林业科学 ›› 2025, Vol. 61 ›› Issue (1): 26-36.doi: 10.11707/j.1001-7488.LYKX20230583
王巍樾1,万艳芳2,王冬梅1,*(),于澎涛2,王彦辉2,白雨诗2
收稿日期:
2023-12-01
出版日期:
2025-01-25
发布日期:
2025-02-09
通讯作者:
王冬梅
E-mail:dmwang@126.com
基金资助:
Weiyue Wang1,Yanfang Wan2,Dongmei Wang1,*(),Pengtao Yu2,Yanhui Wang2,Yushi Bai2
Received:
2023-12-01
Online:
2025-01-25
Published:
2025-02-09
Contact:
Dongmei Wang
E-mail:dmwang@126.com
摘要:
目的: 探究六盘山半干旱区不同坡向华北落叶松人工林优势木径向生长对气象和土壤因子的响应差异,为未来气候变化背景下的森林生长预测和适应性管理提供科学依据。方法: 在六盘山叠叠沟小流域生长华北落叶松人工林的不同坡向(西北坡—北坡—东北坡—东南坡)设置11块样地,测定优势木单株平均胸高断面积年增长量(BAI),采用皮尔逊相关分析和结构方程模型,探究BAI在气候平缓期(1995—2004年)、迅速增温期(2005—2015年)和降水迅速增多期(2016—2020年)的坡向差异及主要影响因子。结果: 1) 迅速增温期,干旱胁迫限制使得大龄(23~26年)优势木BAI在西北半阴坡和北坡阴坡快速减小(平均速率为–57.2 cm2·a?1, P<0.01);小龄(9~14年)优势木BAI受迅速增温影响较小,在东北半阴坡和东南半阳坡增大(平均速率为125.43 cm2·a?1, P<0.01)。2) 气候平缓期,温度在坡向间影响差异较大,与西北阴坡呈负相关,与其他坡向呈正相关,但相关程度有所差异;迅速增温期,BAI在东北半阴坡和东南半阳坡与降水正相关,在西北半阴坡和北坡阴坡与温度负相关,此时土壤厚度与各坡向BAI相关性较高;降水迅速增多期,各坡向BAI多与标准化降水蒸散指数(SPEI)显著正相关,半阴坡BAI还与降水显著正相关,阴坡和东南半阳坡BAI还与温度显著负相关(P<0.05)。3) 在气候平缓期,温度是主要影响因子,其直接和间接影响系数分别为0.55和–0.221;在迅速增温期,土壤因子对BAI生长的影响更大,其中土壤厚度与BAI呈显著正相关,总影响系数为0.533;在降水迅速增多期,BAI仅受SPEI显著正向影响,总影响系数为0.29。结论: 华北落叶松BAI在气候平缓期坡向间径向生长差异较小,且不同坡向受温度影响较大;在迅速增温期坡向间径向生长差异较大,此时不同坡向更受土壤厚度的影响;在降水迅速增多期后,坡向间径向生长差异开始减小,此时SPEI是主导坡向之间BAI生长差异的主要因子。可通过调整林分结构,提高六盘山半干旱区华北落叶松人工林抵御灾害胁迫的能力,实现长远可持续森林经营。
中图分类号:
王巍樾,万艳芳,王冬梅,于澎涛,王彦辉,白雨诗. 六盘山华北落叶松优势木径向生长及主要环境因子的坡向差异[J]. 林业科学, 2025, 61(1): 26-36.
Weiyue Wang,Yanfang Wan,Dongmei Wang,Pengtao Yu,Yanhui Wang,Yushi Bai. Slope Aspect Differences of Both the Radial Growth of Dominant Trees of Larix principis-rupprechtii and Main Environmental Influence Factors in Liupan Mountain[J]. Scientia Silvae Sinicae, 2025, 61(1): 26-36.
表1
样地基本特征①"
样地 编号 Plot No. | 坡向 Aspect | 海拔 Altitude/ m | 坡度 Slope/ (°) | 土壤厚度 Soil thickness/ m | 土壤密度 Soil bulk density/ (g·cm?3) | 田间持 水量Field capacity (%) | 总孔隙度 Total porosity (%) | 林龄 Stand age/ a | 林冠郁 闭度 Canopy density | 林分密度 Stand density/ hm?2 | 平均胸径 Mean DBH/cm | 平均树高 Mean tree height/m |
A1 | 北偏西64° 64° west from north | 33 | 1.3 | 1.13 | 38.83 | 55.99 | 24 | 0.81 | 11.0 | 8.8 | ||
A2 | 北偏西50° 50° west from north | 24 | 1.4 | 1.13 | 37.24 | 54.35 | 24 | 0.73 | 10.9 | 8.7 | ||
A3 | 北偏西31° 31° west from north | 35 | 1.4 | 1.02 | 49.26 | 59.42 | 25 | 0.87 | 12.6 | 9.4 | ||
A4 | 正北0° 0° north | 26 | >2.0 | 1.05 | 44.61 | 57.01 | 26 | 0.75 | 13.5 | 10.4 | ||
A5 | 北偏东24° 24° east from north | 32 | >2.0 | 1.06 | 39.47 | 57.31 | 23 | 0.63 | 12.2 | 9.4 | ||
A6 | 北偏东30° 30° east from north | 32 | 1.4 | 0.97 | 45.03 | 59.49 | 26 | 0.73 | 12.7 | 10.6 | ||
A7 | 北偏东35° 35° east from north | 22 | 1.8 | 1.02 | 47.38 | 56.28 | 24 | 0.83 | 12.9 | 10.6 | ||
A8 | 北偏东72° 72° east from north | 24 | 1.2 | 1.06 | 44.60 | 57.13 | 13 | 0.72 | 8.4 | 7.4 | ||
A9 | 北偏东77° 77° east from north | 25 | 1.0 | 1.11 | 41.71 | 55.42 | 14 | 0.58 | 850 | 9.1 | 6.7 | |
A10 | 东偏南4° 4° south from east | 25 | 0.9 | 1.09 | 42.56 | 54.65 | 11 | 0.38 | 575 | 7.5 | 5.7 | |
A11 | 东偏南11° 11° south from east | 26 | 0.8 | 1.03 | 45.16 | 57.75 | 9 | 0.21 | 475 | 6.6 | 4.3 |
表2
样树基本特征①"
坡向分组 Slope aspect groups | 样地编号 Sample plot number | 坡向 Aspect | 样地内优势木株数 Number of dominant trees in the sample plot | 胸径 DBH/cm | 树高 Tree height/m | 冠幅直径 Crown width diameter/m |
半阴坡 Semi shady slope (NW) | A1 | 北偏西64° 64° west from north | 8 | 16.1 ± 2.7 | 11.5 ± 2.0 | 4.3 ± 0.8 |
A2 | 北偏西50° 50° west from north | 13 | 15.4 ± 1.7 | 11.1 ± 1.5 | 4.3 ± 0.8 | |
阴坡 Shady slope (NW) | A3 | 北偏西31° 31° west from north | 7 | 16.9 ± 1.7 | 9.8 ± 2.3 | 4.1 ± 0.7 |
A4 | 正北0° 0° north | 10 | 17.3 ± 3.1 | 12.4 ± 1.8 | 4.5 ± 0.9 | |
阴坡 Shady slope (NE) | A5 | 北偏东24° 24° east from north | 8 | 17.8 ± 1.8 | 11.9 ± 1.3 | 3.9 ± 0.9 |
A6 | 北偏东30° 30° east from north | 9 | 17.1 ± 2.4 | 12.2 ± 1.8 | 4.1 ± 0.7 | |
A7 | 北偏东35° 35° east from north | 11 | 17.3 ± 2.1 | 13.3 ± 0.3 | 4.1 ± 1.0 | |
半阴坡 Semi shady slope (NE) | A8 | 北偏东72° 72° east from north | 21 | 12.1 ± 2.6 | 9.8 ± 0.9 | 3.4 ± 1.0 |
A9 | 北偏东77° 77° east from north | 14 | 11.8 ± 1.7 | 7.7 ± 1.1 | 3.4 ± 0.7 | |
半阳坡 Semi shady slope (SE) | A10 | 东偏南4° 4° south from east | 6 | 7.6 ± 1.3 | 5.6 ± 0.8 | 3.1 ± 0.6 |
A11 | 东偏南11° 11° south from east | 9 | 7.2 ± 0.7 | 5.1 ± 0.4 | 2.6 ± 0.5 |
杜阿朋, 王彦辉, 管 伟, 等. 六盘山叠叠沟小流域的土壤石砾含量坡面分布特征. 水土保持学报, 2009, 23 (5): 76- 80.
doi: 10.3321/j.issn:1009-2242.2009.05.016 |
|
Du A P, Wang Y H, Guan W, et al. slope distribution characteristics of soil gravel content in Diediegou watershed, Liupan Mountains, China. Journal of Soil and Water Conservation, 2009, 23 (5): 76- 80.
doi: 10.3321/j.issn:1009-2242.2009.05.016 |
|
高佳妮, 杨 保, 秦 春. 树木年内径向生长对干旱事件的响应——以贺兰山油松为例. 应用生态学报, 2021, 32 (10): 3505- 3511. | |
Gao J N, Yang B, Qin C. Response of annual radial growth of trees to drought events—a case study of Pinus tabulaeformis in Helan Mountains. Chinese Journal of Applied Ecology, 2021, 32 (10): 3505- 3511. | |
郭滨德, 张远东, 王晓春. 川西高原不同坡向云、冷杉树轮对快速升温的响应差异. 应用生态学报, 2016, 27 (2): 354- 364. | |
Guo B D, Zhang Y D, Wang X C. Responses of Picea asperata and Abies fabri tree rings to rapid warming in different slope aspect in western Sichuan Plateau. Journal of Applied Ecology, 2016, 27 (2): 354- 364. | |
郭明辉. 森林培育措施对红松人工林径向生长性质的影响. 林业科学, 2003, 39 (5): 100- 104.
doi: 10.3321/j.issn:1001-7488.2003.05.015 |
|
Guo M H. Effects of forest cultivation measures on radial growth properties of Sequoia sempervirens plantation. Scientia Silvae Sinica, 2003, 39 (5): 100- 104.
doi: 10.3321/j.issn:1001-7488.2003.05.015 |
|
国家林业局. 2000. 森林土壤水分-物理性质的测定(LY/T 1215—1999). 北京: 中国标准出版社, 22−24. | |
State Forest Administration. 2000. Determination of forest soil moisture and physical properties(LY/T 1215—1999). Beijing: Standards Press of China, 22−24. [in Chinese] | |
洪 流. 2020. 优势度对华北落叶松树干液流和林分蒸腾估计的影响. 北京: 北京林业大学. | |
Hong L. 2020. Effect of dominance degree on estimation of SAP flow and stand transpiration of Larix principis-rupprechtii. Beijing: Beijing Forestry University. [in Chinese] | |
贾 存, 郭明明, 王 倩, 等. 华北落叶松人工林和天然林径向生长对气候变化的响应. 中南林业科技大学学报, 2022, 42 (1): 120- 128. | |
Jia C, Guo M M, Wang Q, et al. Response of radial growth of Larix principis-rupprechtii and natural forest to climate change. Journal of Central South University of Forestry and Technology, 2022, 42 (1): 120- 128. | |
靳仔鑫, 于澎涛, 万艳芳, 等. 六盘山叠叠沟小流域典型植被的产流产沙特征. 陆地生态系统与保护学报, 2022, 2 (2): 20- 28.
doi: 10.12356/j.2096-8884.2022-0006 |
|
Jin Z X, Yu P T, Wan Y F, et al. Characteristics of sediment yield and loss of typical vegetation in Diediegou watershed, Liupan Mountain. Journal of Terrestrial Ecosystems and Conservation, 2022, 2 (2): 20- 28.
doi: 10.12356/j.2096-8884.2022-0006 |
|
李广起, 白 帆, 桑卫国. 长白山红松和鱼鳞云杉在分布上限的径向生长对气候变暖的不同响应. 植物生态学报, 2011, 35 (5): 500- 511. | |
Li G Q, Bai F, Sang W G. Different responses of radial growth of Pinus koraiensis and Picea jezoensis at the upper limit of distribution to climate warming in Changbai Mountains. Journal of Plant Ecology, 2011, 35 (5): 500- 511. | |
李金亮, 姜健发. 高黎贡山秃杉人工林林分密度与生长关系研究. 林业调查规划, 2017, 42 (6): 122- 126.
doi: 10.3969/j.issn.1671-3168.2017.06.026 |
|
Li J L, Jiang J F. Study on the relationship between stand density and growth of Baldness forest in Gaoligong Mountain. Forestry Investigation and Planning, 2017, 42 (6): 122- 126.
doi: 10.3969/j.issn.1671-3168.2017.06.026 |
|
马 菁. 2020. 六盘山华北落叶松多时间尺度树干径向生长的环境响应. 北京: 北京林业大学. | |
Ma J. 2020. Environmental response of multi-time scale trunk radial growth of Larix principis-rupprechtii in Liupan Mountains. Beijing: Beijing Forestry University. [in Chinese] | |
乔晶晶, 王 童, 潘 磊, 等. 不同海拔和坡向马尾松树轮宽度对气候变化的响应. 应用生态学报, 2019, 30 (7): 2231- 2240. | |
Qiao J J, Wang T, Pan L, et al. Response of wheel width of Larix principis-rupprechtii at different elevations and slope aspect to climate change. Journal of Applied Ecology, 2019, 30 (7): 2231- 2240. | |
秦颢萍, 张 军, 刘泽彬, 等. 环境因子对华北落叶松树干径向变化的影响. 森林与环境学报, 2022, 42 (3): 297- 305. | |
Qin H P, Zhang J, Liu Z B, et al. Effects of environmental factors on radial changes of trunk of Larix principis-rupprechtii. Journal of Forestry and Environment, 2022, 42 (3): 297- 305. | |
石建周, 刘贤德, 田 青, 等. 祁连山中部青海云杉年内径向生长季节变化及其对环境因子的响应. 水土保持学报, 2022, 36 (2): 261- 267. | |
Shi J Z, Liu X D, Tian Q, et al. Radial seasonal changes of Picea crassifolia and its response to environmental factors in the central Qilian Mountains. Journal of Soil and Water Conservation, 2022, 36 (2): 261- 267. | |
万艳芳. 2023. 六盘山华北落叶松人工林蒸腾和生长过程对干旱的响应. 北京: 中国林业科学研究院. | |
Wan Y F. 2023. Response of transpiration and growth process of Larix principis-rupprechtii plantation to drought in Liupanshan Mountain. Beijing: Chinese Academy of Forestry. [in Chinese] | |
王 彬, 于澎涛, 于艺鹏, 等. 祁连山不同年龄青海云杉径向生长对气候变化的响应. 林业科学, 2021, 57 (3): 1- 8. | |
Wang B, Yu P T, Yu Y P, et al. Response of radial growth of Picea crassifolia at different ages to climate change in Qilian Mountains. Scientia Silvae Sinica, 2021, 57 (3): 1- 8. | |
王 林, 冯锦霞, 王双霞, 等. 干旱和坡向互作对栓皮栎和侧柏生长的影响. 生态学报, 2013, 33 (8): 2425- 2433.
doi: 10.5846/stxb201209051255 |
|
Wang L, Feng J X, Wang S X, et al. Effects of drought and slope aspect interaction on the growth of Quercus variabilis and Platycladus orientalis. Acta Ecologica Sinica, 2013, 33 (8): 2425- 2433.
doi: 10.5846/stxb201209051255 |
|
王树力, 周健平. 基于结构方程模型的林分生长与影响因子耦合关系分析. 北京林业大学学报, 2014, 36 (5): 7- 12. | |
Wang S L, Zhou J P. Analysis of coupling relationship between stand growth and impact factors based on structural equation model. Journal of Beijing Forestry University, 2014, 36 (5): 7- 12. | |
王晓晨, 马雪晴, 和骅芸, 等. 1961—2020年中国北方向日葵种植区干湿变化特征及其成因分析. 干旱气象, 2022, 40 (6): 1033- 1041.
doi: 10.11755/j.issn.1006-7639(2022)-06-1033 |
|
Wang X C, Ma X Q, He H Y, et al. Characteristics and causes of dry and wet changes in sunflower growing areas in northern China during 1961–2020. Journal of Arid Meteorology, 2022, 40 (6): 1033- 1041.
doi: 10.11755/j.issn.1006-7639(2022)-06-1033 |
|
王小雪, 王 恒, 张俊飞, 等. 塞罕坝林区华北落叶松径向生长对气候变化的响应. 林业与生态科学, 2022, 37 (2): 192- 197. | |
Wang X X, Wang H, Zhang J F, et al. Response of radial growth of Larix principis-rupprechtii to climate change in Saihanba forest. Forestry and Ecological Sciences, 2022, 37 (2): 192- 197. | |
徐小勤, 于澎涛, 王彦辉, 等. 六盘山华北落叶松林的结构随林龄变化及其水文影响. 林业科学研究, 2023, 36 (1): 109- 116.
doi: 10.12403/j.1001-1498.20220218 |
|
Xu X Q, Yu P T, Wang Y H, et al. Changes in structure and hydrological effects of Larix principis-rupprechtii forest with age in Liupan Mountains. Forest Research, 2023, 36 (1): 109- 116.
doi: 10.12403/j.1001-1498.20220218 |
|
薛盼盼, 缪 宁, 王 东, 等. 川西亚高山林线岷江冷杉和红杉对气象变化的响应. 生态学报, 2022, 42 (23): 9701- 9711. | |
Xue P P, Miao N, Wang D, et al. Response of Minjiang Abies fabri and Sequoia sempervirens to meteorological changes on the subalpine mountain line in western Sichuan. Acta Ecologica Sinica, 2022, 42 (23): 9701- 9711. | |
薛文鹏, 赵 忠, 李 鹏, 等. 王东沟不同坡向刺槐细根分布特征研究. 西北农林科技大学学报(自然科学版), 2003, 31 (6): 27- 32. | |
Xue W P, Zhao Z, Li P, et al. Study on distribution characteristics of fine roots of Robinia pseudoacacia in different slope aspect in Wangdonggou. Journal of Northwest A & F University (Natural Science Edition), 2003, 31 (6): 27- 32. | |
张冬燕, 王冬至, 张志东, 等. 不同龄组华北落叶松人工林径向生长模型构建. 山东农业大学学报(自然科学版), 2017, 48 (3): 449- 455. | |
Zhang D Y, Wang D Z, Zhang Z D, et al. Construction of radial growth model of Larix principis-rupprechtii of different age groups. Journal of Shandong Agricultural University (Natural Science Edition), 2017, 48 (3): 449- 455. | |
张先亮, 何兴元, 陈振举, 等. 大兴安岭山地樟子松径向生长对气候变暖的响应——以满归地区为例. 应用生态学报, 2011, 22 (12): 3101- 3108. | |
Zhang X L, He X Y, Chen Z J, et al. Response of radial growth of Pinus sylvestris to climate warming in the Greater Khingan Mountains: a case study of Mangui region. Journal of Applied Ecology, 2011, 22 (12): 3101- 3108. | |
赵守栋, 江 源, 焦 亮, 等. ARSTAN程序和R语言dplR扩展包进行树轮年表分析的比较研究. 生态学报, 2015, 35 (22): 7494- 7502. | |
Zhao S J, Jiang Y, Jiao L, et al. A comparative study on tree-ring chronology analysis between ARSTAN program and R language dplR extension package. Acta Ecologica Sinica, 2015, 35 (22): 7494- 7502. | |
朱海峰, 王丽丽, 邵雪梅, 等. 雪岭云杉树轮宽度对气候变化的响应. 地理学报, 2004, 59 (6): 863- 870.
doi: 10.3321/j.issn:0375-5444.2004.06.008 |
|
Zhu H F, Wang L L, Shao X M, et al. Response of ring width of Picea schrenkiana to climate change. Acta Geographica Sinica, 2004, 59 (6): 863- 870.
doi: 10.3321/j.issn:0375-5444.2004.06.008 |
|
Adams H D, Barron-Gafford G A, Minor R L, et al. Temperature response surfaces for mortality risk of tree species with future drought. Environmental Research Letters, 2017, 12 (11): 115014.
doi: 10.1088/1748-9326/aa93be |
|
Andreu L, Gutierrez E, Macias M, et al. Climate increases regional tree-growth variability in Iberian pine forests. Global Change Biology, 2007, 13 (4): 804- 815.
doi: 10.1111/j.1365-2486.2007.01322.x |
|
Bollen K A. 1989. Structural equations with latent variables. New York: John Wiley & Sons. | |
D'Amato A W, Bradford J B, Fraver S, et al. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecological Applications: a publication of the Ecological Society of America, 2013, 23 (8): 1735- 1742.
doi: 10.1890/13-0677.1 |
|
Elliott G P, Kipfmueller K F. Multi-scale influences of slope aspect and spatial pattern on ecotonal dynamics at upper treeline in the southern Rocky Mountains, U. S. A. Arctic Antarctic and Alpine Research, 2010, 42 (1): 45- 56.
doi: 10.1657/1938-4246-42.1.45 |
|
Fekedulegn D, Hicks R R, Colbert J J. Influence of topographic aspect, precipitation and drought on radial growth of four major tree species in an Appalachian watershed. Forest Ecology and Management, 2003, 177 (1/3): 409- 425. | |
Gao L L, Gao X H, Yang D, et al. Increased growth of Qinghai spruce in northwestern China during the recent warming hiatus. Agricultural and Forest Meteorology, 2018, 260/261, 9- 16.
doi: 10.1016/j.agrformet.2018.05.025 |
|
Grace J B, Anderson T M, Olff H, et al. On the specification of structural equation models for ecological systems. Ecological Monographs, 2010, 80 (1): 67- 87.
doi: 10.1890/09-0464.1 |
|
Hennenberg K J, Bruelheide H. Ecological investigations on the northern distribution range of Hippocrepis comosa L. in Germany. Plant Ecology, 2003, 166 (2): 167- 188.
doi: 10.1023/A:1023280109225 |
|
Hof, A R, Girona M M, Fortin, M-J, et al. Editorial: using landscape simulation models to help balance conflicting goals in changing forests. Frontiers in Ecology and Evolution, 2021, 9, 795736.
doi: 10.3389/fevo.2021.795736 |
|
Holmes R L. Computer-assisted quality control in treering dating and measurement. Tree-Ring Bulletin, 1983, 43, 69- 78. | |
Huang J P, Li Y, Fu C, et al. Dryland climate change: recent progress and challenges. Reviews of Geophysics, 2017, 55 (3): 719- 778.
doi: 10.1002/2016RG000550 |
|
Kirchhefer A J. 2000. The influence of slope aspect on tree ring growth of Pinus sylvestris L. in northern Norway and its implications for climate reconstruction. Dendrochronologia, 18: 27-40. | |
Lal, R. 2004, Carbon sequestration in dryland ecosystems. Environmental Management, 33(4): 528–544. | |
Leonelli G, Pelfini M, Battipaglia G. et al. Site-aspect influence on climate sensitivity over time of a high-altitude Pinus cembra tree-ring network. Climatic Change, 2009, 96, 185- 201.
doi: 10.1007/s10584-009-9574-6 |
|
Liang E Y, Shao X M, Eckstein D, et al. Topography- and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau. Forest Ecology and Management, 2006, 236 (2/3): 268- 277. | |
Liu Z B, Wang Y H, Tian A, et al. Intra-annual variation of stem radius of Larix principis-rupprechtii and its response to environmental factors in Liupan Mountains of northwest China. Forests, 2017, 8 (10): 382.
doi: 10.3390/f8100382 |
|
Ma J, Guo J B, Wang Y H, et al. Variations in stem radii of Larix principis-rupprechtii to environmental factors at two slope locations in the Liupan Mountains, northwest China. Journal of Forestry Research, 2020, 32 (2): 513- 527. | |
Peng C H, Ma Z H, Lei X D, et al. A drought-induced pervasive increase in tree mortality across Canada's boreal forests. Nature Climate Change, 2011, 1 (9): 467- 471.
doi: 10.1038/nclimate1293 |
|
Pigott C D. Experimental studies on the influence of climate on the geographical distribution of plants. Weather, 1975, 30, 82- 90.
doi: 10.1002/j.1477-8696.1975.tb05283.x |
|
Richards A E, Forrester D I, Bauhus J, et al. The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiology, 2010, 30 (9): 1192- 1208.
doi: 10.1093/treephys/tpq035 |
|
Schnabel F, Purrucker S, Schmitt L, et al. Cumulative growth and stress responses to the 2018–2019 drought in a European floodplain forest. Global Change Biology, 2022, 28 (5): 1870- 1883.
doi: 10.1111/gcb.16028 |
|
Vicente-Serrano S M, Beguería S, López-Moreno J I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 2010, 23 (7): 1696- 1718.
doi: 10.1175/2009JCLI2909.1 |
|
Wan Y F, Yu P T, Li X Q, et al. Seasonal pattern of stem diameter growth of Qinghai spruce in the Qilian Mountains, northwestern China. Forests, 2020, 11 (5): 494.
doi: 10.3390/f11050494 |
|
Wang B, Yu P T, Zhang L, et al. Differential trends of Qinghai spruce growth with elevation in northwestern China during the recent warming hiatus. Forests, 2019, 10 (9): 712.
doi: 10.3390/f10090712 |
[1] | 张孝琰, 倪晓凤, 蔡琼, 吉成均. 塞罕坝不同林龄华北落叶松人工林林下植物叶解剖特征及其氮添加响应[J]. 林业科学, 2025, 61(1): 37-46. |
[2] | 黄栋才,郭鑫,王得祥,王韵淑,张欣,霍雪莹. 不同经营方法对秦岭华北落叶松林分生长和林下植被的影响[J]. 林业科学, 2024, 60(8): 57-66. |
[3] | 周小东,常顺利,王冠正,孙雪娇,张毓涛,李翔. 天山雪岭云杉径向生长响应气候变化的海拔分异[J]. 林业科学, 2024, 60(3): 45-56. |
[4] | 韩新生,王彦辉,于澎涛,李振华,于艺鹏,王晓. 宁夏六盘山北部华北落叶松林树高与胸径生长的多因子响应耦合模型构建[J]. 林业科学, 2024, 60(11): 13-24. |
[5] | 葛婉婷,刘莹,赵智佳,张珅,李洁,杨桂娟,曲冠证,王军辉,麻文俊. 不同气候情景下黄心梓木在我国的潜在适生区预测[J]. 林业科学, 2024, 60(11): 63-74. |
[6] | 张智伟,万艳芳,于澎涛,白雨诗,王彦辉,刘兵兵,王晓,胡振华. 六盘山华北落叶松和白桦林日蒸腾对环境因子的响应差异[J]. 林业科学, 2024, 60(10): 29-39. |
[7] | 张欣, 张秋良, 孙守家, 王冰. 兴安落叶松生态系统CO2浓度及其δ13C动态对环境因子的响应[J]. 林业科学, 2023, 59(9): 55-65. |
[8] | 马颢铜,金光泽,刘志理. 小兴安岭红松胸高断面积生长随树龄的变化规律及主要影响因素[J]. 林业科学, 2023, 59(7): 96-105. |
[9] | 王彦辉,于澎涛,田奥,韩新生,郝佳,刘泽彬,王晓. 黄土高原和六盘山区的林水协调多功能管理[J]. 林业科学, 2023, 59(4): 1-17. |
[10] | 张紫优,王彦辉,田奥,刘泽彬,郭建斌,于澎涛,王晓,于艺鹏. 宁夏六盘山华北落叶松人工林植被碳密度时空特征及其环境响应[J]. 林业科学, 2023, 59(4): 32-45. |
[11] | 张淑宁,陈俊兴,敖敦,红梅,张雅茜,包福海,王淋,乌云塔娜,白玉娥,包文泉. 气候变化背景下我国长柄扁桃潜在适生区预测[J]. 林业科学, 2023, 59(12): 25-36. |
[12] | 罗娜,曲睿婕,李国雷,孟路,韩冷,郭桂凤,马凤原,王佳茜. 短日照和灌溉处理对华北落叶松苗木质量和夏季造林效果的影响[J]. 林业科学, 2023, 59(1): 90-98. |
[13] | 王东升,赵伟,程蓓蓓,张吉军. 基于MaxEnt模型的中国山楂潜在适生区[J]. 林业科学, 2022, 58(7): 43-50. |
[14] | 王立轩,杨光,高佳琪,郑鑫,李兆国,瓮岳太,邸雪颖,于宏洲. 兴安落叶松林火烧迹地地表枯落物燃烧性变化[J]. 林业科学, 2022, 58(6): 110-121. |
[15] | 张树梓,尹建庭,任启文,张树彬,王鑫,李联地,毕君. 冀北山地针阔混交林优势种对邻体物种多样性格局的影响[J]. 林业科学, 2022, 58(4): 32-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||