林业科学 ›› 2025, Vol. 61 ›› Issue (5): 187-198.doi: 10.11707/j.1001-7488.LYKX20240387
王晓曼1,吕建雄2,李贤军1,吴义强1,李新功1,郝晓峰1,乔建政1,徐康1,*()
收稿日期:
2024-06-22
出版日期:
2025-05-20
发布日期:
2025-05-24
通讯作者:
徐康
E-mail:xkang86@126.com
基金资助:
Xiaoman Wang1,Jianxiong Lü2,Xianjun Li1,Yiqiang Wu1,Xingong Li1,Xiaofeng Hao1,Jianzheng Qiao1,Kang Xu1,*()
Received:
2024-06-22
Online:
2025-05-20
Published:
2025-05-24
Contact:
Kang Xu
E-mail:xkang86@126.com
摘要:
目的: 利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。方法: 基于浸胶竹束干燥过程含水率实测数据,以干燥温度、干燥时间、铺装方式和初始含水率为输入变量,干燥过程含水率为输出变量,制作数据集。将数据集划分为训练集(308个测试数据,占总数据量的70%)、验证集(66个测试数据,占总数据量的15%)和测试集(66个测试数据,占总数据量的15%),采用粒子群优化算法(PSO)优化反向传播(BP)神经网络初始权重与阈值,构建PSO-BP神经网络预测模型,并进行验证分析。结果: PSO-BP神经网络模型具有较强的预测能力,在模型测试集中,决定系数(R2)、均方误差(MSE)、平均绝对误差(MAE)和剩余预测残差(RPD)分别达0.98、1.27、3.73和7.96。相较BP神经网络,PSO-BP神经网络的R2和RPD分别提高6.53%和110.2%,MSE和MAE分别降低54.0%和71.86%。模型验证表明,干燥温度和铺装方式是影响浸胶竹束干燥过程含水率变化的主要因素,二者对PSO-BP神经网络模型预测结果影响显著。干燥温度为60 ℃时,在4种不同铺装方式下PSO-BP神经网络模型展现出较好预测效果,其R2均超过0.969且MSE均低于3;铺装层数为3时,在4种不同干燥温度下PSO-BP神经网络模型表现最佳,其R2均超过0.99且MSE均低于2。干燥时间和浸胶竹束初始含水率对PSO-BP神经网络模型预测结果影响不显著。结论: PSO-BP神经网络模型在浸胶竹束干燥过程含水率预测中表现出准确性,可有效解决传统BP神经网络预测误差大、收敛速度慢等问题,为浸胶竹束高质高效干燥提供技术支撑。
中图分类号:
王晓曼,吕建雄,李贤军,吴义强,李新功,郝晓峰,乔建政,徐康. 基于PSO-BP神经网络模型的浸胶竹束干燥过程含水率预测[J]. 林业科学, 2025, 61(5): 187-198.
Xiaoman Wang,Jianxiong Lü,Xianjun Li,Yiqiang Wu,Xingong Li,Xiaofeng Hao,Jianzheng Qiao,Kang Xu. Prediction of Moisture Content during Drying of Phenolic Resin Impregnated Heat-Treated Bamboo Bundles Based on PSO-BP Neural Network Modeling[J]. Scientia Silvae Sinicae, 2025, 61(5): 187-198.
图6
BP神经网络模型与PSO-BP神经网络模型训练过程 a. BP神经网络模型训练状态Training state of the BP neural network model;b. BP神经网络模型训练过程中均方误差Mean squared error during the training process of the BP neural network model;c. PSO-BP神经网络模型训练状态Training state of the PSO-BP neural network model;d. PSO-BP神经网络模型训练过程中均方误差Mean squared error during the training process of the PSO-BP neural network model."
表1
真实值与预测值之间的线性关系"
组别 Groups | 线性回归方程 Linear regression equation | 相关系数Correlation coefficient (R) | |||
BP | PSO-BP | BP | PSO-BP | ||
训练集Training set | Y=0.93T+0.001 2 | Y=0.98T+0.003 7 | 0.964 | 0.992 | |
验证集Validation set | Y=0.89T+0.006 2 | Y=0.95T+0.015 0 | 0.942 | 0.976 | |
测试集Test set | Y=0.95T+0.019 0 | Y=0.98T+0.010 0 | 0.975 | 0.989 | |
总数据集All data set | Y=0.92T+0.023 0 | Y=0.98T+0.006 2 | 0.964 | 0.988 |
图8
浸胶竹束干燥过程含水率真实值与人工神经网络模型预测值结果分析 a. BP神经网络模型预测结果Predicting results of the BP neural network model;b. BP神经网络模型真实值与预测值间的误差值Error values between actual values and predicted values of BP neural network model;c. PSO-BP神经网络模型预测结果Predicting results of the PSO-BP neural network model;d. PSO-BP神经网络模型真实值与预测值间的误差值Error values between actual values and predicted values of PSO-BP neural network model."
表3
浸胶竹束干燥过程含水率真实值与PSO-BP神经网络模型预测值相关性分析"
编号 Number | 干燥温度 Drying temperature/℃ | 铺装方式 Paving method | R2 | MSE |
1 | 50 | P1 | 0.990 | 1.26 |
2 | P3 | 0.994 | 0.53 | |
3 | P6 | 0.967 | 1.19 | |
4 | P12 | 0.958 | 2.92 | |
5 | 60 | P1 | 0.994 | 1.14 |
6 | P3 | 0.992 | 1.16 | |
7 | P6 | 0.969 | 2.58 | |
8 | P12 | 0.969 | 2.59 | |
9 | 70 | P1 | 0.950 | 3.24 |
10 | P3 | 0.998 | 0.08 | |
11 | P6 | 0.992 | 0.55 | |
12 | P12 | 0.993 | 1.71 | |
13 | 80 | P1 | 0.944 | 3.78 |
14 | P3 | 0.996 | 0.52 | |
15 | P6 | 0.973 | 2.18 | |
16 | P12 | 0.961 | 2.27 |
付立岩, 冯国红, 刘旭铭. 基于多元经验模态分解的可见/近红外光谱识别木材研究. 森林工程, 2023, 39 (4): 101- 109. | |
Fu L Y, Feng G H, Liu X M. Wood recognition by visible/near infrared spectroscopy based on multivariate empirical mode decomposition. Forest Engineering, 2023, 39 (4): 101- 109. | |
付宗营, 蔡英春, 高 鑫, 等. 基于人工神经网络模型的木材干燥应变模拟预测. 林业科学, 2020, 56 (6): 76- 82. | |
Fu Z Y, Cai Y C, Gao X, et al. Simulation of drying strain based on artificial neural network model. Scientia Silvae Sinicae, 2020, 56 (6): 76- 82. | |
贺春光, 李璐芳, 高 峰, 等. 基于核主成分分析的GSA-SVM木材单板缺陷识别研究. 森林工程, 2023, 39 (2): 91- 99. | |
He C G, Li L F, Gao F, et al. Study on GSA-SVM wood veneer defect identification based on kernel principal component analysis. Forest Engineering, 2023, 39 (2): 91- 99. | |
齐 越, 吴江源, 任丁华, 等. 重组竹制造与应用技术研究进展. 林业科学, 2023, 59 (6): 159- 168.
doi: 10.11707/j.1001-7488.LYKX20210665 |
|
Qi Y, Wu J Y, Ren D H, et al. The development in manufacture and application technology of bamboo scrimber. Scientia Silvae Sinicae, 2023, 59 (6): 159- 168.
doi: 10.11707/j.1001-7488.LYKX20210665 |
|
汤 赛, 迟 祥, 宋晓雪, 等. 空气能辅助太阳能干燥过程中“闷窑”工艺对杨木干燥效能的影响. 森林工程, 2023, 39 (3): 107- 115,149. | |
Tang S, Chi X, Song X X, et al. Effect of “stuffy kiln” process on drying characteristics of poplar during air energy assisted solar drying. Forest Engineering, 2023, 39 (3): 107- 115,149. | |
田心池, 于文吉, 马红霞, 等. 重组竹制备过程中温度场变化规律与预测模型. 林业工程学报, 2023, 8 (1): 38- 45. | |
Tian X C, Yu W J, Ma H X, et al. Variation law of temperature field and prediction model in the preparation of bamboo scrimber. Journal of Forestry Engineering, 2023, 8 (1): 38- 45. | |
吴舒辞, 刘 帅, 李建军, 等. 毛竹导热系数非线性拟合的PSO-BP模型. 林业科学, 2012, 48 (11): 87- 91.
doi: 10.11707/j.1001-7488.20121114 |
|
Wu S C, Liu S, Li J J, et al. A PSO-BP model for nonlinear fitting of Phyllostachys edulis’ thermal conductivity. Scientia Silvae Sinicae, 2012, 48 (11): 87- 91.
doi: 10.11707/j.1001-7488.20121114 |
|
徐 康, 吕建雄, 刘君良, 等. 浸渍后处理及干燥处理对木材树脂浸渍改性效果的影响. 林业科学, 2018, 54 (4): 84- 92.
doi: 10.11707/j.1001-7488.20180410 |
|
Xu K, Lü J X, Liu J L, et al. Influence of post-treatment and drying process on the modification of wood with resin-impregnation. Scientia Silvae Sinicae, 2018, 54 (4): 84- 92.
doi: 10.11707/j.1001-7488.20180410 |
|
徐 康, 张晓萌, 李中昊, 等. 木材低分子量树脂浸渍改性与干燥研究进展. 材料导报, 2022, 36 (6): 223- 229. | |
Xu K, Zhang X M, Li Z H, et al. Research progress of wood low molecular weight resin impregnation modification and its drying. Materials Reports, 2022, 36 (6): 223- 229. | |
于文吉. 我国重组竹产业发展现状与机遇. 世界竹藤通讯, 2019, 17 (3): 1- 4. | |
Yu W J. Current situation and opportunities for the development of bamboo scrimber industry in China. World Bamboo and Rattan, 2019, 17 (3): 1- 4. | |
于子绚. 2012. 竹束单板层积材制造工艺及应用性能研究. 北京: 中国林业科学研究院. | |
Yu Z X. 2012. Processing technology of laminated bamboo-bundle veneer lumber and its application performance. Beijing: Chinese Academy of Forestry. [in Chinese] | |
周世玉, 杜光月, 褚 鑫, 等. 地采暖木地板释热温度场的BP神经网络预测. 林业科学, 2018, 54 (11): 158- 163.
doi: 10.11707/j.1001-7488.20181122 |
|
Zhou S Y, Du G Y, Chu X, et al. Prediction of thermal released field by the wood flooring for ground with heating system based on BP network. Scientia Silvae Sinicae, 2018, 54 (11): 158- 163.
doi: 10.11707/j.1001-7488.20181122 |
|
Chai H J, Li L. Prediction of wood drying process based on artificial neural network. BioResources, 2023, 18 (4): 8212- 8222.
doi: 10.15376/biores.18.4.8212-8222 |
|
Chao Z M, Li Z K, Dong Y K, et al. Estimating compressive strength of coral sand aggregate concrete in marine environment by combining physical experiments and machine learning-based techniques. Ocean Engineering, 2024, 308, 118320.
doi: 10.1016/j.oceaneng.2024.118320 |
|
Chen M L, Semple K, Hu Y A, et al. Fundamentals of bamboo scrimber hot pressing: mat compaction and heat transfer process. Construction and Building Materials, 2024, 412, 134843.
doi: 10.1016/j.conbuildmat.2023.134843 |
|
Ge Y L, Lu T, Li X G, et al. Changes in temperature and vapor-pressure behavior of bamboo scrimber in response to hot-pressing parameters. Forests, 2024, 15 (4): 620.
doi: 10.3390/f15040620 |
|
Haftkhani A R, Abdoli F, Sepehr A, et al. Regression and ANN models for predicting MOR and MOE of heat-treated fir wood. Journal of Building Engineering, 2021, 42, 102788.
doi: 10.1016/j.jobe.2021.102788 |
|
Huang Y, Xiang Y X, Zhao R X, et al. Air quality prediction using improved PSO-BP neural network. IEEE Access, 2020, 8, 99346- 99353.
doi: 10.1109/ACCESS.2020.2998145 |
|
Kadivar M, Gauss C, Mármol G, et al. The influence of the initial moisture content on densification process of D. asper bamboo: physical-chemical and bending characterization. Construction and Building Materials, 2019, 229, 116896.
doi: 10.1016/j.conbuildmat.2019.116896 |
|
Liang E S, Chen C F, Tu D Y, et al. Highly efficient preparation of bamboo scrimber: drying process optimization of bamboo bundles and its effect on the properties of bamboo scrimber. European Journal of Wood and Wood Products, 2022, 80 (6): 1473- 1484.
doi: 10.1007/s00107-022-01821-7 |
|
Liang E S, Lin X Y, He J Q, et al. Bamboo scrimber production: optimization of post-impregnation drying process using a heat pump dryer. Wood Material Science & Engineering, 2024, 19 (1): 182- 188. | |
Liang E S, Zhou Q F, Lin X Y, et al. Feasibility of one-time drying for manufacturing bamboo scrimber: fresh bamboo bundle at high initial moisture content impregnated by PF. Industrial Crops and Products, 2023, 194, 116302.
doi: 10.1016/j.indcrop.2023.116302 |
|
Liu X, Liu Z, Liang Z W, et al. PSO-BP neural network-based strain prediction of wind turbine blades. Materials, 2019, 12 (12): 1889.
doi: 10.3390/ma12121889 |
|
Lu T, Ge Y L, Zhou C F, et al. Effects of physical parameters on the temperature and vapor-pressure behavior of bamboo scrimber during hot-pressing. Wood Material Science & Engineering, 2023, 18 (5): 1641- 1649. | |
Ma W, Wang W, Cao Y. Mechanical properties of wood prediction based on the NAGGWO-BP neural network. Forests, 2022, 13 (11): 1870.
doi: 10.3390/f13111870 |
|
Mo J, Tamboli D, Haviarova E. Prediction of the color change of surface thermally treated wood by artificial neural network. European Journal of Wood and Wood Products, 2023, 81 (5): 1135- 1146.
doi: 10.1007/s00107-023-01969-w |
|
Nasir V, Nourian S, Zhou Z, et al. Classification and characterization of thermally modified timber using visible and near-infrared spectroscopy and artificial neural networks: a comparative study on the performance of different NDE methods and ANNs. Wood Science and Technology, 2019, 53 (5): 1093- 1109.
doi: 10.1007/s00226-019-01120-0 |
|
Nikoo M, Abbasi Malekabadi R, Hafeez G. Estimating the mechanical properties of heat-treated woods using optimization algorithms-based ANN. Measurement, 2023, 207, 112354.
doi: 10.1016/j.measurement.2022.112354 |
|
Ozturk H, Demir A, Demirkir C. Optimization of pressing parameters for the best mechanical properties of wood veneer/polystyrene composite plywood using artificial neural network. European Journal of Wood and Wood Products, 2022, 80 (4): 907- 922.
doi: 10.1007/s00107-022-01818-2 |
|
Pineda H, Hu Y A, Semple K, et al. Computer simulation of the mat formation of bamboo scrimber composites. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106542.
doi: 10.1016/j.compositesa.2021.106542 |
|
Shi L, Chew M Y L. A review of thermal properties of timber and char at elevated temperatures. Indoor and Built Environment, 2023, 32 (1): 9- 24.
doi: 10.1177/1420326X211035557 |
|
Song S S, Qiao J Z, Hao X F, et al. 2024. Effect of drying temperature on the curing properties of phenolic resin-impregnated heat-treated bamboo bundles. Wood Material Science & Engineering, https://doi.org/10.1080/17480272.2024.2344019. | |
Tao W Z, Jiang F, Li L, et al. Dynamical analysis and vibration estimation of a flexible plate with enhanced active constrained layer damping treatment by combinatorial neural networks of surrogates. Aerospace Science and Technology, 2023, 133, 108136.
doi: 10.1016/j.ast.2023.108136 |
|
Tseng T Y, Luo Q L. Company employee quality evaluation model based on BP neural network. Journal of Intelligent & Fuzzy Systems, 2021, 40 (4): 5883- 5892. | |
Wang C H, Zhao Q G, Tian R. Short-term wind power prediction based on a hybrid Markov-based PSO-BP neural network. Energies, 2023, 16 (11): 4282.
doi: 10.3390/en16114282 |
|
Wang L H, Li L, Qi W, et al. Pattern recognition and size determination of internal wood defects based on wavelet neural networks. Computers and Electronics in Agriculture, 2009, 69 (2): 142- 148.
doi: 10.1016/j.compag.2009.07.019 |
|
Wei W H, Shang Y Y, Peng Y, et al. Prediction model of sound signal in high-speed milling of wood-plastic composites. Materials, 2022, 15 (11): 3838.
doi: 10.3390/ma15113838 |
|
Wurzberger F, Schwenker F. Learning in deep radial basis function networks. Entropy, 2024, 26 (5): 368.
doi: 10.3390/e26050368 |
|
Xu K, Yuan S F, Gao Y L, et al. Characterization of moisture states and transport in MUF resin-impregnated poplar wood using low field nuclear magnetic resonance. Drying Technology, 2021, 39 (6): 791- 802.
doi: 10.1080/07373937.2020.1719503 |
|
Zhang Y M, Zhu Y D, Li Z R, et al. Temperature-dependent structural properties of water molecules confined in TiO2 nanoslits: insights from molecular dynamics simulations. Fluid Phase Equilibria, 2016, 430, 169- 177.
doi: 10.1016/j.fluid.2016.10.002 |
[1] | 齐建东,郑尚姿,陈子仪,马鐘添. 基于ConvNeXt的北京地区红外相机野生动物图像识别改进模型构建[J]. 林业科学, 2024, 60(8): 33-45. |
[2] | 朱诗豪,吴志伟,李政杰,李顺. 赣南马尾松林地表细小死可燃物含水率动态及模型[J]. 林业科学, 2024, 60(5): 158-168. |
[3] | 徐竞怡,张志,闫飞,张雯悦. 基于GAN-DCNN的树叶识别[J]. 林业科学, 2024, 60(4): 40-51. |
[4] | 苏彤, 许杰. 基于生成对抗网络的树种识别方法[J]. 林业科学, 2024, 60(2): 97-105. |
[5] | 潘玺,李康,杨忠. 基于卷积神经网络的近红外光谱与数字图像特征信息融合木材树种识别[J]. 林业科学, 2024, 60(12): 136-145. |
[6] | 盛叶,黄庚浪,叶小凡,廖飞宇,杨文斌. 密度和含水率对重组竹顺纹抗拉强度的影响[J]. 林业科学, 2024, 60(10): 116-121. |
[7] | 欧阳周洲,吴义强,陶涛,蔡丰,王迅,郝绍平. 定制家具板件数控钻孔作业时间预测模型[J]. 林业科学, 2024, 60(1): 120-128. |
[8] | 齐建东,马鐘添,张德怀,田赟. 基于BS-ResNeXt-50的密云地区野生动物图像识别[J]. 林业科学, 2023, 59(8): 112-122. |
[9] | 苗宇杰,祝诗平,普京,李俊贤,马羚凯,黄华. 基于卷积神经网络的家具木材图像种类识别[J]. 林业科学, 2023, 59(8): 133-140. |
[10] | 范学星,张慧春,邹义萍,黄玉萍,边黎明. 基于多光谱成像与机器学习的植物叶绿素含量反演[J]. 林业科学, 2023, 59(7): 78-88. |
[11] | 毛英伍,郭颖,张王菲,苏勇,关塬. 联合LiDAR、高光谱数据及3D-CNN方法的树种分类[J]. 林业科学, 2023, 59(3): 73-83. |
[12] | 吕嘉莉,涂登云,胡传双,王先菊,王清文,周桥芳. 基于控制容积干缩模型的X射线法测算木材含水率分布[J]. 林业科学, 2023, 59(11): 76-84. |
[13] | 徐奇刚,雷相东,郑宇,胡兴国,雷渊才,何潇. 基于Richards方程的冷杉树高曲线深度神经网络激活函数[J]. 林业科学, 2023, 59(10): 50-56. |
[14] | 冯慧敏,金崑. 基于卷积神经网络的雄性海南长臂猿声纹识别[J]. 林业科学, 2023, 59(1): 119-127. |
[15] | 齐建东,谭新新. 长白山红松阔叶林的净碳交换变化及基于时间卷积神经网络的模拟[J]. 林业科学, 2022, 58(2): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||