林业科学 ›› 2024, Vol. 60 ›› Issue (10): 29-39.doi: 10.11707/j.1001-7488.LYKX20230503
• 研究论文 • 上一篇
张智伟1,2,万艳芳2,于澎涛2,白雨诗2,王彦辉2,刘兵兵2,王晓2,胡振华1,*()
收稿日期:
2023-10-19
出版日期:
2024-10-25
发布日期:
2024-11-05
通讯作者:
胡振华
E-mail:sxndhzh@163.com
基金资助:
Zhiwei Zhang1,2,Yanfang Wan2,Pengtao Yu2,Yushi Bai2,Yanhui Wang2,Bingbing Liu2,Xiao Wang2,Zhenhua Hu1,*()
Received:
2023-10-19
Online:
2024-10-25
Published:
2024-11-05
Contact:
Zhenhua Hu
E-mail:sxndhzh@163.com
摘要:
目的: 准确量化半干旱区典型人工林的蒸腾特征及其对气象因子和土壤水分的响应规律,探究其水分利用策略的差异,为该区域的林水综合管理提供理论依据。方法: 2022年5—10月,在六盘山半干旱区叠叠沟小流域选取当地主要的造林树种华北落叶松和白桦,各布设1个面积30 m × 30 m的固定样地,每个样地选取12株不同胸径的样树,连续测定树干液流密度、气象因子和0~60 cm土层的土壤含水量,分析华北落叶松和白桦人工林蒸腾特征及其对潜在蒸散(PET)和土壤相对可利用水分(REW)的响应差异。结果: 1) 7—10月华北落叶松和白桦人工林的日均蒸腾量分别为0.63和0.54 mm·d?1,前者比后者高0.09 mm·d?1;华北落叶松和白桦林分日蒸腾量随着月份变化均呈先增后减的变化趋势,在7月均达到最大值,分别为1.38和1.45 mm·d?1。2) 2种人工林的日蒸腾量对PET的响应均符合指数函数关系,即日蒸腾量随PET增大呈先增大后趋于稳定,但变化趋势在不同REW之间有差别;华北落叶松林分日蒸腾量随PET增长的速率在REW < 0.3时较低,在REW > 0.3后则迅速升高,且不同REW之间差距很小;而白桦林分日蒸腾量随PET增长的速率持续增大,且比较均匀。3) 2种人工林的日蒸腾量对REW的响应也均符合指数函数关系,但变化趋势在不同PET之间有差别;华北落叶松林分蒸腾量随REW增长的速率在PET < 2 mm·d?1时较低,在PET > 2 mm·d?1后则迅速升高,且不同PET之间差距很小;相比之下,白桦人工林日蒸腾量随REW增大而升高的变化在整个PET变化范围内都比较均匀,且增长速率持续增大。结论: 华北落叶松林分日蒸腾量对PET和REW的响应明显比白桦林更敏感。华北落叶松林分日蒸腾量在PET < 2 mm·d?1或REW < 0.3时明显高于白桦,但在PET > 2 mm·d?1或REW > 0.3后迅速升高到其最大值附近并随PET或REW升高保持稳定,而白桦林分日蒸腾量表现为相对均匀地逐渐趋于其最大值。这说明在水分受限的半干旱区,华北落叶松林的蒸腾耗水量高于白桦林,且白桦林蒸腾受干旱期土壤水分的限制更明显。
中图分类号:
张智伟,万艳芳,于澎涛,白雨诗,王彦辉,刘兵兵,王晓,胡振华. 六盘山华北落叶松和白桦林日蒸腾对环境因子的响应差异[J]. 林业科学, 2024, 60(10): 29-39.
Zhiwei Zhang,Yanfang Wan,Pengtao Yu,Yushi Bai,Yanhui Wang,Bingbing Liu,Xiao Wang,Zhenhua Hu. Differences in Response of Daily Transpiration between Larix principis-rupprechtii and Betula platyphylla Plantations to Environmental Factors in the Liupan Mountains[J]. Scientia Silvae Sinicae, 2024, 60(10): 29-39.
表1
样地基本信息①"
林型 Forest types | 海拔 Altitude/m | 坡向 Slope aspect | 林龄 Stand age/a | 郁闭度 Stand density | 林分密度 Stand density/ (tree·hm?2) | 平均胸径 Mean DBH/cm | 平均树高 Mean tree height/m | 平均冠幅直径 Mean crown diameter/m |
华北落叶松林 Larix principris-rupprechtii | 西北 Northwest | 37 | 0.85 | 12.4±5.3 | 11.2±3.6 | 2.9±1.1 | ||
白桦林 Betula platyphylla | 北 North | 26 | 0.75 | 12.4±3.1 | 11.7±1.5 | 3.4±0.8 |
表2
华北落叶松和白桦样树基本信息①"
样地 Sample plots | 胸径等级 DBH/cm | 株数 Number of sample trees | 平均胸径 Mean DBH/cm | 平均树高 Mean tree height/m | 平均冠幅直径 Mean crown diameter/m | 平均边材宽度 Mean sapwood width/cm | 平均边材面积 Mean sapwood area/cm2 |
华北落叶松林 Larix principris-rupprechtii | ≤ 14 | 3 | 12.7±0.8 | 13.1±1.8 | 2.5±0.5 | 2.1±0.1 | 80.8±9.0 |
14~16 | 3 | 15.4±0.9 | 14.4±1.3 | 2.8±0.6 | 2.5±0.2 | 111.7±10.8 | |
16~18 | 3 | 17.6±0.4 | 15.4±1.3 | 3.4±0.7 | 2.8±0.1 | 138.9±5.7 | |
≥ 18 | 3 | 21.3±2.6 | 19.0±0.9 | 3.3±2.2 | 3.3±0.3 | 191.4±38.6 | |
白桦林 Betula platyphylla | ≤ 11 | 3 | 10.6±0.2 | 9.4±1.1 | 2.8±0.3 | 2.6±0.1 | 66.5±2.6 |
11~13 | 3 | 12.1±0.7 | 10.2±0.4 | 3.3±0.6 | 3.1±0.3 | 87.6±12.8 | |
13~15 | 3 | 13.8±0.8 | 11.1±0.1 | 3.4±0.6 | 3.8±0.5 | 120.3±27.8 | |
≥ 15 | 3 | 16.3±1.2 | 12.7±1.4 | 3.3±0.4 | 4.5±0.5 | 160.4±29.5 |
表3
华北落叶松、白桦蒸腾量增长速率对比"
林型 Forest type | PET | 蒸腾量 Transpiration/mm | 蒸腾量增长速率 Transpiration velocity | ||
REW | |||||
0.2 | 0.3 | 0.2 | 0.3 | ||
华北落叶松林 L. principris-rupprechtii | >4 | 1.19 | 1.30 | 1.72 | 0.55 |
3-4 | 0.96 | 1.15 | 2.59 | 1.39 | |
2-3 | 0.91 | 1.10 | 2.47 | 1.33 | |
0-2 | 0.47 | 0.60 | 1.49 | 0.92 | |
白桦林 B. platyphylla | REW | ||||
0.2 | 0.37 | 0.2 | 0.37 | ||
>4 | 1.06 | 1.26 | 2.26 | 0.57 | |
3-4 | 0.77 | 1.07 | 2.48 | 1.21 | |
2-3 | 0.54 | 0.79 | 1.94 | 1.19 | |
0-2 | 0.37 | 0.55 | 1.39 | 0.83 |
常学向, 赵文智, 何志斌, 等. 青海云杉(Picea crassifolia)边材心材边界的确定及树干传输水分的空间格局. 冰川冻土, 2013, 35 (2): 83- 489. | |
Chang X X, Zhao W Z, He Z B, et al. Heartwood/sapwood boundary determine and spatial pattern of trunk liquid transfer of Picea crassifolia. Journal of Glaciology and Geocryology, 2013, 35 (2): 83- 489. | |
陈孟涤, 覃鑫浩, 毛炎新, 等. 半干旱区华北落叶松林冠层蒸腾特征及其影响因子. 西北林学院学报, 2022, 37 (4): 10- 17.
doi: 10.3969/j.issn.1001-7461.2022.04.02 |
|
Chen M D, Qin X H, Mao Y X, et al. Transpiration characteristics of Larix principis-rupprechtii plantation and its impact factors in the semi-arid area. Journal of Northwest Forestry University, 2022, 37 (4): 10- 17.
doi: 10.3969/j.issn.1001-7461.2022.04.02 |
|
陈胜楠, 陈左司南, 张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应. 植物生态学报, 2021, 45 (12): 1329- 1340.
doi: 10.17521/cjpe.2021.0198 |
|
Chen S N, Chen Z S N, Zhang Z Q. Canopy stomatal conductance characteristics of Pinus tabulaeformis and Acer truncatum and their responses to environmental factors in the mountain area of Beijing. Chinese Journal of Plant Ecology, 2021, 45 (12): 1329- 1340.
doi: 10.17521/cjpe.2021.0198 |
|
冯永建, 马长明, 王彦辉, 等. 华北落叶松人工林蒸腾特征及其与土壤水势的关系. 中国水土保持科学, 2010, 8 (1): 93- 98.
doi: 10.3969/j.issn.1672-3007.2010.01.017 |
|
Feng Y J, Ma C M, Wang Y H, et al. Relationship between the characteristics of transpiration of Larix principis-rupprechtii forest and soil water potential. Science of Soil and Water Conservation, 2010, 8 (1): 93- 98.
doi: 10.3969/j.issn.1672-3007.2010.01.017 |
|
郭明春. 2005. 六盘山叠叠沟小流域森林植被坡面水文影响的研究. 北京: 中国林业科学研究院. | |
Guo M C. 2005. A study on the hillslope hydrological effect of forest and vegetation in the Diediegou catchment, Liupanshan mountains. Beijing: Chinese Academy of Forestry. [in Chinese] | |
韩新生, 王彦辉, 李振华, 等. 六盘山半干旱区华北落叶松人工林林下日蒸散特征及其影响因子. 林业科学, 2019, 55 (9): 11- 21. | |
Han X S, Wang Y H, Li Z H, et al. Daily forest floor evapotranspiration of Larix principis-rupprechtii plantation and its influencing factors in the semi-arid area of Liupan Mountains. Scientia Silvae Sinicae, 2019, 55 (9): 11- 21. | |
李海光. 2008. 六盘山北侧华北落叶松蒸腾变化规律研究. 呼和浩特: 内蒙古农业大学. | |
Li H G. 2008. Study on the change law of Larix principis-rupprechtii transpiration in the north of Liupanshan mountains. Hohhot: Inner Mongolia Agricultural University. [in Chinese] | |
李 洁, 任启文, 孙杰肖. 张家口崇礼区3种优势树种蒸腾耗水特征研究. 西北林学院学报, 2018, 33 (6): 40- 46.
doi: 10.3969/j.issn.1001-7461.2018.06.07 |
|
Li J, Ren Q W, Sun J X. Water consumption of three dominant tree species at Qingshuihe watershed of Chongli district in Zhangjiakou. Journal of Northwest Forestry University, 2018, 33 (6): 40- 46.
doi: 10.3969/j.issn.1001-7461.2018.06.07 |
|
李振华. 2014. 六盘山叠叠沟典型植被蒸散及水文要素的坡面尺度效应. 北京: 中国林业科学研究院. | |
Li Z H. 2014. The evapotranspiration of typical vegetation and the scale effect of the hydrologic features in slopes of Diediegou watershed of Liupan mountains. Beijing: Chinese of Academy Forestry. [in Chinese] | |
林友兴, 张一平, 赵 玮, 等. 不同林龄橡胶林蒸腾特征的比较. 生态学杂志, 2016, 35 (4): 855- 863. | |
Lin Y X, Zhang Y P, Zhao W, et al. Comparison of transpiration characteristics in different aged rubber plantations. Chinese Journal of Ecology, 2016, 35 (4): 855- 863. | |
刘国彬, 上官周平, 姚文艺, 等. 黄土高原生态工程的生态成效. 中国科学院院刊, 2017, 32 (1): 11- 19. | |
Liu G B, Shangguan Z P, Yao W E, et al. Ecological effectiveness of ecological engineering on the Loess plateau. Bulletin of the Chinese Academy of Sciences, 2017, 32 (1): 11- 19. | |
刘 敏. 2009. 青海黄土高寒区主要生态树种耗水特性研究. 北京: 北京林业大学. | |
Liu M. 2009. Study on water consumption of main ecosystem tree species in high cold region on loess plateaus of Qinghai. Beijing: Beijing Forestry University. [in Chinese] | |
刘泽彬. 2018. 六盘山坡面华北落叶松林水文影响的时空变化及尺度转换. 北京: 中国林业科学研究院. | |
Liu Z B. 2018. Spatio-temporal variations and scale transition of hydrological impact of Larix principis-ruprechtii plantation on a slope of Liupan mountains, China. Beijing: Chinese of Academy Forestry. [in Chinese] | |
罗丹丹, 王传宽, 金 鹰. 植物水分调节对策: 等水与非等水行为. 植物生态学报, 2017, 41 (9): 1020- 1032.
doi: 10.17521/cjpe.2016.0366 |
|
Luo D D, Wang C K, Jin Y. Plant water-regulation strategies: isohydric versus anisohydric behavior. Chinese Journal of Plant Ecology, 2017, 41 (9): 1020- 1032.
doi: 10.17521/cjpe.2016.0366 |
|
莫康乐, 陈立欣, 周 洁, 等. 永定河沿河沙地杨树人工林蒸腾耗水特征及其环境响应. 生态学报, 2014, 34 (20): 5812- 5822. | |
Mo K L, Chen L X, Zhou J, et al. Transpiration responses of a poplar plantation to the environmental conditions on a floodplain in Northern China. Acta Ecologica Sinica, 2014, 34 (20): 5812- 5822. | |
秦颢萍, 刘泽彬, 郭建斌等. 环境和冠层结构对华北落叶松林树干液流的影响. 应用生态学报, 2021, 32 (5): 1681- 1689. | |
Qin H P, Liu Z B, Guo J B. Effects of environment and canopy structure on stem sap flow in a Larix principis-rupprechtii plantation. Chinese Journal of Applied Ecology, 2021, 32 (5): 1681- 1689. | |
王 华, 欧阳志云, 郑 华, 等. 北京绿化树种油松、雪松和刺槐树干液流的空间变异特征. 植物生态学报, 2010, 34 (8): 924- 937.
doi: 10.3773/j.issn.1005-264x.2010.08.005 |
|
Wang H, Ouyang Z H, Zheng H. et al. Characteristics of spatial variations in xylem sap flow in urban greening tree species Pinus tabulaeformis, Cedrus deodara and Robinia pseudoacacia in Beijing, China. Chinese Journal of Plant Ecology, 2010, 34 (8): 924- 937.
doi: 10.3773/j.issn.1005-264x.2010.08.005 |
|
王艳兵. 2016. 六盘山叠叠沟主要植被类型的水文过程及其坡面变化. 北京: 中国林业科学研究院. | |
Wang Y B. 2016. The hydrological processes of typical vegetation and their slope variations at the Diediegou of Liupan Mountains. Beijing: Chinese of Academy Forestry. [in Chinese] | |
王亚蕊, 王彦辉, 于澎涛, 等. 华北落叶松人工林蒸散及产流对叶面积指数变化的响应. 生态学报, 2016, 36 (21): 6928- 6938. | |
Wang Y R, Wang Y H, Yu P T, et al. Simulated responses of evapotranspiration and runoff to changes in the leaf area index of a Larix principis-rupprechtii plantation. Acta Ecologica Sinica, 2016, 36 (21): 6928- 6938. | |
温淑红, 韩新生, 蔡进军, 等. 宁南黄土丘陵区山桃树干液流速率及其与气象因子的关系. 西南农业学报, 2020, 33 (6): 1301- 1308. | |
Wen S H, Han X S, Cai J J, et al. Relationships between sap flow velocity in tree trunks of Amygdalus davidiana and meteorological factors in Loess Hilly regions of Southern Ningxia. Southwest China Journal of Agricultural Sciences, 2020, 33 (6): 1301- 1308. | |
徐小勤, 于澎涛, 王彦辉, 等. 六盘山华北落叶松林的结构随林龄变化及其水文影响. 林业科学研究, 2023, 36 (1): 109- 116.
doi: 10.12403/j.1001-1498.20220218 |
|
Xu X Q, Yu P T, Wang Y H, et al. The variation of stand structure with age and its hydrological effects of larch plantation in Liupan mountains. Forest Research, 2023, 36 (1): 109- 116.
doi: 10.12403/j.1001-1498.20220218 |
|
徐志彬. 2021. 北方三种常见针叶树种蒸腾耗水特征及其环境响应和生理控制. 北京: 北京林业大学. | |
Xu Z B. 2021. Environmental responses and physiological controls of transpiration of three common coniferous tree species in north China. Beijing: Beijing Forestry University. [in Chinese] | |
姚依强, 陈 珂, 王彦辉, 等. 华北落叶松树干液流速率主要影响因子及关系的时间尺度变化. 干旱区资源与环境, 2017, 31 (2): 155- 161. | |
Yao Y Q, Chen K, Wang Y H, et al. Relationships between sap flow velocity of Larix principis-rupprechtii and environmental factors and their variation with time scales. Journal of Arid Land Resources and Environment, 2017, 31 (2): 155- 161. | |
于松平, 刘泽彬, 郭建斌, 等. 六盘山华北落叶松林分蒸腾特征及其影响因素. 南京林业大学学报 (自然科学版), 2021, 45 (1): 131- 140. | |
Yu S P, Liu Z B, Guo J B, et al. Stand transpiration characteristics of Larix principis-rupprechtii plantation and their influencing factors in Liupan mountain. Journal of Nanjing Forestry (Natural Sciences Edition), 2021, 45 (1): 131- 140. | |
张 静, 王 力. 黄土塬区苹果园蒸散与环境因素的关系. 林业科学, 2018, 54 (3): 29- 38. | |
Zhang J, Wang L. The relationship between the evapotranspiration and the environmental factors in the apple orchards in the Loess tableland area. Scientia Silvae Sinicae, 2018, 54 (3): 29- 38. | |
张 俊, 李晓飞, 李建贵, 等. 2013. 干旱荒漠区银白杨树干液流动态. 生态学报, 33(18): 5655-5660. | |
Zhang J, Li X F, Li J G, et al. 2013. Sap flow dynamics of Populus alba L. × P. talassica plantation in arid desert area. Acta Ecologica Sinica, 33(18): 5655-5660. [in Chinese] | |
Allen R G, Pereira, L S, Raes D, et al. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper, 1998, 56, 1- 15. | |
Bernier P Y, Bréda N, Granier A, et al. Validation of a canopy gas exchange model and derivation of a soil water modifier for transpiration for sugar maple (Acer saccharum Marsh) using sap flow density measurements. Forest Ecology and Management, 2002, 163, 185- 196.
doi: 10.1016/S0378-1127(01)00578-3 |
|
Bréda N, Cochard H, Dreyer E, et al. Water transfer in a mature oak stand (Quercus petraea): seasonal evolution and effects of a severe drought. Canadian Journal of Forest Research, 1993, 23 (6): 1136- 1143.
doi: 10.1139/x93-144 |
|
Feng X M, Fu B J, Piao S L, et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 2016, 6 (11): 1019- 1022.
doi: 10.1038/nclimate3092 |
|
Granier A. 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology. 3(4): 309-320. | |
Granier A, Huc R, Colin F. Transpiration and stomatal conductance of two rain forest species growing in plantations (Simarouba amara and Goupia glabra) in French Guyana. Annals of Forest Science, 1992, 49 (1): 17- 24.
doi: 10.1051/forest:19920102 |
|
Granier A, Loustau D, Breda N. A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Annals of Forest Science, 2000, 57 (8): 755- 765.
doi: 10.1051/forest:2000158 |
|
Gutierrez L J, TorNgern P, Oren R, et al. How tree species, tree size, and topographical location influenced tree transpiration in northern boreal forests during the historic 2018 drought. Global Change Biology, 2021, 27 (13): 3066- 3078.
doi: 10.1111/gcb.15601 |
|
Hong L, Guo J B, Liu Z B, et al. Time-lag effect between sap flow and environmental factors of Larix principis-rupprechtii Mayr. Forests, 2019, 10 (11): 971.
doi: 10.3390/f10110971 |
|
Kohnke H, Dreibelbis F R, Davidson J M. 1940. A survey and discussion of lysimeters and a bibliography on their construction and performance. Washington, D. C: USA. U. S. Department of Agriculture, 372. | |
Kstner B, Granier A, Cermak J. Sapflow measurements in forest stands: methods and uncertainties. Annales of Forest Sciences, 1998, 55 (1/2): 13- 27. | |
Lagergren F, Lindroth A. Transpiration response to soil moisture in pine and spruce trees in Sweden. Agricultural and Forest Meteorology, 2002, 112 (2): 67- 85.
doi: 10.1016/S0168-1923(02)00060-6 |
|
Li J M, Yu P T, Wan Y H. Effects of topography and social position on the solar radiation of individual trees on a hillslope in Northwest China. Forests, 2023, 14 (3): 561.
doi: 10.3390/f14030561 |
|
Li Z H, Yu P T, Wang Y H, et al. A model coupling the effects of soil moisture and potential evaporation on the tree transpiration of a semi-arid larch plantation. Ecohydrology, 2017, 10 (1): e1764.
doi: 10.1002/eco.1764 |
|
Liu B B, Yu P T, Zhang X, et al. Transpiration sensitivity to drought in Quercus wutaishansea Mary forests on shady and sunny slopes in the Liupan Mountains, Northwestern China. Forests, 2022, 13 (12): 1999.
doi: 10.3390/f13121999 |
|
Liu Z B, Wang Y H, Tian A, et al. Modeling the response of daily evapotranspiration and its components of a larch plantation to the variation of weather, soil moisture, and canopy leaf area index. Journal of Geophysical Research: Atmospheres, 2018, 123 (14): 7354- 7374.
doi: 10.1029/2018JD028384 |
|
López-Bernal Á, Alcántara E, Testi L, et al. Spatial sap flow and xylem anatomical characteristics in olive trees under different irrigation regimes. Tree Physiology, 2010, 30 (12): 1536- 1544.
doi: 10.1093/treephys/tpq095 |
|
McJannet D L, Wallace J S, Fitch P, et al. Water balance of tropical rainforest canopies in north Queensland, Australia. Hydrological Processes, 2007, 21 (25): 3473- 3484.
doi: 10.1002/hyp.6618 |
|
Moon M, Kim T, Park J, et al. Variation in sap flux density and its effect on stand transpiration estimates of Korean pine stands. Journal of Forest Research, 2014, 20 (1): 85- 93. | |
Orlandini S, Bellesi S, Bindi M. Influence of water deficit stress on leaf area development and transpiration of Sangiovese grapevines grown in pots. American Journal of Enology & Viticulture, 2005, 56 (1): 68- 72. | |
Tian A, Wang Y, Webb A A, et al. Partitioning the causes of spatiotemporal variation in the sunny day sap flux density of a larch plantation on a hillslope in northwest China. Journal of Hydrology, 2019, 571, 503- 515. | |
Ulrich S, Thöni H, Kaupenjohann M. Using a boundary line approach to analyze N2O flux data from agricultural soils. Nutrient Cycling in Agroecosystems, 2000, 57 (2): 119- 129.
doi: 10.1023/A:1009854220769 |
|
Van Bavel C H M, Nakayama F S, Ehrler W L. 1965. Measuring transpiration resistance of leaves. Plant Physiology. 40(3): 535-540. | |
Wang L, Liu Z B, Guo J B, et al. Estimate canopy transpiration in larch plantations via the interactions among reference evapotranspiration, leaf area index, and soil moisture. Forest Ecology and Management, 2021, 481, 118749.
doi: 10.1016/j.foreco.2020.118749 |
|
Wang Y H, Xiong W, Gampe S, et al. A water yield-oriented practical approach for multifunctional forest management and its application in dryland regions of China. Journal of the American Water Resources Association, 2015, 51 (3): 689- 703.
doi: 10.1111/1752-1688.12314 |
|
Yu S P, Guo J B 1, Liu Z B, et al. Assessing the impact of soil moisture on canopy transpiration using a modified Jarvis-Stewart model. Water, 2021, 13 (19): 2720.
doi: 10.3390/w13192720 |
[1] | 黄栋才,郭鑫,王得祥,王韵淑,张欣,霍雪莹. 不同经营方法对秦岭华北落叶松林分生长和林下植被的影响[J]. 林业科学, 2024, 60(8): 57-66. |
[2] | 胡蕾,贾剑波,闫文德,王一帆,吴瑞乔,陈玉. 华北土石山区油松生长季夜间液流分配特征[J]. 林业科学, 2024, 60(4): 91-98. |
[3] | 董琳琳, 张国成, 刘立辉, 计家宝, 白向东, 顾宸瑞, 姜静, 刘桂丰. 白桦四倍体与二倍体杂交的亲本配合力分析[J]. 林业科学, 2023, 59(9): 75-84. |
[4] | 王彦辉,于澎涛,田奥,韩新生,郝佳,刘泽彬,王晓. 黄土高原和六盘山区的林水协调多功能管理[J]. 林业科学, 2023, 59(4): 1-17. |
[5] | 张紫优,王彦辉,田奥,刘泽彬,郭建斌,于澎涛,王晓,于艺鹏. 宁夏六盘山华北落叶松人工林植被碳密度时空特征及其环境响应[J]. 林业科学, 2023, 59(4): 32-45. |
[6] | 刘文浩,王晓,段文标,于澎涛,王彦辉,于艺鹏. 西宁市油松人工林生长季水量平衡特征[J]. 林业科学, 2023, 59(4): 46-56. |
[7] | 李玲雅,邸楠,刘金强,赵小宁,邹松言,付海曼,席本野. 短轮伐毛白杨人工林耗水规律及作物系数曲线构建[J]. 林业科学, 2023, 59(10): 76-88. |
[8] | 罗娜,曲睿婕,李国雷,孟路,韩冷,郭桂凤,马凤原,王佳茜. 短日照和灌溉处理对华北落叶松苗木质量和夏季造林效果的影响[J]. 林业科学, 2023, 59(1): 90-98. |
[9] | 乔英, 马英杰, 辛明亮. 干旱区人工枣林蒸散及植株蒸腾的模型模拟[J]. 林业科学, 2022, 58(7): 51-62. |
[10] | 张兹鹏,王君杰,刘索名,姜立春. 形率对白桦单木材积和生物量预测精度的影响[J]. 林业科学, 2022, 58(5): 31-39. |
[11] | 张树梓,尹建庭,任启文,张树彬,王鑫,李联地,毕君. 冀北山地针阔混交林优势种对邻体物种多样性格局的影响[J]. 林业科学, 2022, 58(4): 32-39. |
[12] | 胡建文,王庆成. 早春树干液流用于白桦营养诊断的可行性[J]. 林业科学, 2022, 58(11): 174-180. |
[13] | 段光爽,郑亚丽,洪亮,宋新宇,符利勇. 基于潜在生产力的华北落叶松纯林和白桦山杨混交林立地质量评价[J]. 林业科学, 2022, 58(10): 1-9. |
[14] | 张晓红,周超凡,张状,冯林艳,王利华,符利勇,谭炳香. 崇礼冬奥核心区华北落叶松人工林结构特征与优化模拟[J]. 林业科学, 2022, 58(10): 79-88. |
[15] | 张晓芳,郭旭展,洪亮,陈涛,符利勇,张会儒. 冬奥核心区华北落叶松和白桦单木冠幅预测模型——组级贝叶斯模型、加性模型和混合效应模型比较[J]. 林业科学, 2022, 58(10): 89-100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||