欢迎访问林业科学,今天是

林业科学 ›› 2025, Vol. 61 ›› Issue (2): 163-171.doi: 10.11707/j.1001-7488.LYKX20230459

• 研究论文 • 上一篇    下一篇

不同温度下毛竹抗弯力学性能

李海涛1,2,3,4,*(),周文静1,吴义强2,陈晨1,许伟1   

  1. 1. 南京林业大学土木工程学院 南京210037
    2. 中南林业科技大学材料科学与工程学院 长沙 410004
    3. 南京林业大学 江苏竹木固碳材料与结构技术工程研究中心 南京 210037
    4. 南京林业大学 机电产品包装生物质材料国家地方联合工程研究中心 南京 210037
  • 收稿日期:2023-10-01 出版日期:2025-02-25 发布日期:2025-03-03
  • 通讯作者: 李海涛 E-mail:lhaitao1982@126.com
  • 基金资助:
    江苏省林业科技创新与推广重点项目(LYKJ〔2024〕08);国家自然科学基金面上项目(51878354)。

Bending Mechanical Properties of Phyllostachys edulis at Different Temperatures

Haitao Li1,2,3,4,*(),Wenjing Zhou1,Yiqiang Wu2,Chen Chen1,Wei Xu1   

  1. 1. School of Civil Engineering, Nanjing Forestry University Nanjing 210037
    2. College of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004
    3. Jiangsu Carbon Sequestration Materials and Structural Technology of Bamboo & Wood Research Center Nanjing Forestry University Nanjing 210037
    4. National-Provincial Joint Engineering Research Center of Biomaterials for Machinery Package Nanjing Forestry University Nanjing 210037
  • Received:2023-10-01 Online:2025-02-25 Published:2025-03-03
  • Contact: Haitao Li E-mail:lhaitao1982@126.com

摘要:

目的: 探究温度对毛竹抗弯力学性能的影响,为竹材在极端环境下的建筑结构应用提供数据支持和理论依据。方法: 以贵州省赤水市3~6年生毛竹为研究对象,制作有竹节和无竹节2种类型试件各66个;设置11个目标温度(?60、?40、?20、0、20、60、100、130、175、185和200 ℃)进行三点弯曲试验,测试毛竹的抗弯强度和抗弯弹性模量,分析温度对毛竹抗弯力学性能的影响规律;利用相关性分析,探讨温度与抗弯强度、抗弯弹性模量的关系,并提出毛竹抗弯强度温度影响系数与温度以及抗弯弹性模量温度影响系数与温度的二次函数方程;通过微观结构观察,分析低温和高温条件下毛竹细胞壁的变化情况,揭示毛竹抗弯力学性能变化的内在机制。结果: 温度对毛竹抗弯力学性能具有显著影响,随着温度升高,毛竹的抗弯强度和抗弯弹性模量呈显著下降趋势;当温度升至200 ℃时,有竹节和无竹节试件的抗弯强度分别为常温下(20 ℃)抗弯强度的31%和31%,抗弯弹性模量分别为常温下抗弯弹性模量的44%和41%;相较而言,当温度降至?60 ℃时,有竹节和无竹节试件的抗弯强度分别为常温下(20 ℃)抗弯强度的116%和115%,抗弯弹性模量分别为常温下抗弯弹性模量的135%和128%;低温条件下毛竹表现出较高的强度和明显的脆性,高温条件下则表现出较低的强度和较大的塑性变形;竹节对抗弯强度的影响较小,无论是低温还是高温条件,有竹节和无竹节试件的抗弯强度差异均不明显;竹节对抗弯弹性模量具有显著不利影响,尤其在?40~130 ℃范围内表现明显;微观结构分析表明,低温条件下毛竹细胞壁保持完整且紧密,有助于力学性能提升,高温条件下由于水分蒸发和化学成分转化,毛竹细胞壁软化并逐渐变薄,其力学性能显著下降。结论: 在极端环境条件下,毛竹抗弯力学性能受温度变化的显著影响,低温有助于增强毛竹强度,但会导致更高的脆性;高温会削弱毛竹强度,并导致较大的塑性变形;竹节对毛竹抗弯强度影响较小,但对弹性模量具有一定不利影响。

关键词: 竹材, 温度, 竹节, 抗弯强度, 抗弯弹性模量

Abstract:

Objective: The aim of this study was to investigate the effects of temperature on the bending mechanical properties of Phyllostachys edulis, providing data support and a theoretical basis for its structural application in extreme environment conditions. Method: Bamboo samples aged 3–6 years from Chishui City, Guizhou Province, were used to prepare two types of specimens: with nodes and without nodes, with 66 specimens of each type. Eleven target temperatures (?60, ?40, ?20, 0, 20, 60, 100, 130, 175, 185, and 200 ℃) were set for three-point bending tests to measure the bending strength and bending elastic modulus of the bamboo. The effects of temperature on bending mechanical properties were analyzed. Correlation analysis was conducted to explore the relationships between temperature, bending strength, and bending elastic modulus. Quadratic function equations were proposed for the temperature impact coefficients of bending strength and bending elastic modulus. Microscopic structural observations were conducted to examine changes in bamboo cell walls at low and high temperatures, revealing the intrinsic mechanisms behind the changes in bending mechanical properties. Result: Temperature has a significant impact on the bending mechanical properties of Phyllostachys edulis. As the temperature increases, both the bending strength and bending elastic modulus exhibit a pronounced declining trend. At 200 ℃, the bending strength of specimens with and without nodes is reduced to 31% of the bending strength at room temperature (20 ℃), while the bending elastic modulus decreases to 44% and 41% of the corresponding room temperature values. Conversely, at ?60 ℃, the bending strength of specimens with and without nodes increases to 116% and 115% of the bending strength at room temperature, while the bending elastic modulus rises to 135% and 128% of the room temperature values, respectively. Under low-temperature conditions, Phyllostachys edulis exhibits higher strength but pronounced brittleness, whereas under high-temperature conditions, it demonstrates lower strength and increased plastic deformation. The presence of nodes had little effect on bending strength, with no significant difference observed between specimens with and without nodes under either low or high temperatures. However, nodes have a significantly adverse impact on the bending elastic modulus, particularly within the temperature range of ?40 ℃ to 130 ℃. Microscopic structural analysis revealed that under low-temperature conditions, the bamboo cell walls remain intact and tightly compacted, which contributes to enhanced mechanical performance. Under high temperatures, due to moisture evaporation and chemical composition transformation, bamboo cell walls softened and gradually thinned, resulting in a significant decline in mechanical properties. Conclusion: Our results demonstrated that the bending mechanical properties of Phyllostachys edulis under extreme environment conditions are significantly influenced by temperature variations. Low temperatures enhance the strength of Phyllostachys edulis but increase its brittleness, while high temperatures weaken its strength and promote greater plastic deformation. Our findings showed that the presence of nodes has minimal impact on bending strength but exerts a noticeable adverse effect on its elastic modulus.

Key words: bamboo, temperature, bamboo node, bending strength, bending modulus of elasticity

中图分类号: