contrast, the effects of belt speed and air drum feed rate on surface roughness are relatively minor. The local autocorrelation function entropy (LAEnt) shows a significant linear correlation with the surface roughness of wood sanding, with a correlation coefficient of 0.973 3. Furthermore, the feature extraction efficiency of LAEnt significantly outperforms that of AEnt (autocorrelation function entropy), with the per-image computational time reduced to 2.95% of AEnt’s processing time. SVM-based modeling results demonstrate that the SVM-LAEnt model achieves an average relative fitting error of 2.56% (maximum: 11.22%) and an average relative prediction error of 5.13% (maximum: 11.30%), both of which are superior to the SVM-AEnt model’s performance (average fitting error: 8.98%, maximum: 20.68%; average prediction error: 15.08%, maximum: 31.13%). Conclusion: The local autocorrelation function can describe the texture features and roughness of the wood sanding surface. When detecting the surface roughness, the local autocorrelation function entropy can better characterize the surface roughness. The results of this paper provide an efficient and accurate non-contact detection method for wood sanding surface roughness measurement.

Key words: wood sanding, surface roughness, local autocorrelation function, entropy, support vector machine (SVM)

中图分类号: