林业科学 ›› 2023, Vol. 59 ›› Issue (4): 32-45.doi: 10.11707/j.1001-7488.LYKX20230037
张紫优1,2,王彦辉2(),田奥2,3,刘泽彬2,郭建斌1,*,于澎涛2,王晓2,于艺鹏2
收稿日期:
2023-02-01
出版日期:
2023-04-25
发布日期:
2023-07-05
通讯作者:
郭建斌
E-mail:wangyh@caf.ac.cn
基金资助:
Ziyou Zhang1,2,Yanhui Wang2(),Ao Tian2,3,Zebin Liu2,Jianbin Guo1,*,Pengtao Yu2,Xiao Wang2,Yipeng Yu2
Received:
2023-02-01
Online:
2023-04-25
Published:
2023-07-05
Contact:
Jianbin Guo
E-mail:wangyh@caf.ac.cn
摘要:
目的: 调查分析宁夏南部六盘山区华北落叶松人工林乔木层、灌木层和草本层碳密度大小及其时空变化规律,建立考虑立地环境和林分结构等主要因子影响的碳密度模型,为我国西北山区复杂地形条件下人工林碳密度估算和可持续经营提供理论基础和决策工具。方法: 采用样地清查与数学模型相结合的方法确定研究区华北落叶松人工林乔木层和林下灌草层碳密度;应用外包线法确定各植被层碳密度对各主要因子(林龄、林分密度、年均降水量、年均气温和坡向)的响应规律及其函数形式,通过连乘耦合构建反映多因子综合影响的植被碳密度模型,并基于实测数据进行模型率定和检验。结果: 1) 六盘山区华北落叶松人工林植被碳密度平均为46.82 t·hm?2,其中乔木层占94.92%,灌木层和草本层分别占4.76%和0.32%。2) 乔木层碳密度随林龄、林分密度、年均降水量增大先快速增加、超过阈值后缓慢增加并渐趋最大值,相应阈值为林龄30年、林分密度1 500 株·hm?2、年均降水量525 mm;随年均气温增加先增后减,6 ℃时达到峰值;随坡向增大(正北为0o,随向两侧偏离正北方向的角度而增大)呈近线性降低。3) 林下灌草层碳密度随乔木层碳密度增加近线性减少,随年均气温、年均降水量和坡向的变化规律与乔木层相同,相应阈值同样为年均气温6 ℃、年均降水量525 mm。4) 多因子耦合模型可较好估算乔木层和林下灌草层碳密度变化,其R2分别为0.8和0.7。5) 根据模型模拟结果,华北落叶松人工林植被碳密度随海拔升高先增后降,垂直差异较大,最高分布范围在海拔2 200~2 400 m之间;受地形和气候影响表现出一定的水平差异,西高东低、南高北低;阴坡植被碳密度高于阳坡,其中乔木层相差约20%,灌草层相差可达1倍。结论: 宁夏六盘山华北落叶松人工林植被碳密度平均为46.82 t·hm?2,以乔木层为主,受立地环境(年均降水量、年均气温、坡向)和林分结构(林龄、林分密度)的多因子综合影响,林下灌草层碳密度受乔木层生物量影响,应用多因子耦合模型可较好解释并预测其时空变化;合理选择造林立地类型和林分密度有利于维持较好的华北落叶松林植被碳密度和层次组成。
中图分类号:
张紫优,王彦辉,田奥,刘泽彬,郭建斌,于澎涛,王晓,于艺鹏. 宁夏六盘山华北落叶松人工林植被碳密度时空特征及其环境响应[J]. 林业科学, 2023, 59(4): 32-45.
Ziyou Zhang,Yanhui Wang,Ao Tian,Zebin Liu,Jianbin Guo,Pengtao Yu,Xiao Wang,Yipeng Yu. Spatiotemporal Characteristics and Environmental Response of Vegetation Carbon Densities of Larix principis-rupprechtii Plantations in the Liupan Mountains of Ningxia, China[J]. Scientia Silvae Sinicae, 2023, 59(4): 32-45.
表2
植被碳密度多因子耦合模型"
植被层 Vegetation layer | 多因子耦合模型 Multi-factor coupling models | R2 | NSE | |||
拟合 Calibration | 验证 Validation | 拟合 Calibration | 验证 Validation | |||
乔木层 Tree layer | | 0.80 | 0.77 | 0.68 | 0.68 | |
灌草层 Shrub-herb layers | | 0.70 | 0.66 | 0.66 | 0.64 |
表3
六盘山区不同立地类型华北落叶松人工林植被碳密度变化①"
海拔区间 Elevation ranges /m | 坡向 Slope aspect | 植被层 Vegetation layer | 林分密度Stand density/(tree·hm?2) | 最大值 Max. | 最小值 Min. | 平均值 Mean | ||||||||||||||||
500 | 1 000 | 2 000 | 3 000 | |||||||||||||||||||
林龄 Age /a | 林龄 Age /a | 林龄 Age /a | 林龄 Age /a | |||||||||||||||||||
10 | 20 | 30 | 40 | 50 | 10 | 20 | 30 | 40 | 10 | 20 | 30 | 10 | 20 | |||||||||
1 800~ 2 000 | 阴坡 Shady | 乔木层 Tree layer | 9.5 | 13.1 | 20.7 | 36.9 | 71.3 | 16.6 | 22.9 | 36.4 | 64.9 | 19.2 | 26.5 | 42.0 | 19.4 | 26.8 | 71.3 | 9.5 | 30.4 | |||
灌草层 Shrub-herb layer | 7.4 | 7.3 | 7.2 | 7.0 | 6.5 | 6.7 | 6.6 | 6.5 | 6.1 | 5.5 | 5.5 | 5.3 | 5.3 | 5.3 | 7.4 | 5.3 | 6.3 | |||||
合计 Total | 16.8 | 20.4 | 27.9 | 43.9 | 77.8 | 23.3 | 29.6 | 42.8 | 71.0 | 24.8 | 32.0 | 47.3 | 24.8 | 32.1 | 77.8 | 16.8 | 36.8 | |||||
半阴坡 Semi-shady | 乔木层 Tree layer | 7.8 | 10.8 | 17.1 | 30.5 | 59.0 | 13.7 | 19.0 | 30.1 | 53.6 | 15.9 | 21.9 | 34.8 | 16.1 | 22.2 | 59.0 | 7.8 | 25.2 | ||||
灌草层 Shrub-herb layer | 6.1 | 6.0 | 6.0 | 5.8 | 5.5 | 5.5 | 5.5 | 5.4 | 5.1 | 4.6 | 4.5 | 4.4 | 4.4 | 4.4 | 6.1 | 4.4 | 5.2 | |||||
合计 Total | 13.9 | 16.8 | 23.1 | 36.3 | 64.5 | 19.3 | 24.5 | 35.4 | 58.7 | 20.5 | 26.5 | 39.2 | 20.5 | 26.5 | 64.5 | 13.9 | 30.4 | |||||
半阳坡 Semi-sunny | 乔木层 Tree layer | 7.8 | 10.8 | 17.1 | 30.4 | 58.8 | 13.7 | 18.9 | 30.0 | 53.5 | 15.8 | 21.9 | 34.7 | 16.0 | 22.1 | 58.8 | 7.8 | 25.1 | ||||
灌草层 Shrub-herb layer | 4.1 | 4.0 | 4.0 | 3.9 | 3.7 | 3.7 | 3.7 | 3.6 | 3.4 | 3.1 | 3.0 | 3.0 | 3.0 | 2.9 | 4.1 | 2.9 | 3.5 | |||||
合计 Total | 11.9 | 14.8 | 21.1 | 34.3 | 62.5 | 17.4 | 22.6 | 33.6 | 56.9 | 18.9 | 24.9 | 37.6 | 19.0 | 25.0 | 62.5 | 11.9 | 28.6 | |||||
阳坡 Sunny | 乔木层 Tree layer | 7.8 | 10.8 | 17.1 | 30.4 | 58.8 | 13.7 | 18.9 | 30.0 | 53.5 | 15.8 | 21.9 | 34.7 | 16.0 | 22.1 | 58.8 | 7.8 | 25.1 | ||||
灌草层 Shrub-herb layer | 3.3 | 3.3 | 3.3 | 3.2 | 3.0 | 3.0 | 3.0 | 2.9 | 2.8 | 2.5 | 2.5 | 2.4 | 2.4 | 2.4 | 3.3 | 2.4 | 2.9 | |||||
合计 Total | 11.1 | 14.1 | 20.3 | 33.6 | 61.8 | 16.7 | 21.9 | 32.9 | 56.3 | 18.3 | 24.3 | 37.1 | 18.4 | 24.5 | 61.8 | 11.1 | 28.0 | |||||
2 000~ 2 200 | 阴坡 Shady | 乔木层 Tree layer | 12.9 | 17.9 | 28.3 | 50.5 | 97.6 | 22.8 | 31.4 | 49.8 | 88.8 | 26.3 | 36.3 | 57.5 | 26.6 | 36.7 | 97.6 | 12.9 | 41.7 | |||
灌草层 Shrub-herb layer | 9.6 | 9.5 | 9.3 | 8.9 | 8.1 | 8.7 | 8.5 | 8.2 | 7.6 | 7.2 | 7.0 | 6.7 | 6.9 | 6.7 | 9.6 | 6.7 | 8.1 | |||||
合计 Total | 22.5 | 27.4 | 37.6 | 59.4 | 105.7 | 31.4 | 39.9 | 58.0 | 96.3 | 33.5 | 43.3 | 64.3 | 33.5 | 43.4 | 105.7 | 22.5 | 49.7 | |||||
半阴坡 Semi-shady | 乔木层 Tree layer | 10.7 | 14.8 | 23.4 | 41.7 | 80.7 | 18.8 | 26.0 | 41.1 | 73.4 | 21.7 | 30.0 | 47.6 | 22.0 | 30.3 | 80.7 | 10.7 | 34.4 | ||||
灌草层 Shrub-herb layer | 7.9 | 7.8 | 7.7 | 7.5 | 6.9 | 7.2 | 7.1 | 6.9 | 6.4 | 5.9 | 5.8 | 5.6 | 5.7 | 5.6 | 7.9 | 5.6 | 6.7 | |||||
合计 Total | 18.6 | 22.6 | 31.1 | 49.2 | 87.6 | 26.0 | 33.0 | 48.0 | 79.8 | 27.7 | 35.9 | 53.2 | 27.7 | 35.9 | 87.6 | 18.6 | 41.2 | |||||
半阳坡 Semi-sunny | 乔木层 Tree layer | 10.7 | 14.7 | 23.3 | 41.6 | 80.5 | 18.8 | 25.9 | 41.0 | 73.2 | 21.7 | 29.9 | 47.4 | 21.9 | 30.3 | 80.5 | 10.7 | 34.4 | ||||
灌草层 Shrub-herb layer | 5.3 | 5.3 | 5.2 | 5.0 | 4.6 | 4.8 | 4.7 | 4.6 | 4.3 | 4.0 | 3.9 | 3.8 | 3.8 | 3.8 | 5.3 | 3.8 | 4.5 | |||||
合计 Total | 16.0 | 20.0 | 28.5 | 46.6 | 85.1 | 23.6 | 30.6 | 45.6 | 77.5 | 25.7 | 33.8 | 51.2 | 25.7 | 34.0 | 85.1 | 16.0 | 38.9 | |||||
阳坡 Sunny | 乔木层 Tree layer | 10.7 | 14.7 | 23.3 | 41.6 | 80.5 | 18.8 | 25.9 | 41.0 | 73.2 | 21.7 | 29.9 | 47.4 | 21.9 | 30.3 | 80.5 | 10.7 | 34.4 | ||||
灌草层 Shrub-herb layer | 4.3 | 4.3 | 4.2 | 4.1 | 3.7 | 3.9 | 3.9 | 3.7 | 3.5 | 3.2 | 3.2 | 3.1 | 3.1 | 3.1 | 4.3 | 3.1 | 3.7 | |||||
合计 Total | 15.0 | 19.0 | 27.6 | 45.7 | 84.2 | 22.7 | 29.8 | 44.8 | 76.7 | 24.9 | 33.1 | 50.5 | 25.0 | 33.3 | 84.2 | 15.0 | 38.0 | |||||
2 200~ 2 400 | 阴坡 Shady | 乔木层 Tree layer | 14.6 | 20.1 | 31.9 | 56.8 | 109.8 | 25.6 | 35.3 | 56.0 | 99.9 | 29.6 | 40.9 | 64.8 | 29.9 | 41.3 | 109.8 | 14.6 | 46.9 | |||
灌草层 Shrub-herb layer | 10.4 | 10.3 | 10.0 | 9.6 | 8.5 | 9.4 | 9.2 | 8.8 | 8.0 | 7.7 | 7.6 | 7.2 | 7.4 | 7.3 | 10.4 | 7.2 | 8.7 | |||||
合计 Total | 24.9 | 30.4 | 41.9 | 66.4 | 118.4 | 35.0 | 44.5 | 64.8 | 107.9 | 37.3 | 48.4 | 71.9 | 37.3 | 48.6 | 118.4 | 24.9 | 55.6 | |||||
半阴坡 Semi-shady | 乔木层 Tree layer | 12.0 | 16.6 | 26.3 | 47.0 | 90.8 | 21.2 | 29.2 | 46.3 | 82.6 | 24.5 | 33.8 | 53.5 | 24.7 | 34.1 | 90.8 | 12.0 | 38.8 | ||||
灌草层 Shrub-herb layer | 8.6 | 8.5 | 8.3 | 8.0 | 7.3 | 7.8 | 7.6 | 7.4 | 6.9 | 6.4 | 6.3 | 6.0 | 6.2 | 6.0 | 8.6 | 6.0 | 7.2 | |||||
合计 Total | 20.6 | 25.1 | 34.7 | 55.0 | 98.1 | 28.9 | 36.9 | 53.7 | 89.4 | 30.9 | 40.1 | 59.6 | 30.9 | 40.2 | 98.1 | 20.6 | 46.0 | |||||
半阳坡 Semi-sunny | 乔木层 Tree layer | 12.0 | 16.6 | 26.3 | 46.9 | 90.6 | 21.1 | 29.1 | 46.2 | 82.4 | 24.4 | 33.7 | 53.4 | 24.7 | 34.1 | 90.6 | 12.0 | 38.7 | ||||
灌草层 Shrub-herb layer | 5.7 | 5.7 | 5.6 | 5.4 | 4.9 | 5.2 | 5.1 | 4.9 | 4.6 | 4.3 | 4.2 | 4.0 | 4.1 | 4.0 | 5.7 | 4.0 | 4.8 | |||||
合计 Total | 17.7 | 22.3 | 31.9 | 52.2 | 95.5 | 26.3 | 34.3 | 51.1 | 87.0 | 28.7 | 37.9 | 57.4 | 28.8 | 38.1 | 95.5 | 17.7 | 43.5 | |||||
阳坡 Sunny | 乔木层 Tree layer | 12.0 | 16.6 | 26.3 | 46.9 | 90.6 | 21.1 | 29.1 | 46.2 | 82.4 | 24.4 | 33.7 | 53.4 | 24.7 | 34.1 | 90.6 | 12.0 | 38.7 | ||||
灌草层 Shrub-herb layer | 4.7 | 4.6 | 4.5 | 4.4 | 4.0 | 4.2 | 4.2 | 4.0 | 3.7 | 3.5 | 3.4 | 3.3 | 3.4 | 3.3 | 4.7 | 3.3 | 3.9 | |||||
合计 Total | 16.7 | 21.2 | 30.8 | 51.2 | 94.6 | 25.3 | 33.3 | 50.2 | 86.1 | 27.9 | 37.1 | 56.7 | 28.0 | 37.3 | 94.6 | 16.7 | 42.6 | |||||
2 400~ 2 600 | 阴坡 Shady | 乔木层 Tree layer | 13.8 | 19.0 | 30.2 | 53.8 | 104.1 | 24.3 | 33.5 | 53.1 | 94.6 | 28.0 | 38.7 | 61.3 | 28.4 | 39.1 | 104.1 | 13.8 | 44.4 | |||
灌草层 Shrub-herb layer | 9.1 | 9.0 | 8.8 | 8.4 | 7.5 | 8.2 | 8.1 | 7.7 | 7.1 | 6.8 | 6.6 | 6.3 | 6.5 | 6.4 | 9.1 | 6.3 | 7.6 | |||||
合计 Total | 22.9 | 28.0 | 39.0 | 62.2 | 111.6 | 32.5 | 41.5 | 60.8 | 101.7 | 34.8 | 45.3 | 67.7 | 34.8 | 45.5 | 111.6 | 22.9 | 52.0 | |||||
半阴坡 Semi-shady | 乔木层 Tree layer | 11.4 | 15.8 | 25.0 | 44.5 | 86.0 | 20.1 | 27.7 | 43.9 | 78.3 | 23.2 | 32.0 | 50.7 | 23.4 | 32.3 | 86.0 | 11.4 | 36.7 | ||||
灌木层 Shrub-herb layer | 7.5 | 7.4 | 7.3 | 7.0 | 6.4 | 6.8 | 6.7 | 6.5 | 6.0 | 5.6 | 5.5 | 5.3 | 5.4 | 5.3 | 7.5 | 5.3 | 6.3 | |||||
合计 Total | 18.9 | 23.2 | 32.3 | 51.5 | 92.5 | 26.8 | 34.4 | 50.4 | 84.3 | 28.8 | 37.5 | 56.0 | 28.8 | 37.6 | 92.5 | 18.9 | 43.1 | |||||
半阳坡 Semi-sunny | 乔木层 Tree layer | 11.4 | 15.7 | 24.9 | 44.4 | 85.8 | 20.0 | 27.6 | 43.8 | 78.1 | 23.1 | 31.9 | 50.6 | 23.4 | 32.3 | 85.8 | 11.4 | 36.6 | ||||
灌草层 Shrub-herb layer | 5.0 | 5.0 | 4.9 | 4.7 | 4.3 | 4.5 | 4.5 | 4.3 | 4.0 | 3.7 | 3.7 | 3.6 | 3.6 | 3.5 | 5.0 | 3.5 | 4.2 | |||||
合计 Total | 16.4 | 20.7 | 29.8 | 49.1 | 90.1 | 24.6 | 32.1 | 48.1 | 82.1 | 26.9 | 35.6 | 54.1 | 27.0 | 35.8 | 90.1 | 16.4 | 40.9 | |||||
阳坡 Sunny | 乔木层 Tree layer | 11.4 | 15.7 | 24.9 | 44.4 | 85.8 | 20.0 | 27.6 | 43.8 | 78.1 | 23.1 | 31.9 | 50.6 | 23.4 | 32.3 | 85.8 | 11.4 | 36.6 | ||||
灌草层 Shrub-herb layer | 4.1 | 4.0 | 4.0 | 3.8 | 3.5 | 3.7 | 3.6 | 3.5 | 3.3 | 3.1 | 3.0 | 2.9 | 2.9 | 2.9 | 4.1 | 2.9 | 3.5 | |||||
合计 Total | 15.5 | 19.8 | 28.9 | 48.2 | 89.3 | 23.7 | 31.3 | 47.3 | 81.3 | 26.2 | 34.9 | 53.5 | 26.3 | 35.1 | 89.3 | 15.5 | 40.1 | |||||
2 600~ 2 800 | 阴坡 Shady | 乔木层 Tree layer | 10.3 | 14.3 | 22.6 | 40.4 | 78.0 | 18.2 | 25.1 | 39.8 | 71.0 | 21.0 | 29.0 | 46.0 | 21.3 | 29.3 | 78.0 | 10.3 | 33.3 | |||
灌草层 Shrub-herb layer | 4.9 | 4.9 | 4.8 | 4.7 | 4.3 | 4.5 | 4.4 | 4.3 | 4.0 | 3.7 | 3.6 | 3.5 | 3.6 | 3.5 | 4.9 | 3.5 | 4.2 | |||||
合计 Total | 15.3 | 19.2 | 27.5 | 45.0 | 82.3 | 22.7 | 29.5 | 44.1 | 75.0 | 24.7 | 32.7 | 49.5 | 24.8 | 32.8 | 82.3 | 15.3 | 37.5 | |||||
半阴坡 Semi-shady | 乔木层 Tree layer | 8.6 | 11.8 | 18.7 | 33.4 | 64.5 | 15.0 | 20.8 | 32.9 | 58.7 | 17.4 | 24.0 | 38.0 | 17.6 | 24.3 | 64.5 | 8.6 | 27.6 | ||||
灌草层 Shrub-herb layer | 4.1 | 4.0 | 4.0 | 3.9 | 3.6 | 3.7 | 3.7 | 3.6 | 3.4 | 3.1 | 3.0 | 2.9 | 2.9 | 2.9 | 4.1 | 2.9 | 3.5 | |||||
合计 Total | 12.6 | 15.9 | 22.7 | 37.3 | 68.2 | 18.7 | 24.4 | 36.5 | 62.1 | 20.5 | 27.0 | 41.0 | 20.5 | 27.2 | 68.2 | 12.6 | 31.0 | |||||
半阳坡 Semi-sunny | 乔木层 Tree layer | 8.5 | 11.8 | 18.7 | 33.3 | 64.3 | 15.0 | 20.7 | 32.8 | 58.5 | 17.3 | 23.9 | 37.9 | 17.5 | 24.2 | 64.3 | 8.5 | 27.5 | ||||
灌草层 Shrub-herb layer | 2.7 | 2.7 | 2.6 | 2.6 | 2.4 | 2.5 | 2.5 | 2.4 | 2.3 | 2.0 | 2.0 | 2.0 | 2.0 | 1.9 | 2.7 | 1.9 | 2.3 | |||||
合计 Total | 11.3 | 14.5 | 21.3 | 35.9 | 66.8 | 17.5 | 23.2 | 35.2 | 60.8 | 19.4 | 26.0 | 39.9 | 19.5 | 26.1 | 66.8 | 11.3 | 29.8 | |||||
阳坡 Sunny | 乔木层 Tree layer | 8.5 | 11.8 | 18.7 | 33.3 | 64.3 | 15.0 | 20.7 | 32.8 | 58.5 | 17.3 | 23.9 | 37.9 | 17.5 | 24.2 | 64.3 | 8.5 | 27.5 | ||||
灌木层 Shrub-herb layer | 2.2 | 2.2 | 2.2 | 2.1 | 2.0 | 2.0 | 2.0 | 1.9 | 1.9 | 1.7 | 1.6 | 1.6 | 1.6 | 1.6 | 2.2 | 1.6 | 1.9 | |||||
合计 Total | 10.7 | 14.0 | 20.8 | 35.4 | 66.3 | 17.0 | 22.7 | 34.8 | 60.4 | 19.0 | 25.6 | 39.5 | 19.1 | 25.8 | 66.3 | 10.7 | 29.4 | |||||
最大值 Max. | 乔木层 Tree layer | 14.6 | 20.1 | 31.9 | 56.8 | 109.8 | 25.6 | 35.3 | 56.0 | 99.9 | 29.6 | 40.9 | 64.8 | 29.9 | 41.3 | 109.8 | 14.6 | 46.9 | ||||
灌草层 Shrub-herb layer | 10.4 | 10.3 | 10.0 | 9.6 | 8.5 | 9.4 | 9.2 | 8.8 | 8.0 | 7.7 | 7.6 | 7.2 | 7.4 | 7.3 | 10.4 | 7.2 | 8.7 | |||||
合计 Total | 24.9 | 30.4 | 41.9 | 66.4 | 118.4 | 35.0 | 44.5 | 64.8 | 107.9 | 37.3 | 48.4 | 71.9 | 37.3 | 48.6 | 118.4 | 24.9 | 55.6 | |||||
最小值 Min. | 乔木层 Tree layer | 7.8 | 10.8 | 12.3 | 30.4 | 58.8 | 13.7 | 18.9 | 30 | 53.5 | 15.8 | 21.9 | 34.7 | 16 | 22.1 | 58.8 | 7.8 | 24.8 | ||||
灌草层 Shrub-herb layer | 2.2 | 2.2 | 2.2 | 2.1 | 2.0 | 2.0 | 2.0 | 1.9 | 1.9 | 1.7 | 1.6 | 1.6 | 1.6 | 1.6 | 2.2 | 1.6 | 1.9 | |||||
合计 Total | 10.7 | 14.0 | 20.3 | 33.6 | 61.8 | 16.7 | 21.9 | 32.9 | 56.3 | 18.3 | 24.3 | 37.1 | 18.4 | 24.5 | 61.8 | 10.7 | 27.9 | |||||
平均值 Mean | 乔木层 Tree layer | 10.6 | 14.7 | 22.1 | 41.4 | 80.1 | 18.7 | 25.8 | 40.9 | 72.9 | 21.6 | 29.8 | 47.2 | 21.8 | 30.1 | 80.1 | 10.6 | 34.1 | ||||
灌草层 Shrub-herb layer | 5.9 | 5.8 | 5.7 | 5.5 | 5.0 | 5.3 | 5.2 | 5.1 | 4.7 | 4.4 | 4.3 | 4.1 | 4.2 | 4.1 | 5.9 | 4.1 | 5.0 | |||||
合计 Total | 16.5 | 20.5 | 28.9 | 46.9 | 85.1 | 24.0 | 31.0 | 45.9 | 77.6 | 26.0 | 34.1 | 51.4 | 26.0 | 34.2 | 85.1 | 16.5 | 39.1 |
代林利, 周丽丽, 伍丽华, 等. 不同林分密度杉木林生态系统碳密度及其垂直空间分配特征. 生态学报, 2022, 42 (2): 710- 719. | |
Dai L L, Zhou L L, Wu L H. et al. Carbon density and vertical spatial distribution characteristics of Cunninghamia lanceolata forest ecosystem with different stand density . Acta Ecologica Sinica, 2022, 42 (2): 710- 719. | |
高孝威, 苏 和, 白 艳, 等. 不同林龄华北落叶松人工林林下植被与土壤理化特性变化特征. 内蒙古林业科技, 2021, 47 (2): 10- 14.
doi: 10.3969/j.issn.1007-4066.2021.02.003 |
|
Gao X W, Su H, Bai Y, et al. Variation characteristics of understory vegetation and soil physicochemical property of different forest-aged Larix principis-rupprechtii plantation . Journal of Inner Mongolia Forestry Science and Technology, 2021, 47 (2): 10- 14.
doi: 10.3969/j.issn.1007-4066.2021.02.003 |
|
国家林业和草原局. 2019. 中国森林资源报告(2014—2018). 北京: 中国林业出版社. | |
National Forestry and Grassland Administration. 2019. China forest resources report. Beijing: China Forestry Publishing House.[in Chinese] | |
韩新生. 2020. 六盘山半干旱区三种典型植被的结构变化及其多功能影响. 北京: 中国林业科学研究院. | |
Han X S. 2020. The structure variation and multifunctional effects of three typical vegetations in the semi-arid area of Liupan Mountains. Beijing: Chinese Academy of Forestry. [in Chinese] | |
郝 佳. 2012. 宁夏六盘山华北落叶松人工林密度对多功能的影响. 北京: 中国林业科学研究院. | |
Hao J. 2012. The influence of stand density of Larix principis-rupprechtii management on the multiple functions in the Liupan Mountains of Ningxia China. Beijing: Chinese Academy of Forestry. [in Chinese] | |
胡忠宇, 苏建兰, 龙 勤, 等. 云南省天然林碳储量和碳密度动态变化探析. 林业资源管理, 2022, (4): 45- 53. | |
Hu Z Y, Su J L, Long Q, et al. Analysis on the changing tendency of carbon sequestration and carbon density of natural forests in Yunnan Province. Forest Resource Management, 2022, (4): 45- 53. | |
雷丕锋, 项文化, 田大伦, 等. 樟树人工林生态系统碳素贮量与分布研究. 生态学杂志, 2004, 23 (4): 25- 30.
doi: 10.3321/j.issn:1000-4890.2004.04.006 |
|
Lei P F, Xiang W H, Tian D L. et al. Carbon storage and distribution in Cinnamomum camphora plantation . Chinese Journal of Ecology, 2004, 23 (4): 25- 30.
doi: 10.3321/j.issn:1000-4890.2004.04.006 |
|
雷相东, 陆元昌, 张会儒, 等. 抚育间伐对落叶松云冷杉混交林的影响. 林业科学, 2005, 41 (4): 78- 85.
doi: 10.3321/j.issn:1001-7488.2005.04.014 |
|
Lei X D, Lu Y C, Zhang H R, et al. Effects of thinning on mixed stands of Larix olgensis, Abies nephrolepis and Picea Jazoensis . Scientia Silvae Sinicae, 2005, 41 (4): 78- 85.
doi: 10.3321/j.issn:1001-7488.2005.04.014 |
|
李海奎. 碳中和愿景下森林碳汇评估方法和固碳潜力预估研究进展. 中国地质调查, 2021, 8 (4): 79- 86.
doi: 10.19388/j.zgdzdc.2021.04.08 |
|
Li H K. Carbon advance of forest carbon sink assessment methods and carbon sequestration potential estimation under carbon neutral vision. Geological Survey of China, 2021, 8 (4): 79- 86.
doi: 10.19388/j.zgdzdc.2021.04.08 |
|
李海涛, 王姗娜, 高鲁鹏, 等. 赣中亚热带森林植被碳储量. 生态学报, 2007, 27 (2): 693- 704.
doi: 10.3321/j.issn:1000-0933.2007.02.034 |
|
Li H T, Wang S N, Gao L P, et al. The carbon storage of the subtropical forest vegetation in central Jiangxi Province. Acta Ecologica Sinica, 2007, 27 (2): 693- 704.
doi: 10.3321/j.issn:1000-0933.2007.02.034 |
|
李怀珠. 论宁夏六盘山地区针阔混交水源涵养林工程建设现状及发展规划. 宁夏农林科技, 1999, (3): 23- 25. | |
Li H Z. On the current situation and development plan of mixed needle-broad water containment forest project construction in Liupan Mountain area of Ningxia. Ningxia Journal of Agriculture and Forest Science Technology, 1999, (3): 23- 25. | |
刘 波. 2021. 宁夏不同气候区森林土壤有机碳分布特征及其影响因素. 银川: 宁夏大学. | |
Liu B. 2021. Distribution characteristics of forest soil organic carbon and its influencing factors in different climate zones in Ninaxia. Yinchuan: Ningxia University. [in Chinese] | |
刘 恩, 王 晖, 刘世荣. 南亚热带不同林龄红锥人工林碳贮量与碳固定特征. 应用生态学报, 2012, 23 (2): 335- 340.
doi: 10.13287/j.1001-9332.2012.0041 |
|
Liu E, Wang H, Liu S R. Characteristics of carbon storage and sequestration in different age beech (Castanopsis hystrix) plantations in south subtropical area of China . Chinese Journal of Applied Ecology, 2012, 23 (2): 335- 340.
doi: 10.13287/j.1001-9332.2012.0041 |
|
刘腾艳, 毛方杰, 李雪建, 等. 浙江省竹林地上碳储量的时空动态模拟及影响因素. 应用生态学报, 2019, 30 (5): 1743- 1753.
doi: 10.13287/j.1001-9332.201905.035 |
|
Liu T Y, Mao F J, Li X J, et al. Spatiotemporal dynamic simulation on aboveground carbon storage of bamboo forest and its influence factors in Zhejiang Province, China. Chinese Journal of Applied Ecology, 2019, 30 (5): 1743- 1753.
doi: 10.13287/j.1001-9332.201905.035 |
|
刘延惠, 王彦辉, 于澎涛, 等. 六盘山主要植被类型的生物量及其分配. 林业科学研究, 2011, 24 (4): 443- 452.
doi: 10.13275/j.cnki.lykxyj.2011.04.020 |
|
Liu Y H, Wang Y H, Yu P T, et al. Biomass and its allocation of the main vegetation types in Liupan Mountains. Forest Research, 2011, 24 (4): 443- 452.
doi: 10.13275/j.cnki.lykxyj.2011.04.020 |
|
罗云建, 张小全, 王效科, 等. 森林生物量的估算方法及其研究进展. 林业科学, 2009, 45 (8): 129- 134.
doi: 10.3321/j.issn:1001-7488.2009.08.023 |
|
Luo Y J, Zhang X Q, Wang X K, et al. Forest biomass estimation methods and their prospects. Scientia Silvae Sinicae, 2009, 45 (8): 129- 134.
doi: 10.3321/j.issn:1001-7488.2009.08.023 |
|
潘 帅, 于澎涛, 王彦辉, 等. 六盘山森林植被碳密度空间分布特征及其成因. 生态学报, 2014, 34 (22): 6666- 6677. | |
Pan S, Yu P T, Wang Y H, et al. Spatial distribution of carbon density for forest vegetation and the influencing factors in Liupan Mountains of Ningxia, NW China. Acta Ecologica Sinica, 2014, 34 (22): 6666- 6677. | |
曲潇琳, 龙怀玉, 曹祥会, 等. 宁夏山地土壤的发育规律及系统分类研究. 土壤学报, 2019, 56 (1): 65- 77.
doi: 10.11766/trxb201802070053 |
|
Qu X L, Long H Y, Cao X H, et al. Development rules and taxonomy of the soil in Helan and Liupan Mountains of Ningxia Province. Acta Pedologica Sinica, 2019, 56 (1): 65- 77.
doi: 10.11766/trxb201802070053 |
|
任旭明. 2020. 关帝山不同海拔和坡向华北落叶松径向生长与气象因子关系研究. 太谷: 山西农业大学. | |
Ren X M. 2020. Difference study on the relationship between the radial growth of Larix principis-tupprechitt and meteorological factors at different altitudes and slopes in Guandishan. Taigu: Shanxi Agricultural University. [in Chinese] | |
盛炜彤. 不同密度杉木人工林林下植被发育与演替的定位研究. 林业科学研究, 2001, 14 (5): 463- 471.
doi: 10.3321/j.issn:1001-1498.2001.05.001 |
|
Sheng W T. A long-term study on development and succession of undergrowth vegetations in Chinese fir (Cunninghamia lanceolata) plantations with different density . Forest Research, 2001, 14 (5): 463- 471.
doi: 10.3321/j.issn:1001-1498.2001.05.001 |
|
史晓亮, 王馨爽. 黄土高原草地覆盖度时空变化及其对气候变化的响应. 水土保持研究, 2018, 25 (4): 189- 194.
doi: 10.13869/j.cnki.rswc.2018.04.028 |
|
Shi X L, Wang X S. Spatial and temporal variation of vegetation coverage and its response to climate change in the Loess Plateau. Research of Soil and Water Conservation, 2018, 25 (4): 189- 194.
doi: 10.13869/j.cnki.rswc.2018.04.028 |
|
田 奥. 2019. 六盘山半湿润区华北落叶松人工林的多种功能时空变化与优化管理. 北京: 中国林业科学研究院. | |
Tian A. 2019. The spatio-temporal variation and optimal management of the multiple functions of larch plantation in the semi-humid Liupan Mountains of Northwest China. Beijing: Chinese Academy of Forestry. [in Chinese] | |
王 娟, 陈云明, 曹 扬, 等. 2012. 子午岭辽东栎林不同组分碳含量与碳储量. 生态学杂志, 31(12): 3058-3063. | |
Wang J, Chen Y M, Cao Y, et al. 2012. Carbon concentration and carbon storage in different components of natural Quercus wutaishanica forest in Ziwuling of Loess Plateau, Northwest China. Chinese Journal of Ecology. 31(12): 3058-3063. [in Chinese] | |
王媚臻, 毕浩杰, 金 锁, 等. 林分密度对云顶山柏木人工林林下物种多样性和土壤理化性质的影响. 生态学报, 2019, 39 (3): 981- 988. | |
Wang M Z, Bi H J, Jin S, et al. Effects of stand density on understory species diversity and soil physicochemical properties of a Cupressus funebris plantation in Yunding Mountain . Acta Ecologica Sinica, 2019, 39 (3): 981- 988. | |
吴昕蕾, 范云飞, 康德奎, 等. 河西走廊植被水碳通量对气候变化和人类活动的响应. 中国农业大学学报, 2022, 27 (10): 212- 225.
doi: 10.11841/j.issn.1007-4333.2022.10.19 |
|
Wu X L, Fan Y F, Kang D K, et al. Responses of vegetation water and carbon fluxes to climate change and human activities in Hexi Corridor. Journal of China Agricultural University, 2022, 27 (10): 212- 225.
doi: 10.11841/j.issn.1007-4333.2022.10.19 |
|
许小明, 张晓萍, 何 亮, 等. 黄土丘陵区不同恢复植被类型的固碳特征. 环境科学, 2022, 43 (11): 5263- 5273.
doi: 10.13227/j.hjkx.202112174 |
|
Xu X M, Zhang X P, He L, et al. Carbon sequestration characteristics of different restored vegetation types in Loess Hilly Region. Environmental Science, 2022, 43 (11): 5263- 5273.
doi: 10.13227/j.hjkx.202112174 |
|
杨洪晓, 吴 波, 张金屯, 等. 森林生态系统的固碳功能和碳储量研究进展. 北京师范大学学报:自然科学版, 2005, 41 (2): 172- 177. | |
Yang H X, W B, Zhang J T, et al. Progress of research into carbon fixation and storage of forest ecosystems. Journal of Beijing Normal University (Natural Science), 2005, 41 (2): 172- 177. | |
杨 昆, 管东生. 林下植被的生物量分布特征及其作用. 生态学杂志, 2006, 25 (10): 1252- 1256.
doi: 10.3321/j.issn:1000-4890.2006.10.019 |
|
Yang K., Guan D S. Biomass distribution and its functioning of forest understory vegetation. Chinese Journal of Ecology, 2006, 25 (10): 1252- 1256.
doi: 10.3321/j.issn:1000-4890.2006.10.019 |
|
张全智, 王传宽. 6种温带森林碳密度与碳分配. 中国科学(生命科学), 2010, 40 (7): 621- 631.
doi: 10.1360/zc2010-40-7-621 |
|
Zhang Q Z, Wang C K. Carbon density and distribution of six Chinese temperate forests. Scientia Sinica (Vitae), 2010, 40 (7): 621- 631.
doi: 10.1360/zc2010-40-7-621 |
|
张佑铭, 郎梦凡, 刘梦云, 等. 土地利用转变与海拔高度协同作用黄土高原植被固碳变化特征. 生态学报, 2022, 42 (10): 3897- 3908. | |
Zhang Y M, Lang M F, Liu M Y, et al. Vegetation carbon sequestration in the Loess Plateau under the synergistic effects of land cover change and elevations. Acta Ecologica Sinica, 2022, 42 (10): 3897- 3908. | |
赵 芳. 2015. 飞播马尾松林林下植被特征及其影响因子研究. 南昌: 江西农业大学. | |
Zhao F. 2015. Research on understory vegetation characteristics and its influencing factors in aerially-seeded Pinus massoniana plantations. Nanchang: Jiangxi Forestry University. [in Chinese] | |
Ahmad B, Wang Y H, Hao J, et al. Optimizing stand structure for trade-offs between overstory timber production and understory plant diversity: a case study of a larch plantation in northwest China. Land Degradation and Development, 2018, 29 (9): 2998- 3008.
doi: 10.1002/ldr.3070 |
|
Ahmad B, Wang Y H, Hao J, et al. Optimizing stand structure for tradeoffs between overstory and understory vegetation biomass in a larch plantation of Liupan Mountains, Northwest China. Forest Ecology and Management, 2019, 443, 43- 50.
doi: 10.1016/j.foreco.2019.04.001 |
|
Bret D, Danjon F. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). Forest Ecology and Management, 2006, 222 (1/3): 279- 295. | |
Chiang J M, McEwan R W, Yaussy D A, et al. The effects of prescribed fire and silvicultural thinning on the aboveground carbon stocks and net primary production of overstory trees in an oak-hickory ecosystem in southern Ohio. Forest Ecology and Management, 2008, 255 (5/6): 1584- 1594.
doi: 10.1016/j.foreco.2007.11.016 |
|
Curzon M T, Baker S C, Kern C C, et al. Influence of mature overstory trees on adjacent 12-year regeneration and the woody understory: aggregated retention versus intact forest. Forests, 2017, 8 (2): 31.
doi: 10.3390/f8020031 |
|
Fang J Y, Chen A P. Dynamic forest biomass carbon pools in China and their significance. Acta Botanica Sinica, 2001, 43 (9): 967- 973. | |
Fang J Y, Yu G R, Liu L L, et al. Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences, 2018, 115 (16): 4015- 4020.
doi: 10.1073/pnas.1700304115 |
|
Gadow K V, Hui G. 1999. Modelling forest development. Forestry Sciences. 57: 1146-1158. | |
Grace J. Understanding and managing the global carbon cycle. Journal of Ecology, 2004, 92 (2): 189- 202.
doi: 10.1111/j.0022-0477.2004.00874.x |
|
Houghton R A. 2003. Why are estimates of the terrestrial carbon balance so different? Global Change Biology, 9(4): 500-509. | |
Hu H, Wang S, Guo Z, et al. The stage-classified matrix models project a significant increase in biomass carbon stocks in China’s forests between 2005 and 2050. Scientific Reports, 2015, 5, 11203.
doi: 10.1038/srep11203 |
|
Lee J, Yoon T K, Han S, et al. Estimating the carbon dynamics of South Korean forests from 1954 to 2012. Biogeosciences, 2014, 11 (17): 4637- 4650.
doi: 10.5194/bg-11-4637-2014 |
|
Matsushita M, Takata K, Hitsuma G, et al. A novel growth model evaluating age-size effect on long-term trends in tree growth. Functional Ecology, 2015, 29, 1250- 1259. | |
Muukkonen P, Heiskanen J. Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories. Remote Sensing of Environment, 2007, 107 (4): 617- 624.
doi: 10.1016/j.rse.2006.10.011 |
|
Paul K I, Polglase P J, Nyakuengama J G, et al. Change in soil carbon following afforestation. Forest Ecology and Management, 2002, 168, 241- 257. | |
Peek J M, Korol J J, Gay D, et al. Overstory–understory biomass changes over a 35-year period in southcentral Oregon. Forest Ecology and Management, 2001, 150 (3): 267- 277.
doi: 10.1016/S0378-1127(00)00585-5 |
|
Tang X, Zhao X, Bai Y, et al. Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey. Proceedings of the National Academy of Sciences, 2018, 115 (16): 4021- 4026.
doi: 10.1073/pnas.1700291115 |
|
Tian A, Wang Y, Webb A A, et al. 2022. Modelling the response of larch growth to age, density, and elevation and the implications for multifunctional management in northwest China. Journal of Forestry Research. doi: 10.1007/s11676-022-01539-5. | |
Wang Y H, Xiong W, Gampe S, et al. A water yield‐oriented practical approach for multifunctional forest management and its application in dryland regions of China. Journal of the American Water Resources Association, 2015, 51 (3): 689- 703.
doi: 10.1111/1752-1688.12314 |
[1] | 王彦辉,于澎涛,田奥,韩新生,郝佳,刘泽彬,王晓. 黄土高原和六盘山区的林水协调多功能管理[J]. 林业科学, 2023, 59(4): 1-17. |
[2] | 李平平,王彦辉,段文标,王依瑞,于澎涛,甄理,李志鑫,尚会军,史再军,于艺鹏. 黄土高原刺槐人工林立地指数变化及评价[J]. 林业科学, 2023, 59(4): 18-31. |
[3] | 付晓,张煜星,王雪军. 2060年前我国森林生物量碳库及碳汇潜力预测[J]. 林业科学, 2022, 58(2): 32-41. |
[4] | 张晓红,周超凡,张状,冯林艳,王利华,符利勇,谭炳香. 崇礼冬奥核心区华北落叶松人工林结构特征与优化模拟[J]. 林业科学, 2022, 58(10): 79-88. |
[5] | 王振鹏,陈金磊,李尚益,张仕吉,方晰. 湘中丘陵区不同恢复阶段森林生态系统的碳储量特征[J]. 林业科学, 2020, 56(5): 19-28. |
[6] | 韩新生, 王彦辉, 李振华, 王艳兵, 于澎涛, 熊伟. 六盘山半干旱区华北落叶松人工林林下日蒸散特征及其影响因子[J]. 林业科学, 2019, 55(9): 11-21. |
[7] | 王志康, 许晨阳, 耿增超, 刘莉丽, 侯琳, 杜璨, 王强, 吕东唯. 基于扣除根系体积新方法的秦岭辛家山2种林分土壤有机碳密度特征[J]. 林业科学, 2019, 55(6): 133-141. |
[8] | 卫玮, 党坤良. 秦岭南坡林地土壤有机碳密度空间分异特征[J]. 林业科学, 2019, 55(5): 11-19. |
[9] | 扈梦梅,田龙,吴亚楠,杨晋宇,吕小翠,黄选瑞. 塞罕坝华北落叶松人工林间伐和混交改造对大型土壤动物群落结构的影响[J]. 林业科学, 2019, 55(11): 153-162. |
[10] | 何潇,雷渊才,薛春泉,徐期瑚,李海奎,曹磊. 广东省木荷碳密度及其不确定性估计[J]. 林业科学, 2019, 55(11): 163-171. |
[11] | 严恩萍, 赵运林, 林辉, 莫登奎, 王广兴. 基于地统计学和多源遥感数据的森林碳密度估算[J]. 林业科学, 2017, 53(7): 72-84. |
[12] | 李彦华, 张文辉, 申家朋, 周建云, 郭有燕. 甘肃黄土丘陵区侧柏人工幼林的碳密度及分配特征[J]. 林业科学, 2015, 51(6): 1-8. |
[13] | 申家朋, 张文辉, 李彦华, 何景峰, 张辉. 陇东黄土高原沟壑区刺槐和油松人工林的生物量和碳密度及其分配规律[J]. 林业科学, 2015, 51(4): 1-7. |
[14] | 王云霓, 曹恭祥, 王彦辉, 熊伟, 于澎涛, 徐丽宏. 宁夏六盘山华北落叶松人工林植被碳密度特征[J]. 林业科学, 2015, 51(10): 10-16. |
[15] | 李亚男, 虞晓凡, 许中旗, 刘乐乐, 姚卫星, 王丽. 冀北山地2种典型灌丛的碳密度特征[J]. 林业科学, 2014, 50(6): 28-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||