郎璞玫. 2008. 航空像片冠幅与地面直径的线性混合模型. 林业科学,44(3):40-44 (Lang P M. 2008. Linear mixed model of aerial photo crown width and ground diameter. Scientia Silvae Sinicae, 44(3):40-44.[in Chinese]) 卢军, 李凤日, 张会儒, 等. 2011. 帽儿山天然次生林主要阔叶树种叶量分布模拟.林业科学,47(12):114-120. (Lu J, Li F R, Zhang H R, et al. 2011. Simulation of foliage distribution for major broad-leaved species in secondary forest in Mao'er Mountain.Scientia Silvae Sinicae, 47(12):114-120.[in Chinese]) 毛学刚,侯吉宇,范文义.2017.林隙主被动遥感协同自动识别. 林业科学,53(11):94-103. (Mao X G, Hou J Y, Fan W Y, et al. 2017. Object-based automatic recognition for forest gaps using aerial image and LiDAR data. Scientia Silvae Sinicae, 53(11):94-103.[in Chinese]) 毛学刚, 杜子涵, 刘家倩, 等. 2018. 基于面向对象的QuickBird遥感影像林隙分割与分类. 应用生态学报, 29(1):44-52. (Mao X G, Du Z H, Liu J Q, et al. 2018. Object-oriented segmentation and classification of forest gap based on QuickBird remote sensing image.Chinese Journal of Applied Ecology, 29(1):44-52.[in Chinese]) 王晓杰, 范文义, 李明泽,等. 2013. 基于大比例尺航片的树种识别及单株定位方法. 东北林业大学学报, 41(5):152-157. (Wang X J, Fan W Y, Li M Z, et al. 2013. Tree species extraction and individual spatial location based on large-scale aerial photo. Journal of Northeast Forestry University, 41(5):152-157.[in Chinese]) 赵峰, 庞勇, 李增元, 等. 2009. 机载激光雷达和航空数码影像单木树高提取. 林业科学, 45(10):81-87. (Zhao F, Pang Y, Li Z Y, et al. 2009. Extraction of individual tree height using a combination of aerial digital camera imagery and LiDAR. Scientia Silvae Sinicae, 45(10):81-87.[in Chinese]) 张伐伐, 李卫忠, 卢柳叶,等. 2012. SVM多窗口纹理土地利用信息提取技术. 遥感学报, 16(1):67-78. (Zhang F F, Li W Z, Lu L Y, et al. 2012. Technologies of extracting land utilization information based on SVM method with multi-window texture. Journal of Remote Sensing, 16(1):67-78.[in Chinese]) 郑淑丹,郑江华,石明辉,等. 2014. 基于分形和灰度共生矩阵纹理特征的种植型药用植物遥感分类. 遥感学报,18(4):868-886. (Zheng S D, Zheng J H, Shi M H,et al. 2014. Classification of cultivated Chinese medicinal plants based on fractal theory and gray level co-occurrence matrix textures. Journal of Remote Sensing, 18(4):868-886.[in Chinese]) Asner G P, Keller M, Pereira R, et al. 2004. Canopy damage and recovery after selective logging in Amazonia:field and satellite studies. Ecological Applications, 14(sp4):S280-S298. Bonnet S, Gaulton R, Lehaire F, et al. 2015. Canopy gap mapping from airborne laser scanning:an assessment of the positional and geometrical accuracy. Remote Sensing, 7(9):11267-11294. Benz U C, Hofmann P, Willhauck G, et al. 2004.Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. International Journal of Photogrammetry and Remote Sensing, 58(3/4):239-258. Clark M L, Clark D B, Roberts D A. 2004. Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sensing of Environment, 91(1):68-89. Ecognition B. 2010. User Guide. Definiens Imaging GmbH. Munich:Definiens Imaging. Garrity S R, Vierling L A, Smith A M S, et al. 2014. Automatic detection of shrub location, crown area, and cover using spatial wavelet analysis and aerial photography. Canadian Journal of Remote Sensing, 34(sup2):S376-S384. He Y H, Franklin S E, Guo X L, et al. 2009. Narrow-linear and small-area forest disturbance detection and mapping from high spatial resolution imagery. Journal of Applied Remote Sensing, 3(1):2701-2712. Immitzer M, Atzberger C, Koukal T.2012. Tree species classification with random forest using very high spatial resolution 8-band worldview-2 satellite data. Remote Sensing, 4(9):2661-2693. Janssen L L F, Wei F J M. 1994.Accuracy assessment of satellite derived land-cover data:a review. Photogrammetric Engineering and Remote Sensing,60(4):419-426. Jackson R G, Foody G M, Quine C P. 2000. Characterising windthrown gaps from fine spatial resolution remotely sensed data. Forest Ecology and Management, 135(9):253-260. Johansen K, Arroyo L A, Phinn S, et al. 2010. Comparison of geo-object based and pixel-based change detection of riparian environments using high spatial resolution multi-spectral imagery. Photogrammetric Engineering and Remote Sensing, 76(2):123-136. Ke Y, Quackenbush L J, Im J. 2010.Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification. Remote Sensing of Environment, 114(6):1141-1154. Kim M, Madden M, Warner T. 2008. Estimation of optimal image object size for the segmentation of forest stands with multispectral IKONOS imagery. Object-Based Image Analysis. Berlin:Springer. Lucas R, Bunting P, Paterson M, et al. 2008. Classification of Australian forest communities using aerial photography, CASI and HyMap data. Remote Sensing of Environment, 112(5):2088-2103. Mao X G, Hou J Y. 2018. Object-based forest gaps classification using airborne LiDAR data. Journal of Forestry Research, (sp4):1-11. Malahlela O, Cho M A, Mutanga O. 2014. Mapping canopy gaps in an indigenous subtropical coastal forest using high-resolution WorldView-2 data. International Journal of Remote Sensing, 35(17):6397-6417. Möller M, Lymburner L, Volk M. 2007.The comparison index:a tool for assessing the accuracy of image segmentation. International Journal of Applied Earth Observation & Geoinformation, 9(3):311-321. Negrón-Juárez R I, Chambers J Q, Marra D M, et al. 2011. Detection of subpixel treefall gaps with Landsat imagery in Central Amazon forests. Remote Sensing of Environment, 115(12):3322-3328. Petersen S L, Stringham T K, Laliberte A S. 2005.Classification of willow species using large-scale aerial photography. Rangeland Ecology and Management, 58(6):582-587. Sun X Y, Du H Q, Han N, et al. 2014. Synergistic use of Landsat TM and SPOT5 imagery for object-based forest classification. Journal of Applied Remote Sensing,8(1):083550-083564. St-Onge B, Vepakomma U, Sénécal J F, et al. 2014. Canopy gap detection and analysis with airborne laser scanning. Forestry applications of airborne laser scanning. Berlin:Springer Netherlands. Vapnik V N. 2000. The nature of statistical learning theory. Berlin:Springer Verlag. Vepakomma U, St-Onge B, Kneeshaw D. 2011. Boreal forest height growth response to canopy gap Openings-An assessment with multi-temporal LiDAR data. Ecological Applications A Publication of the Ecological Society of America, 21, 99-121. Wang L, Sousa W P, Gong P. 2004. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. International Journal of Remote Sensing, 25(24):5655-5668. Yang J, Jones T, Caspersen J, et al. 2015. Object-based canopy gap segmentation and classification:quantifying the pros and cons of integrating optical and lidar data. Remote Sensing, 7(12):15917-15932. |