林业科学 ›› 2025, Vol. 61 ›› Issue (2): 152-162.doi: 10.11707/j.1001-7488.LYKX20240014
刘程林1(),应玥1,2,王瑞珍3,刘云朋1,王青华1,孔德治1,曲良建1,*(
)
收稿日期:
2024-01-07
出版日期:
2025-02-25
发布日期:
2025-03-03
通讯作者:
曲良建
E-mail:18821702618@163.com;qulj2001@caf.ac.cn
基金资助:
Chenglin Liu1(),Yue Ying1,2,Ruizhen Wang3,Yunpeng Liu1,Qinghua Wang1,Dezhi Kong1,Liangjian Qu1,*(
)
Received:
2024-01-07
Online:
2025-02-25
Published:
2025-03-03
Contact:
Liangjian Qu
E-mail:18821702618@163.com;qulj2001@caf.ac.cn
摘要:
目的: 研究国内外80株绿僵菌的系统发育关系及其对松褐天牛成虫的毒力,为筛选用于防治松褐天牛成虫的高毒力菌株提供参考。方法: 提取80株绿僵菌的DNA,使用引物ITS1/ITS4和T1/T22分别扩增真菌的ITS区域和β-tubulin基因序列并测序。采用MAFFT比对序列,通过IQ-TREE和Mrbayes 3.2.7软件分别采用最大似然法和贝叶斯法构建系统发育树。使用羽化3天内的健壮松褐天牛成虫测定绿僵菌的毒力。在PDA培养基上培养绿僵菌,将收集获得的孢子用0.05%的吐温-80溶液分别配置成浓度为107 个·mL–1的孢子悬浮液,0.05%的吐温80溶液作为空白对照。采用浸渍法处理松褐天牛成虫,以累计校正死亡率为指标评价菌株的致病力。结果: 从国内外菌库中收集的123株菌株中80株为绿僵菌,分为6个主要类群,其中57株属于金龟子绿僵菌复合种,11株属于黄绿绿僵菌复合种,6株属于莱氏绿僵菌,4株属于M. viride,1株属于柱孢绿僵菌,1株属于新西兰绿僵菌。高毒力菌株主要分布在金龟子绿僵菌复合种和黄绿绿僵菌复合种;蝗绿僵菌、柱孢绿僵菌、新西兰绿僵菌、莱氏绿僵菌和M. viride对松褐天牛的成虫未表现出致病力。14株绿僵菌菌株毒力较高(LT50<15天,15天校正死亡率>80%),可作为防治松褐天牛的备选菌株。结论: 基于国内外80株绿僵菌菌株的系统发育和毒力测试结果,筛选出对松褐天牛成虫具有高毒力的菌株,其中14株具有较大应用潜力,建立了绿僵菌的系统发育关系,确认了高毒力菌株的分布。
中图分类号:
刘程林,应玥,王瑞珍,刘云朋,王青华,孔德治,曲良建. 绿僵菌系统发育及防治松褐天牛成虫的菌株筛选[J]. 林业科学, 2025, 61(2): 152-162.
Chenglin Liu,Yue Ying,Ruizhen Wang,Yunpeng Liu,Qinghua Wang,Dezhi Kong,Liangjian Qu. Phylogenesis of Metarhizium Strains and Their Screening for Biocontrol of Monochamus alternatus Adults (Coleoptera: Cerambycidae)[J]. Scientia Silvae Sinicae, 2025, 61(2): 152-162.
表2
鉴定为绿僵菌的菌株"
序号 No. | 菌株编号 Strain number | 采集区 Geographic location | 种名 Species |
1 | CBS115995 | 奥地利 Austria | 棕色绿僵菌 M. brunneum |
2 | CBS125.65 | 德国 Germany | 黄绿绿僵菌 M. flavoviride |
3 | CBS130.22 | 未知 Unknown | 平沙绿僵菌 M. pinghaense |
4 | CBS130.71 | 乌克兰 Ukraine | 鳞腮绿僵菌 M. lepidiotae |
5 | CBS130.92 | 巴西 Brazil | 鳞腮绿僵菌 M. lepidiotae |
6 | CBS158.84 | 巴西 Brazil | 金龟子绿僵菌 M. anisopliae |
7 | CBS160.96 | 巴布亚新几内亚 Papua New Guinea | 鳞腮绿僵菌 M. lepidiotae |
8 | CBS194.65 | 科特迪瓦 Ivory Coast | 莱氏绿僵菌 M. rileyi |
9 | CBS218.29 | 捷克共和国 Czech Republic | 平沙绿僵菌 M. pinghaense |
10 | CBS218.56 | 捷克共和国 Czech Republic | 黄绿绿僵菌 M. flavoviride |
11 | CBS229.52 | 荷兰 Netherlands | 瘿绵蚜绿僵菌 M. pemphigi |
12 | CBS247.64 | 法国 France | 罗伯茨绿僵菌 M. robertsiie |
13 | CBS248.64 | 法国 France | 大孢绿僵菌 M. majus |
14 | CBS258.90 | 中国 China | 贵州绿僵菌 M. guizhouense |
15 | CBS285.59 | 德国 Germany | M. indigoticum |
16 | CBS289.67 | 厄立特里亚 Eritrea | 罗伯茨绿僵菌 M. robertsii |
17 | CBS316.51 | 俄勒冈州 Oregon | 棕色绿僵菌 M. brunneum |
18 | CBS339.35 | 阿根廷 Argentina | 蝗绿僵菌 M. acridum |
19 | CBS348.65 | 马达加斯加 Madagascar | M. viride |
20 | CBS380.73A | 德国 Germany | 黄绿绿僵菌 M. flavoviride |
21 | CBS380.73B | 德国 Germany | 黄绿绿僵菌 M. flavoviride |
22 | CBS407.96 | 未知 Unknown | M. viride |
23 | CBS454.78 | 佛罗里达 Florida | 罗伯茨绿僵菌 M. robertsii |
24 | CBS459.75 | 密歇根州 Michigan | 平沙绿僵菌 M. pinghaense |
25 | CBS464.70 | 以色列 Isreal | 平沙绿僵菌 M. pinghaense |
26 | CBS473.73 | 荷兰 Netherlands | 黄绿绿僵菌 M. flavoviride |
27 | CBS544.81 | 厄瓜多尔 Ecuador | 蝗绿僵菌 M. acridum |
28 | CBS614.85 | 所罗门群岛 Solomon Islands | 黄绿绿僵菌小孢变种 M. minus |
29 | CBS615.84 | 菲律宾 Philippines | 柱孢绿僵菌 M. cylindrosporum |
30 | CBS643.67 | 萨摩亚 Samoa | 大孢绿僵菌 M. majus |
31 | CBS648.67 | 法国 France | M. bibonidarum |
32 | CBS650.67 | 伊朗 Iran | 罗伯茨绿僵菌 M. robertsii |
33 | CBS655.67 | 法国 France | 棕色绿僵菌 M. brunneum |
34 | CBS656.67 | 科特迪瓦 Ivory Coast | 罗伯茨绿僵菌 M. robertsii |
35 | CBS657.67 | 新咯里多尼亚 New Caledonia | 平沙绿僵菌 M. pinghaense |
36 | CBS658.67 | 法国 France | 罗伯茨绿僵菌 M. robertsii |
37 | CBS659.71 | 未知 Unknown | M. viride |
38 | CBS660.67 | 新西兰 New Zealand | 棕色绿僵菌 M. brunneum |
39 | CBS660.71 | 未知 Unknown | M. viride |
40 | CBS661.67 | 新西兰 New Zealand | 新西兰绿僵菌 M. novozealandicum |
41 | CBS662.67 | 荷兰 Netherlands | 棕色绿僵菌 M. brunneum |
42 | CBS663.67 | 荷兰 Netherlands | 黄绿绿僵菌 M. flavoviride |
43 | CBS700.74 | 法国 France | 黄绿绿僵菌 M. flavoviride |
44 | CBS732.73A | 巴西 Brazil | 莱氏绿僵菌 M. rileyi |
45 | CBS732.73B | 佛罗里达 Florida | 莱氏绿僵菌 M. rileyi |
46 | CBS733.73 | 以色列 Isreal | 莱氏绿僵菌 M. rileyi |
47 | CBS806.71 | 美国 USA | 莱氏绿僵菌 M. rileyi |
48 | CFCC80689 | 广东 Guangdong | 鳞腮绿僵菌 M. lepidiotae |
49 | CFCC80785 | 北海道虻天郡 Hokkaido | 平沙绿僵菌 M. pinghaense |
50 | CFCC80787 | 日本茨城 Ibaraki | 平沙绿僵菌 M. pinghaense |
51 | CFCC80788 | 宁夏 Ningxia | 棕色绿僵菌 M. brunneum |
52 | CFCC80789 | 中国台北 Taipei , China | 金龟子绿僵菌 M. anisopliae |
53 | CFCC80790 | 日本茨城 Ibaraki | 鳞腮绿僵菌 M. lepidiotae |
54 | CFCC80793 | 日本冲绳 Okinawa | 金龟子绿僵菌 M. anisopliae |
55 | CFCC80794 | 日本冲绳 Okinawa | 瘿绵蚜绿僵菌 M. pemphigi |
56 | CFCC80795 | 福建永定 Yongding, Fujian | 金龟子绿僵菌 M. anisopliae |
57 | CFCC80799 | 福建上杭 Shanghang, Fujian | 金龟子绿僵菌 M. anisopliaee |
58 | CFCC80800 | 福建上杭 Shanghang, Fujian | 金龟子绿僵菌 M. anisopliaee |
59 | CFCC80801 | 福建上杭 Shanghang, Fujian | 金龟子绿僵菌 M. anisopliae |
60 | CFCC80802 | 福建惠安 Hui'an, Fujian | 平沙绿僵菌 M. pinghaense |
61 | CFCC80804 | 福建永泰 Yongtai, Fujian | 金龟子绿僵菌 M. anisopliae |
62 | CFCC80805 | 福建南安 Nan'an, Fujian | M. indigoticum |
63 | CFCC80806 | 福建漳浦 Zhangpu, Fujian | 平沙绿僵菌 M. pinghaense |
64 | CFCC80807 | 福建漳浦 Zhangpu, Fujian | 平沙绿僵菌 M. pinghaense |
65 | CFCC80808 | 福建福州 Fuzhou, Fujian | 平沙绿僵菌 M. pinghaense |
66 | CFCC80809 | 福建福州 Fuzhou, Fujian | 平沙绿僵菌 M. pinghaense |
67 | CFCC80810 | 福建东山 Dongshan, Fujian | 平沙绿僵菌 M. pinghaense |
68 | CFCC80811 | 福建云霄 Yunxiao, Fujian | 平沙绿僵菌 M. pinghaense |
69 | CFCC80812 | 福建武夷山 Wuyi Mountain, Fujian | 鳞腮绿僵菌 M. lepidiotae |
70 | CFCC82105 | 日本茨城 Ibaraki | 鳞腮绿僵菌 M. lepidiotae |
71 | CFCC82107 | 福建三明 Sanming,Fujian | 大孢绿僵菌 M. majus |
72 | CFCC86175 | 河北 Hebei | 平沙绿僵菌 M. pinghaense |
73 | CFCC87360 | 湖北武汉 Wuhan, Hubei | 平沙绿僵菌 M. pinghaense |
74 | CFCC87867 | 安徽 Anhui | 鳞腮绿僵菌 M. lepidiotae |
75 | CFCC88444 | 河北保定 Baoding, Hebei | 平沙绿僵菌 M. pinghaense |
76 | CFCC88953 | 未知 Unknown | 鳞腮绿僵菌 M. lepidiotae |
77 | CFCC88954 | 未知 Unknown | 罗伯茨绿僵菌 M. robertsii |
78 | CFCC88956 | 未知 Unknown | 平沙绿僵菌 M. pinghaense |
79 | CFCC88957 | 广东 Guangdong | 平沙绿僵菌 M. pinghaense |
80 | CFCC88236 | 河南信阳 Xinyang, Henan | 莱氏绿僵菌 M. rileyi |
表3
80株绿僵菌对松褐天牛成虫毒力测试结果①"
种名 Species | 菌株编号 Strain number | LT50(95%置信区间) LT50(95% Confidence interval)/d | 15天校正死亡率 Adjusted mortality after 15 days(%) | 采集区 Geographic location |
棕色绿僵菌 M. brunneum | CBS115995 | 21.15(20.33~21.96) | 11.53 | 奥地利Austria |
CBS316.51 | 18.73(16.69~21.03) | 35.75 | 俄勒冈州Oregon | |
CBS655.67 | 21.95(19.05~24.77) | 34.12 | 法国France | |
CBS660.67 | 19.94(18.70~21.14) | 19.54 | 新西兰New Zealand | |
CBS662.67 | 15.35(10.45~60.37) | 49.25 | 荷兰Netherlands | |
CFCC80788 | 8.21(6.78~9.72) | 82.16 | 宁夏Ningxia | |
平沙绿僵菌 M. pinghaense | CBS130.22 | 15.69(14.86~16.49) | 45.22 | 未知Unknown |
CBS218.29 | 23.46(22.00~24.85) | 11.52 | 捷克共和国Czech Republic | |
CBS459.75 | 18.98(16.83~21.19) | 32.13 | 密歇根州Michigan | |
CBS464.70 | 21.55(18.32~24.86) | 23.40 | 以色列Isreal | |
CBS657.67 | 16.64(15.25~17.94) | 41.96 | 新喀里多尼亚New Caledonia | |
CFCC80785 | 6.91(6.35~7.42) | 99.69 | 北海道虻天郡Hokkaido | |
CFCC80787 | 8.56(7.33~9.60) | 93.09 | 日本茨城Ibaraki | |
CFCC80802 | 6.37(5.33~7.35) | 94.71 | 福建Fujian | |
CFCC80806 | 6.55(5.30~7.78) | 94.76 | 福建Fujian | |
CFCC80807 | 9.65(9.05~10.23) | 95.62 | 福建Fujian | |
CFCC80808 | 6.81(6.07~7.50) | 95.26 | 福建Fujian | |
CFCC80809 | 31.53(27.30~36.11) | 21.39 | 福建Fujian | |
CFCC80810 | 27.06(24.94~28.91) | 5.69 | 福建Fujian | |
CFCC80811 | 22.53(21.69~23.35) | 7.42 | 福建Fujian | |
CFCC86175 | 16.56(15.09~18.02) | 43.54 | 河北Hebei | |
CFCC87360 | 11.35(9.69~13.04) | 65.56 | 湖北Hubei | |
CFCC88444 | 11.67(11.07~12.25) | 78.24 | 河北Hebei | |
CFCC88956 | 11.23(8.77~13.53) | 63.78 | 未知Unknown | |
CFCC88957 | 4.91(4.18~5.54) | 99.95 | 广东Guangdong | |
金龟子绿僵菌 M. anisopliae | CBS158.84 | 2.09(0.96~3.14) | 96.77 | 巴西Brazil |
CFCC80789 | 12.11(9.95~14.57) | 64.69 | 中国台北Tapei , China | |
CFCC80793 | 11.40(10.60~12.16) | 73.75 | 日本冲绳Okinawa | |
CFCC80795 | 7.71(2.60~12.60) | 68.20 | 福建Fujian | |
CFCC80799 | 19.52(18.61~20.41) | 27.29 | 福建Fujian | |
CFCC80800 | 13.71(12.51~14.79) | 57.87 | 福建Fujian | |
CFCC80801 | 17.27(14.54~20.96) | 43.80 | 福建Fujian | |
CFCC80804 | 4.25(3.29~5.01) | 98.34 | 福建Fujian | |
罗伯茨绿僵菌 M. robertsii | CBS247.64 | 21.76(20.47~23.08) | 7.35 | 法国France |
CBS289.67 | 17.83(16.17~19.45) | 37.19 | 厄立特里亚Eritrea | |
CBS454.78 | 15.06(14.11~15.95) | 49.58 | 佛罗里达Florida | |
CBS650.67 | 20.21(19.39~21.04) | 23.95 | 伊朗Iran | |
CBS656.67 | 20.01(19.04~20.95) | 21.09 | 科特迪瓦Ivory Coast | |
CBS658.67 | 9.65(8.77~10.41) | 86.70 | 法国France | |
CFCC88954 | 15.53(14.26~16.78) | 46.97 | 未知Unknown | |
大孢绿僵菌 M. majus | CBS248.64 | 39.80(37.29~42.52) | 1.93 | 法国France |
CBS643.67 | 42.29(37.47~47.49) | 17.05 | 萨摩亚Samoa | |
CFCC82107 | 54.35(51.27~58.06) | 0.19 | 福建Fujian | |
贵州绿僵菌 M. guizhouense | CBS258.90 | 14.87(12.74~16.53) | 50.49 | 中国China |
M. indigoticum | CBS285.59 | 29.92(23.40~37.06) | 1.00 | 德国Germany |
CFCC80805 | 37.02(32.19~45.26) | 16.37 | 福建Fujian | |
鳞腮绿僵菌 M. lepidiotae | CBS130.71 | 9.07(8.15~9.92) | 85.98 | 乌克兰Ukraine |
CBS130.92 | 18.30(16.96~19.68) | 34.36 | 巴西Brazil | |
CBS160.96 | 22.56(20.93~24.14) | 27.11 | 巴布亚新几内亚Papua New Guinea | |
CFCC80689 | 21.20(17.83~24.35) | 33.98 | 广东Guangdong | |
CFCC80790 | 11.78(10.85~12.65) | 71.62 | 日本茨城Ibaraki | |
CFCC80812 | 11.14(8.78~13.54) | 67.58 | 福建Fujian | |
CFCC82105 | 11.86(10.65~13.08) | 68.98 | 日本茨城Ibaraki | |
CFCC87867 | 10.69(8.75~12.51) | 67.22 | 安徽Anhui | |
CFCC88953 | 22.22(20.00~24.87) | 26.70 | 未知Unknown | |
蝗绿僵菌 M. acridum | CBS544.81 | - | 1.15 | 厄瓜多尔Ecuador |
CBS339.35 | 65.61(54.03~89.69) | 0.11 | 阿根廷Argentina | |
黄绿绿僵菌 M. flavoviride | CBS125.65 | 19.69(17.18~22.03) | 30.29 | 德国Germany |
CBS218.56 | 19.00(17.27~21.30) | 31.02 | 捷克共和国Czech Republic | |
CBS380.73A | 21.76(20.47~23.08) | 13.94 | 德国Germany | |
CBS380.73B | 23.58(21.73~25.30) | 9.97 | 德国Germany | |
CBS473.73 | 25.23(22.70~27.79) | 27.75 | 荷兰Netherlands | |
CBS663.67 | 6.35(5.74~6.89) | 99.04 | 荷兰Netherlands | |
CBS700.74 | 21.12(15.47~43.04) | 37.21 | 法国France | |
瘿绵蚜绿僵菌 M. pemphigi | CBS229.52 | 14.41(13.38~15.37) | 54.67 | 荷兰Netherlands |
CFCC80794 | 14.06(11.27~16.78) | 53.39 | 日本冲绳Okinawa | |
M. bibonidarum | CBS648.67 | 7.42(5.80~8.90) | 83.64 | 法国France |
黄绿绿僵菌小孢变种 M. minus | CBS614.85 | 22.85(21.27~24.43) | 21.39 | 所罗门群岛Solomon Islands |
M. viride | CBS348.65 | - | 5.36 | 马达加斯加Madagascar |
CBS407.96 | 79.12(69.06~93.45) | 2.64 | 未知Unknown | |
CBS659.71 | - | 10.97 | 未知Unknown | |
CBS660.71 | 88.65(77.58~105.43 ) | 0.76 | 未知Unknown | |
莱氏绿僵菌 M. rileyi | CBS194.65 | - | 9.23 | 科特迪瓦Ivory Coast |
CBS732.73A | - | 9.52 | 巴西Brazil | |
CBS732.73B | - | 10.54 | 佛罗里达Florida | |
CBS733.73 | - | 7.51 | 以色列Isreal | |
CBS806.71 | - | 4.47 | 美国USA | |
CFCC88236 | - | 12.10 | 河南Henan | |
柱孢绿僵菌 M. cylindrosporum | CBS615.84 | 63.65(59.33~68.87) | 2.74 | 菲律宾Philippines |
新西兰绿僵菌 M. novozealandicum | CBS661.67 | 99.34(86.88~120.72) | 0.41 | 新西兰New Zealand |
郭鹏豪, 刘秀丽, 崔颖鹏, 等. 真菌通用引物Its1和Its4在丝状真菌鉴定中的价值评价. 中国微生态学杂志, 2013, 25 (8): 922- 924. | |
Guo P H, Liu X L, Cui Y P, et al. The value of universal fungal primers Its1 and Its4 in the clinical identification of filamentous fungi. Chinese Journal of Microecology, 2013, 25 (8): 922- 924. | |
何学友, 陈顺立, 黄金水. 感染松墨天牛的金龟子绿僵菌菌株的初步筛选. 昆虫学报, 2005, 48 (6): 975- 981.
doi: 10.3321/j.issn:0454-6296.2005.06.026 |
|
He X Y, Chen S L, Huang J S. Preliminary screening of virulent strains of Metarhizium anisopliae against Monochamus alternatus. Acta Entomologica Sinica, 2005, 48 (6): 975- 981.
doi: 10.3321/j.issn:0454-6296.2005.06.026 |
|
胡 霞, 蒋学建. 松材线虫病生物防治研究进展. 广西林业科学, 2007, 36 (4): 199- 201.
doi: 10.3969/j.issn.1006-1126.2007.04.006 |
|
Hu X, Jiang X J. Research progress on biological prevention technique of Bursaphelenchus xylophilus. Guangxi Forestry Science, 2007, 36 (4): 199- 201.
doi: 10.3969/j.issn.1006-1126.2007.04.006 |
|
蒋 平, 吾中良, 柴希民, 等. 松褐天牛传递松材线虫数量的研究. 南京林业大学学报(自然科学版), 2002, 26 (3): 69- 71. | |
Jiang P, Wu Z L, Chai X M, et al. Transmission characteristic of Bursaphelenchus xylophilus through Monochamus alternatus. Journal of Nanjing Forestry University, 2002, 26 (3): 69- 71. | |
农向群, 王广君, 王以燕,等. 2023, 白僵菌和绿僵菌作为防控红火蚁生物农药的潜力及前景. 中国生物防治学报, 39(02): 453–461. | |
Nong X Q, Wang G J, Wang Y Y, et al. 2023. Potential and prospect of Beauveria bassiana and Metarhizium anisopliae as biological pesticides for the control of red fire ant. Chinese Journal of Biological Control, 39(02): 453–461. [in Chinese] | |
王四宝, 黄勇平, 张心团, 等. 松褐天牛成虫高毒力病原真菌筛选及林间感染试验. 中国森林病虫, 2004, 23 (6): 13- 16.
doi: 10.3969/j.issn.1671-0886.2004.06.003 |
|
Wang S B, Huang Y P, Zhang X T, et al. Screening and biological control of high virulent strains against Monochamus alternatus adults. Forest Pest and Disease, 2004, 23 (6): 13- 16.
doi: 10.3969/j.issn.1671-0886.2004.06.003 |
|
王曦茁, 汪来发, 马建伟, 等. 松褐天牛球孢白僵菌高毒力航天诱变菌株的筛选. 昆虫学报, 2014, 57 (11): 1299- 1305. | |
Wang X Z, Wang L F, Ma J W, et al. Screening of aerospace mutants of Beauveria bassiana with high virulence against Monochamus alternatus. Acta Entomologica Sinica, 2014, 57 (11): 1299- 1305. | |
王亚杰, 张志林, 郑吉阳, 等. 利用白僵菌和绿僵菌混菌剂生物防治舞毒蛾. 林业科技通讯, 2022, (10): 93- 95. | |
Wang Y J, Zhang Z L, Zheng J Y, et al. Biocontrol of Lymantria dispar by using Beauveria and Metarhizium mixed formula. Forest Science and Technology, 2022, (10): 93- 95. | |
吴志鹏, 童应华. 球孢白僵菌和金龟子绿僵菌对红火蚁工蚁的致病力测定. 森林与环境学报, 2020, 40 (1): 99- 105. | |
Wu Z P, Tong Y H. Pathogenicity of Beauveria bassiana and Metarhizium anisopliae to Solenopsis invicta workers. Journal of Forest and Environment, 2020, 40 (1): 99- 105. | |
薛 锐, 陈诗涵, 沈云峰, 等. 引起草地贪夜蛾流行病的莱氏绿僵菌SZCY200812菌株的生物学特性研究. 应用昆虫学报, 2023, 60 (4): 1233- 1243.
doi: 10.7679/j.issn.2095-1353.2023.120 |
|
Xue R, Chen S H, Shen Y F, et al. Biological characteristics of the Metarhizium rileyi SZCY200812fungal strain responsible for an epidemic in Spodoptera frugiperda. Chinese Journal of Applied Entomology, 2023, 60 (4): 1233- 1243.
doi: 10.7679/j.issn.2095-1353.2023.120 |
|
阳 飞, 钟安建, 申 艳, 等. 利用天敌防治松墨天牛研究进展. 生物灾害科学, 2014, 37 (4): 337- 340.
doi: 10.3969/j.issn.2095-3704.2014.04.015 |
|
Yang F, Zhong A J, Shen Y, et al. Research progress on biological control of pine longhorn beetle Monochamus alternatus hope(Coleoptera: Cerambycidae)by natural enemy. Biological Disaster Science, 2014, 37 (4): 337- 340.
doi: 10.3969/j.issn.2095-3704.2014.04.015 |
|
叶建仁. 松材线虫病在中国的流行现状、防治技术与对策分析. 林业科学, 2019, 55 (9): 1- 10. | |
Ye J R. Epidemic status of pine wilt disease in China and its prevention and control techniques and counter measures. Scientia Silvae Sinicae, 2019, 55 (9): 1- 10. | |
曾丽琼, 何学友, 蔡守平, 等. 白僵菌和绿僵菌感染榕管蓟马成虫试验. 防护林科技, 2019, (2): 8- 10. | |
Zeng L Q, He X Y, Cai S P, et al. Infection experiment of Metarhizium anisopliae and Beauveria bassiana against adults of Gynaikothrips uzeli. Protection Forest Science and Technology, 2019, (2): 8- 10. | |
张建军, 张润志, 陈京元. 松材线虫媒介昆虫种类及其扩散能力. 浙江林学院学报, 2007, 24 (3): 350- 356. | |
Zhang J J, Zhang R Z, Chen J Y. Vector insect species of Bursaphelenchus xylophilus and its dispersal capacity. Journal of Zhejiang Forestry College, 2007, 24 (3): 350- 356. | |
Balakrishnan M M, Reddy G M, Kumar P V. 2012. Record of Metarhizium cylindrosporum (Hypocreales : Clavicipitaceae) on Terpnosia psecas from India. Insect Environment, 18:1−2. | |
Bischoff J F, Rehner S A, Humber R A. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia, 2009, 101 (4): 512- 530.
doi: 10.3852/07-202 |
|
Brunner-Mendoza C, Moonjely S, Reyes-Montes M D R, et al. Physiological and phylogenetic variability of Mexican Metarhizium strains. BioControl, 2017, 62, 779- 791.
doi: 10.1007/s10526-017-9839-3 |
|
Brunner-Mendoza C, Reyes-Montes M D R, Moonjely S, et al. A review on the genus Metarhizium as an entomopathogenic microbial biocontrol agent with emphasis on its use and utility in Mexico. Biocontrol Science and Technology, 2019, 29 (1): 83- 102.
doi: 10.1080/09583157.2018.1531111 |
|
Darriba D, Taboada G L, Doallo R, et al. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 2012, 9 (8): 772- 772. | |
de Faria M R, Wraight S P. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 2007, 43 (3): 237- 256.
doi: 10.1016/j.biocontrol.2007.08.001 |
|
Gerardo N M, Parker B J. Mechanisms of symbiont-conferred protection against natural enemies: an ecological and evolutionary framework. Current Opinion in Insect Science, 2014, 4, 8- 14.
doi: 10.1016/j.cois.2014.08.002 |
|
Jackson M A, Jaronski S T. Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Mycological Research, 2009, 113 (8): 842- 850.
doi: 10.1016/j.mycres.2009.03.004 |
|
Kepler R M, Humber R A, Bischoff J F, et al. Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia, 2014, 106 (4): 811- 829.
doi: 10.3852/13-319 |
|
Kidanu S, Hagos L. Research and application of entomopathogenic fungi as pest management option: a review. Journal of Environment and Earth Science, 2020, 10 (3): 31- 39. | |
Kim J, Lee M, Kim S, et al. Transcriptome analysis of the Japanese pine sawyer beetle, Monochamus alternatus, infected with the entomopathogenic fungus Metarhizium anisopliae JEF-197. Journal of Fungi, 2021, 7 (5): 373.
doi: 10.3390/jof7050373 |
|
Kim J C, Baek S, Park S E, et al. Colonization of Metarhizium anisopliae on the surface of pine tree logs: A promising biocontrol strategy for the Japanese pine sawyer, Monochamus alternatus. Fungal Biology, 2020, 124 (2): 125- 134.
doi: 10.1016/j.funbio.2019.12.006 |
|
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33 (7): 1870- 1874.
doi: 10.1093/molbev/msw054 |
|
McFall-Ngai M, Hadfield M G, Bosch T C, et al. Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences, 2013, 110 (9): 3229- 3236.
doi: 10.1073/pnas.1218525110 |
|
Mongkolsamrit S, Khonsanit A, Thanakitpipattana D, et al. Revisiting Metarhizium and the description of new species from Thailand. Studies in Mycology, 2020, 95 (1): 171- 251. | |
Naves P M, Camacho S, De Sousa E M, et al. 2007. Transmission of the pine wood nematode Bursaphelenchus xylophilus through feeding activity of Monochamus galloprovincialis (Col., Cerambycidae). Journal of Applied Entomology, 131(1): 21–25. | |
Nguyen L, Schmidt H A, Von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 2015, 32 (1): 268- 274.
doi: 10.1093/molbev/msu300 |
|
Ronquist F, Teslenko M, Van Der Mark P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 2012, 61 (3): 539- 542.
doi: 10.1093/sysbio/sys029 |
|
Schrank A, Vainstein M H. Metarhizium anisopliae enzymes and toxins. Toxicon, 2010, 56 (7): 1267- 1274.
doi: 10.1016/j.toxicon.2010.03.008 |
|
Shimomoto Y, Sato T, Hojo H, et al. Pathogenic and genetic variation among isolates of Corynespora cassiicola in Japan. Plant Pathology, 2011, 60 (2): 253- 260.
doi: 10.1111/j.1365-3059.2010.02374.x |
|
St. Leger R J, Wang J B. Metarhizium: jack of all trades, master of many. Open Biology, 2020, 10 (12): 200307.
doi: 10.1098/rsob.200307 |
|
Vega F E, Goettel M S, Blackwell M, et al. Fungal entomopathogens: new insights on their ecology. Fungal Ecology, 2009, 2 (4): 149- 159.
doi: 10.1016/j.funeco.2009.05.001 |
|
Villamizar L F, Barrera G, Hurst M, et al. Characterization of a new strain of Metarhizium novozealandicum with potential to be developed as a biopesticide. Mycology, 2021, 12 (4): 261- 278.
doi: 10.1080/21501203.2021.1935359 |
|
Wang Y, Chen F, Wang L, et al. Study of the departure of pine wood nematode, Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) from Monochamus alternatus (Coleoptera: Cerambycidae). Journal of Asia-Pacific Entomology, 2020, 23 (4): 981- 987.
doi: 10.1016/j.aspen.2020.08.008 |
|
Zimmermann G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, 2007a, 17 (9): 879- 920.
doi: 10.1080/09583150701593963 |
|
Zimmermann G. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology, 2007b, 17 (6): 553- 596.
doi: 10.1080/09583150701309006 |
[1] | 刘慧慧,李恩杰,曹亮明,王小艺,辛学兵,仇兰芬,包青春,杨忠岐. 寄生和捕食元宝枫种子瘿蚊的重要天敌——毛链金小蜂属一新种(膜翅目:金小蜂科)[J]. 林业科学, 2024, 60(9): 134-140. |
[2] | 刘磊,赵立娟,刘佳奇,张辉盛,张志伟,黄瑞芬,高瑞贺. 基于优化的MaxEnt模型预测气候变化下松褐天牛在我国的潜在适生区[J]. 林业科学, 2024, 60(11): 139-148. |
[3] | 郑光楠,杨秀好,韦曼丽,郑霞林. 广西松褐天牛成虫种群动态规律及其与林分和气象因子相关性[J]. 林业科学, 2023, 59(1): 128-142. |
[4] | 李俊楠,陈润恺,付煜,蔡梦玲,黄炳荣,徐云,吴松青,张飞萍. 松天牛小首螨的研究Ⅲ.携播特性[J]. 林业科学, 2022, 58(9): 128-137. |
[5] | 李俊楠,陈润恺,付煜,蔡梦玲,黄炳荣,徐云,吴松青,张飞萍. 松天牛小首螨的研究Ⅱ.雌成螨的移动和趋性[J]. 林业科学, 2022, 58(8): 149-156. |
[6] | 唐汉尧,郑吉阳,王敦. 摩泽蒲螨携带杀虫真菌靶向防治光肩星天牛[J]. 林业科学, 2022, 58(8): 157-164. |
[7] | 李俊楠,朱禹臻,陈润恺,付煜,蔡梦玲,黄炳荣,徐云,吴松青,张飞萍. 松天牛小首螨的研究Ⅰ.生物学特性[J]. 林业科学, 2022, 58(6): 79-87. |
[8] | 唐艳龙,王丽娜,王艳芹,张彦龙,王小艺,魏可. 不同建群蜂数对肿腿蜂子代性比的影响[J]. 林业科学, 2022, 58(6): 161-168. |
[9] | 席欧彦,朱丹,钟问,王晨日,胡红英. 伊犁河谷西天山野果林苹果巢蛾重要寄生性天敌资源调查[J]. 林业科学, 2022, 58(5): 131-139. |
[10] | 陈越渠,刘庆珍,李立梅,张杨,韩姣,张永安. 杨树溃疡病拮抗链霉菌的筛选及鉴定[J]. 林业科学, 2021, 57(7): 92-100. |
[11] | 唐艳龙,王丽娜,张彦龙,吴胜勇,王小艺,杨忠岐. 不同建群蜂数对松褐天牛肿腿蜂繁育效果的影响[J]. 林业科学, 2020, 56(9): 97-103. |
[12] | 温小遂,宋墩福,杨忠岐,王忠辉,施明清. 天敌花绒寄甲与寄主松褐天牛成虫出现期的关系[J]. 林业科学, 2020, 56(9): 193-200. |
[13] | 李叶晨,郭雅洁,翁小倩,林先云,池金良,陈红英,吴松青,张飞萍. 景观格局对松褐天牛种群密度的影响[J]. 林业科学, 2020, 56(8): 80-88. |
[14] | 杨忠岐,王小艺,钟欣,刘昕,曹亮明,王海贞. 寄生青海草原毛虫的金小蜂一新种(膜翅目:金小蜂科)[J]. 林业科学, 2020, 56(2): 99-105. |
[15] | 傅慧静,胡霞,吴松青,王荣,梁光红,黄世国,张飞萍. 松褐天牛幼虫肠道黏质沙雷氏菌培养条件与木质素降解功能[J]. 林业科学, 2020, 56(2): 106-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||