林业科学 ›› 2025, Vol. 61 ›› Issue (1): 37-46.doi: 10.11707/j.1001-7488.LYKX20230571
收稿日期:
2023-11-27
出版日期:
2025-01-25
发布日期:
2025-02-09
通讯作者:
吉成均
E-mail:jicj@pku.edu.cn
基金资助:
Xiaoyan Zhang,Xiaofeng Ni,Qiong Cai,Chengjun Ji*()
Received:
2023-11-27
Online:
2025-01-25
Published:
2025-02-09
Contact:
Chengjun Ji
E-mail:jicj@pku.edu.cn
摘要:
目的: 人工林林下植物在维持人工林群落结构和功能方面具有重要作用,研究林下植物形态结构随氮添加的变化,深入理解林下植物对环境变化的响应与适应机制。方法: 采用植物制片技术,比较塞罕坝人工林基地不同林龄(幼龄林、中龄林、近熟林)华北落叶松样地优势林下植物叶解剖特征的可塑性及其对不同氮添加处理(0、20、50 kg·hm?2a?1)的响应,并探讨不同氮添加处理条件下林下植物叶解剖特征之间的相关关系。结果: 1) 林下植物不同叶解剖特征的可塑性指数具有一定规律,栅栏组织厚度、下表皮厚度等相对稳定,海绵组织厚度较为敏感。2) 氮添加对林下植物9个叶解剖特征均无显著影响(P>0.05),但对各叶解剖特征间的相关关系多存在显著影响;相比低氮添加,高氮添加可增强叶片厚度相关指标间的关系、削弱维管组织相关指标间的关系。3) 幼龄林林下植物叶解剖特征基础数值显著高于中龄林和近熟林,中龄林和近熟林林下植物各叶解剖特征差异不明显;幼龄林林下植物叶片厚度相关指标受氮添加促进,维管组织相关指标表现出受抑制效果;近熟林与幼龄林相反,叶片厚度相关指标受氮添加抑制,维管组织相关指标受氮添加促进;中龄林林下植物叶解剖特征对氮添加的响应程度最高且多为正响应。结论: 不同林龄华北落叶松样地林下植物的叶片厚度相关指标和维管组织相关指标对外源氮添加可能采取不同适应策略,在解读植物响应适应机制时需针对不同情况予以区分考虑。
中图分类号:
张孝琰,倪晓凤,蔡琼,吉成均. 塞罕坝不同林龄华北落叶松人工林林下植物叶解剖特征及其氮添加响应[J]. 林业科学, 2025, 61(1): 37-46.
Xiaoyan Zhang,Xiaofeng Ni,Qiong Cai,Chengjun Ji. Leaf Anatomical Traits of Understory Plants and Their Response to Nitrogen Addition in a Chronosequence of Larix principis-rupprechtii Plantations in Saihanba, Hebei Province[J]. Scientia Silvae Sinicae, 2025, 61(1): 37-46.
表1
河北塞罕坝控制试验样地的基本信息①"
林龄Forest age | 胸径 DBH/cm | 树高 Height/m | 林分密度 Stand density/(tree·hm?2) | 土壤碳氮比 Soil C: N | 土壤pH Soil pH |
15年幼龄林 15 years juvenile forest | 4.7±0.1c | 3.9±0.1c | 2 640±157b | 10.3±0.2b | 6.2±0.2b |
25年中龄林 25 years immature forest | 11.9±0.2b | 9.2±0.1b | 3 060±132a | 11.7±0.3a | 6.5±0.0a |
50年近熟林 50 years near-mature forest | 21.0±0.3a | 16.9±0.2a | 870±48c | 13.2±0.9a | 6.3±0.2ab |
表2
林下植物物种基本信息"
物种 Species | 科名 Family name | 生活型 Life form | 分布 Distribution |
叉分蓼Polygonum divaricatum | 蓼科Polygonaceae | 草本Herbs | 幼龄林 Juvenile forests |
地榆Sanguisorba officinalis | 蔷薇科Rosaceae | 草本Herbs | 幼龄林、中龄林、近熟林 Juvenile, immature and near-mature forests |
风毛菊Saussurea japonica | 菊科Compositae | 草本Herbs | 幼龄林 Juvenile forests |
龙芽草Agrimonia pilosa | 蔷薇科Rosaceae | 草本Herbs | 幼龄林、中龄林、近熟林 Juvenile, immature and near-mature forests |
鸦葱Scorzonera austriaca | 菊科Compositae | 草本Herbs | 幼龄林 Juvenile forests |
老鹳草Geranium wilfordii | 牻牛儿苗科Geraniaceae | 草本Herbs | 中龄林、近熟林 Immature and near-mature forests |
珠芽蓼Polygonum viviparum | 蓼科Polygonaceae | 草本Herbs | 中龄林 Immature forests |
毛连菜Picris hieracioides | 菊科Compositae | 草本Herbs | 中龄林、近熟林 Immature and near-mature forests |
茶藨子Ribes nigrum | 虎耳草科Saxifragaceae | 灌木Shrubs | 近熟林 Near-mature forests |
山刺玫Rosa davurica | 蔷薇科Rosaceae | 灌木Shrubs | 近熟林 Near-mature forests |
图1
叶解剖特征测定的光学显微图像 标尺=100 μm. LT:叶片厚度;LET:下表皮厚度;UET:上表皮厚度;PMT:栅栏组织厚度;SMT:海绵组织厚度;MT:主脉厚度;VBD:维管束直径;VD:平均导管直径;MVD:最大导管直径。Bar=100 μm. LT: leaf thickness; LET: lower epidermis thickness; UET: upper epidermis thickness; PMT: palisade tissue thickness; SMT: spongy tissue thickness; MT: main vein thickness; VBD: vascular bundle diameter; VD: mean vessel diameter; MVD: maximum vessel diameter."
图2
林下植物叶解剖特征的可塑性指数 LT:叶片厚度;LET:下表皮厚度;UET:上表皮厚度;PMT:栅栏组织厚度;SMT:海绵组织厚度;MT:主脉厚度;VBD:维管束直径;VD:平均导管直径;MVD:最大导管直径。LT: leaf thickness; LET: lower epidermis thickness; UET: upper epidermis thickness; PMT: palisade tissue thickness; SMT: spongy tissue thickness; MT: main vein thickness; VBD: vascular bundle diameter; VD: mean vessel diameter; MVD: maximum vessel diameter. CK:对照(氮0添加)Control (0 nitrogen addition) (0 kg·hm−2a−1);N20:低氮添加Low nitrogen addition (20 kg·hm−2a−1);N50:高氮添加High nitrogen addition (50 kg·hm−2a−1)."
图3
不同林龄样地林下植物叶解剖特征比较 LT:叶片厚度;LET:下表皮厚度;UET:上表皮厚度;PMT:栅栏组织厚度;SMT:海绵组织厚度;MT:主脉厚度;VBD:维管束直径;VD:平均导管直径;MVD:最大导管直径。LT: leaf thickness; LET: lower epidermis thickness; UET: upper epidermis thickness; PMT: palisade tissue thickness; SMT: spongy tissue thickness; MT: main vein thickness; VBD: vascular bundle diameter; VD: mean vessel diameter; MVD: maximum vessel diameter. CK:对照(氮0添加)Control (0 nitrogen addition) (0 kg·hm−2a−1);N20:低氮添加Low nitrogen addition (20 kg·hm−2a−1);N50:高氮添加High nitrogen addition (50 kg·hm−2a−1). 不同字母表示不同林龄或不同氮处理条件下有显著差异(P<0.05)。Different letters mean significant differences among different stand ages or different nitrogen treatment conditions."
图4
不同林龄样地植物叶解剖特征对氮添加的响应程度对比 LT:叶片厚度;LET:下表皮厚度;UET:上表皮厚度;PMT:栅栏组织厚度;SMT:海绵组织厚度;MT:主脉厚度;VBD:维管束直径;VD:平均导管直径;MVD:最大导管直径。LT: leaf thickness; LET: lower epidermis thickness; UET: upper epidermis thickness; PMT: palisade tissue thickness; SMT: spongy tissue thickness; MT: main vein thickness; VBD: vascular bundle diameter; VD: mean vessel diameter; MVD: maximum vessel diameter. 不同字母表示不同林龄有显著差异(P<0.05)。Different letters mean significant differences among different stand ages."
方运霆, 莫江明, 周国逸, 等. 鼎湖山主要森林类型植物胸径生长对氮沉降增加的初期响应. 热带亚热带植物学报, 2005, 13 (3): 198- 204.
doi: 10.3969/j.issn.1005-3395.2005.03.002 |
|
Fang Y T, Mo J M, Zhou G Y, et al. Response of diameter at breast height increment to N additions in forests of Dinghushan biosphere reserve. Journal of Tropical and Subtropical Botany, 2005, 13 (3): 198- 204.
doi: 10.3969/j.issn.1005-3395.2005.03.002 |
|
李德军, 莫江明, 方运霆, 等. 模拟氮沉降对三种南亚热带树苗生长和光合作用的影响. 生态学报, 2004, 24 (5): 876- 882.
doi: 10.3321/j.issn:1000-0933.2004.05.002 |
|
Li D J, Mo J M, Fang Y T, et al. Effects of simulated nitrogen deposition on growth and photosynthesis of Schima superba, Castanopsis chinensis and Cryptocarya concinna seedlings. Acta Ecologica Sinica, 2004, 24 (5): 876- 882.
doi: 10.3321/j.issn:1000-0933.2004.05.002 |
|
李德军, 莫江明, 方运霆, 等. 氮沉降对森林植物的影响. 生态学报, 2003, 23 (9): 1891- 1900.
doi: 10.3321/j.issn:1000-0933.2003.09.022 |
|
Li D J, Mo J M, Fang Y T, et al. Impact of nitrogen deposition on forest plants. Acta Ecologica Sinica, 2003, 23 (9): 1891- 1900.
doi: 10.3321/j.issn:1000-0933.2003.09.022 |
|
李 乐, 叶天一, 栾维敬. 提升人工林碳汇——实现“双碳”目标的重要举措. 生态文明世界, 2022, 43 (4): 60- 65, 7. | |
Li L, Ye T Y, Luan W J. Increasing the carbon sink of plantations—an important measure to achieve carbon peaking and carbon neutrality goals. Ecological Civilization World, 2022, 43 (4): 60- 65, 7. | |
李修平. 2020. 我国东部典型森林林下植物叶氨基酸含量对氮添加的响应. 北京: 北京大学. | |
Li X P. 2020. Response of leaf amino acids of undergrowth plants to nitrogen addition in typical forests in eastern China. Beijing: Peking University. [in Chinese] | |
梁 宵, 刘增文, 刘晓博, 等. 油松、侧柏和落叶松林腐殖层土壤对药用植物的化感效应. 草地学报, 2016, 24 (3): 568- 576. | |
Liang X, Liu Z W, Liu X B, et al. Allelopathic effects of humus forest soil of Pinus tabulaeformis, Platycladus orientalis and Larix principis-rupprechtii on medicinal plants. Acta Agrestia Sinica, 2016, 24 (3): 568- 576. | |
倪晓凤. 2023. 中国东部森林植物叶片功能性状的纬度格局及其对氮添加的响应. 北京: 北京大学. | |
Ni X F. 2023. Leaf functional traits in eastern China forests: Latitudinal patterns and their response to nitrogen addition. Beijing: Peking University. [in Chinese] | |
曲恬甜, 闫 涛, 张 文, 等. 落叶松人工林草本植物群落特征和生物量对氮添加的响应. 北京大学学报(自然科学版), 2019, 55 (3): 587- 596. | |
Qu T T, Yan T, Zhang W, et al. Responses of herbaceous community characteristics and biomass to nitrogen addition in a Larix principis-rupprechtii plantation. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55 (3): 587- 596. | |
王丽芳, 吴东梅, 陆静梅. 阴生与阳生植物形态结构差异分析. 吉林农业, 2014, 333 (12): 18.
doi: 10.3969/j.issn.1674-0432.2014.12.090 |
|
Wang L F, Wu D M, Lu J M. Analysis of morphological and structural differences between shade plants and sun plants. Agriculture of Jilin, 2014, 333 (12): 18.
doi: 10.3969/j.issn.1674-0432.2014.12.090 |
|
王亚菲. 2015. 施氮量对棉花生长发育和叶片微观结构的影响. 保定: 河北农业大学. | |
Wang Y F. 2015. Effects of nitrogen on growing and leaves microstructure of cotton (Gossypium hirsutum L.). Baoding: Hebei Agricultural University. [in Chinese] | |
魏士凯, 范顺祥, 张玉珍, 等. 塞罕坝自然保护区主要植被类型动态及其驱动力. 应用生态学报, 2018, 29 (4): 1170- 1178. | |
Wei S K, Fan S X, Zhang Y Z, et al. Dynamics and driving forces of main vegetation types in the Saihanba nature reserve, Hebei Province, China. Chinese Journal of Applied Ecology, 2018, 29 (4): 1170- 1178. | |
张 文, 闫 涛, 常文静, 等. 氮添加对不同林龄华北落叶松叶片氮重吸收过程的影响. 生态学杂志, 2018, 37 (12): 3525- 3532. | |
Zhang W, Yan T, Chang W J, et al. Effect of nitrogen addition on leaf nitrogen resorption of Larix principis-rupprechtii plantations with different ages. Chinese Journal of Ecology, 2018, 37 (12): 3525- 3532. | |
张泽辉, 程 顺, 侯海潮. 不同林龄华北落叶松人工林土壤化学性质. 林业与生态科学, 2018, 33 (3): 270- 274. | |
Zhang Z H, Cheng S, Hou H C. Soil chemical properties of Larix principis-rupprechtii plantations with different stand ages. Forestry and Ecological Sciences, 2018, 33 (3): 270- 274. | |
钟梦莹, 2020. 高寒草甸优势植物叶解剖结构与异速生长对增温增雨的响应. 北京: 中国农业大学. | |
Zhong M Y. 2020. Response of leaf anatomical structure and allometry of dominant plants to increasing temperature and rainfall in alpine meadow. Beijing: China Agricultural University. [in Chinese] | |
Barbier S, Gosselin F, Balandier P. Influence of tree species on understory vegetation diversity and mechanisms involved: a critical review for temperate and boreal forests. Forest Ecology and Management, 2008, 254 (1): 1- 15.
doi: 10.1016/j.foreco.2007.09.038 |
|
Bobbink R, Hicks K, Galloway J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications: a Publication of the Ecological Society of America, 2010, 20 (1): 30- 59.
doi: 10.1890/08-1140.1 |
|
Boch S, Berlinger M, Fischer M, et al. Fern and bryophyte endozoochory by slugs. Oecologia, 2013, 172 (3): 817- 822.
doi: 10.1007/s00442-012-2536-0 |
|
Cai Q, Ji C J, Yan Z B, et al. Anatomical responses of leaf and stem of Arabidopsis thaliana to nitrogen and phosphorus addition. Journal of Plant Research, 2017, 130 (6): 1035- 1045.
doi: 10.1007/s10265-017-0960-2 |
|
Chen L, Wang R Z. 2009. Anatomical and physiological divergences and compensatory effects in two Leymus chinensis (Poaceae) ecotypes in Northeast China. Agriculture, Ecosystems and Environment, 134(1/2): 46−52. | |
Cleveland C C, Townsend A R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (27): 10316- 10321. | |
Cusack D F, Silver W L, Torn M S, et al. Effects of nitrogen additions on above- and below-ground carbon dynamics in two tropical forests. Biogeochemistry, 2011, 104 (1/3): 203- 225. | |
Deng J J, Fang S, Fang X M, et al. Forest understory vegetation study: current status and future trends. Forestry Research, 2023, 3, 6. | |
Du E Z, Zhou Z, Li P, et al. NEECF: a project of nutrient enrichment experiments in China’s forests. Journal of Plant Ecology, 2013, 6 (5): 428- 435.
doi: 10.1093/jpe/rtt008 |
|
Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292 (5525): 2320- 2322.
doi: 10.1126/science.1058629 |
|
Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 2008, 320 (5878): 889- 892.
doi: 10.1126/science.1136674 |
|
Landuyt D, De Lombaerde E, Perring M P, et al. The functional role of temperate forest understorey vegetation in a changing world. Global Change Biology, 2019, 25 (11): 3625- 3641.
doi: 10.1111/gcb.14756 |
|
Li Q, Hou J H, He N P, et al. Changes in leaf stomatal traits of different aged temperate forest stands. Journal of Forestry Research, 2021, 32 (3): 927- 936.
doi: 10.1007/s11676-020-01135-5 |
|
Ma Y C, Zhu B, Sun Z Z, et al. The effects of simulated nitrogen deposition on extracellular enzyme activities of litter and soil among different-aged stands of larch. Journal of Plant Ecology, 2014, 7 (3): 240- 249.
doi: 10.1093/jpe/rtt028 |
|
Onoda Y, Richards L, Westoby M. The importance of leaf cuticle for carbon economy and mechanical strength. New Phytologist, 2012, 196 (2): 441- 447.
doi: 10.1111/j.1469-8137.2012.04263.x |
|
Ordoñez J C, Van Bodegom P M, Witte J P M, et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 2009, 18 (2): 137- 149.
doi: 10.1111/j.1466-8238.2008.00441.x |
|
Palmroth S, Holm Bach L, Nordin A, et al. Nitrogen-addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs. Oecologia, 2014, 175 (2): 457- 470.
doi: 10.1007/s00442-014-2923-9 |
|
Schulte-Uebbing L, De V W. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate and boreal forests: a meta-analysis. Global Change Biology, 2018, 24 (2): E416- E431. | |
Thrippleton T, Bugmann H, Folini M, et al. Overstorey-understorey interactions intensify after drought-induced forest die-off: long-term effects for forest structure and composition. Ecosystems, 2018, 21 (4): 723- 739.
doi: 10.1007/s10021-017-0181-5 |
|
Tian D, Du E Z, Jiang L, et al. Responses of forest ecosystems to increasing N deposition in China: a critical review. Environment Pollution, 2018, 243, 75- 86.
doi: 10.1016/j.envpol.2018.08.010 |
|
Vogelmann T C, Martin G. 1993. The functional significance of palisade tissue: penetration of directional versus diffuse light. Plant, Cell & Environment, 16(1): 65−72. | |
Walter C A, Raiff D T, Burnham M B, et al. Nitrogen fertilization interacts with light to increase Rubus spp. cover in a temperate forest. Plant Ecology, 2016, 217 (4): 421- 430.
doi: 10.1007/s11258-016-0583-z |
|
Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428 (6985): 821- 827.
doi: 10.1038/nature02403 |
|
Wright I J, Reich P B, Cornelissen J H C, et al. Assessing the generality of global leaf trait relationships. New Phytologist, 2005, 166 (2): 485- 496.
doi: 10.1111/j.1469-8137.2005.01349.x |
|
Yan T, Qu T T, Sun Z Z, et al. Negative effect of nitrogen addition on soil respiration dependent on stand age: Evidence from a 7-year field study of larch plantations in northern China. Agricultural and Forest Meteorology, 2018, 262, 24- 33.
doi: 10.1016/j.agrformet.2018.06.029 |
|
Yan Z B, Kim N Y, Han W X, et al. Effects of nitrogen and phosphorus supply on growth rate, leaf stoichiometry, and nutrient resorption of Arabidopsis thaliana. Plant and Soil, 2015, 388 (1/2): 147- 155. | |
Zhang Y, Chen H Y, Taylor A R. Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees. Functional Ecology, 2017, 31 (2): 419- 426.
doi: 10.1111/1365-2435.12699 |
[1] | 王巍樾,万艳芳,王冬梅,于澎涛,王彦辉,白雨诗. 六盘山华北落叶松优势木径向生长及主要环境因子的坡向差异[J]. 林业科学, 2025, 61(1): 26-36. |
[2] | 陈炎, 孟素戎, 黄安民, 苏莹莹, 孙柏玲. 三聚氰胺-尿素-乙二醛树脂浸渍改性对人工林红锥木材物理力学性能的影响[J]. 林业科学, 2025, 61(1): 166-175. |
[3] | 谢静,张峰,周泽圆,于海群,韩艺,杨春欣,蒋薇,刘进祖,刘博恩,刘鹤. 北京城市公园人工林生态系统水分利用效率的季节变化[J]. 林业科学, 2024, 60(9): 12-17. |
[4] | 竹万宽,王志超,杜阿朋,许宇星. 广东湛江桉树人工林碳水通量季节格局及其环境生物控制[J]. 林业科学, 2024, 60(9): 18-32. |
[5] | 张盛晰,何炎红,郝龙飞,聂正英,刘婷岩,王云鹏,滑永春. 土壤微生物和氮添加对柠条根际微生境及根系形态的调控作用[J]. 林业科学, 2024, 60(9): 80-89. |
[6] | 黄栋才,郭鑫,王得祥,王韵淑,张欣,霍雪莹. 不同经营方法对秦岭华北落叶松林分生长和林下植被的影响[J]. 林业科学, 2024, 60(8): 57-66. |
[7] | 韩新生,许浩,蔡进军,董立国,郭永忠,王月玲,万海霞,安钰. 宁夏黄土区稀疏带状山杏人工林土壤湿度动态与影响因素[J]. 林业科学, 2024, 60(4): 79-90. |
[8] | 徐磊,吴小云,律江,石云,朱梦洵,许行,张志强. 散射辐射比例对华北平原杨树人工林生态系统能量分配的影响[J]. 林业科学, 2024, 60(3): 100-110. |
[9] | 吕梓晴, 段爱国. 不同产区杉木生物量与碳储量模型[J]. 林业科学, 2024, 60(2): 1-11. |
[10] | 张芸香, 吕世琪, 刘泰瑞, 李晋芳, 郭晋平. 关帝山3个典型森林群落优势种的氮素利用策略差异[J]. 林业科学, 2024, 60(2): 12-20. |
[11] | 唐继新,潘启龙,刘衡,田祖为,陈东成,黄德卫,莫世宇,蒋志林. 红锥人工林立木生长应变的变异规律及受生长弱化处理的影响[J]. 林业科学, 2024, 60(12): 120-127. |
[12] | 党宏忠,陈帅,钟鹏,韩辉,张日升,张学利,石长春. 樟子松人工林自然更新过程中断的机制及可能调控途径[J]. 林业科学, 2024, 60(12): 158-167. |
[13] | 韩新生,王彦辉,于澎涛,李振华,于艺鹏,王晓. 宁夏六盘山北部华北落叶松林树高与胸径生长的多因子响应耦合模型构建[J]. 林业科学, 2024, 60(11): 13-24. |
[14] | 刘相荣,孙启武,厚凌宇,庞忠义,张琰琳,丁昌俊. 松辽平原杨树人工林土壤微生物群落结构及其功能多样性的林龄差异[J]. 林业科学, 2024, 60(11): 25-36. |
[15] | 周方,蒋科毅,叶兰华,沈庆华,童冉,朱念福,苗永朝,吴统贵. 百山祖国家公园人工林土壤磷素有效性及其影响因素[J]. 林业科学, 2024, 60(11): 37-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||