欢迎访问林业科学,今天是

林业科学 ›› 2025, Vol. 61 ›› Issue (6): 13-24.doi: 10.11707/j.1001-7488.LYKX20240525

• 研究论文 • 上一篇    下一篇

基于无人机的柠条锦鸡儿生物量遥感估测

吴家敏1,2,3,王亚欣2,3,孙斌2,3,*(),马志杰4,孙维娜5,洪亮1   

  1. 1. 云南师范大学地理学部 昆明 650500
    2. 中国林业科学研究院资源信息研究所 北京 100091
    3. 国家林业和草原局林业遥感与信息技术重点实验室 北京 100091
    4. 鄂尔多斯市林业和草原局 鄂尔多斯 017010
    5. 鄂尔多斯市国际荒漠化防治技术创新中心 鄂尔多斯 017010
  • 收稿日期:2024-09-09 出版日期:2025-06-10 发布日期:2025-06-26
  • 通讯作者: 孙斌 E-mail:sunbin@ifrit.ac.cn
  • 基金资助:
    国家自然科学基金面上项目(42271407);鄂尔多斯生态系统碳汇潜力评估技术创新——灌木植被碳储量监测计量方法研究技术服务。

Remote Sensing Estimation of Biomass of Caragana korshinskii with UAV

Jiamin Wu1,2,3,Yaxin Wang2,3,Bin Sun2,3,*(),Zhijie Ma4,Weina Sun5,Liang Hong1   

  1. 1. Faculty of Geography, Yunnan Normal University Kunming 650050
    2. Institute of Forest Resource Information Techniques, Chinese Academy of Forestry Beijing 100091
    3. Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland Administration Beijing 100091
    4. Ordos Forestry and Grassland Bureau Ordos 017010
    5. Ordos International Desertification Control Technology Innovation Center Ordos 017010
  • Received:2024-09-09 Online:2025-06-10 Published:2025-06-26
  • Contact: Bin Sun E-mail:sunbin@ifrit.ac.cn

摘要:

目的: 运用无人机数据,通过面向对象方法对鄂尔多斯市柠条锦鸡儿进行单株识别,对比RF、SVR、XGBoost机器学习算法,实现单株柠条锦鸡儿的高精度提取及生物量精准估测,为干旱地区环境保护、碳储量研究等提供参考。方法: 综合利用无人机载多光谱和激光雷达数据,融合光谱和垂直结构信息,基于面向对象方法开展单株柠条锦鸡儿高精度提取研究。在此基础上,通过对比随机森林 (RF)、支持向量回归 (SVR)和极端梯度提升决策树 (XGBoost) 3种机器学习算法,进行生物量的遥感精准估测。结果: 1) 利用无人机获取超高分辨率影像数据,通过LSMS分割算法和SVM分类器能够实现单株柠条锦鸡儿的高精度识别,各样方柠条锦鸡儿的分割准确率在86%以上,总样方准确率在90%以上,欠分割和过分割误差在6%以下,总体分类精度达91.51%。2) 基于支持向量机的递归特征消除(SVM-RFE)方法筛选出对生物量建模贡献度高的17个变量,其中包括2个平面特征和15个高度变量,高度变量对生物量的累计贡献度显著高于平面特征(8.7 vs. 1.39)。3) 与RF和SVR模型相比,XGBoost模型对柠条锦鸡儿的单株生物量具有更高的估测结果(R2=0.95,RMSE=259.57 g,MAE=157.51 g),尤其在生物量低于2 000 g时效果最佳。4) 通过UAV-LiDAR提取的多个植被垂直结构信息,反映出植被内部生长的多样性和垂直复杂性,有助于提升生物量估测精度。此外,综合考虑高度的平均绝对偏差、变异系数、方差、高度百分位数等多维度高度变量进行生物量预测,相比单一的最大值高度变量指标更具优势。结论: 利用LSMS分割和SVM分类方法提取单株灌木,为单株植被的识别提供了技术参考;引入多维度的点云高度指标参与生物量估测,弥补了单一多光谱数据对柠条锦鸡儿垂直结构信息的缺失,提高了生物量估测精度; XGBoost模型为干旱区小尺度的灌木生物量估测提供了新的视角和工具;基于无人机数据获取的高分辨率影像和点云数据,避免了对当地生态环境造成破坏,尤其是在脆弱的沙地区域。

关键词: 柠条锦鸡儿, 无人机, 生物量, 极端梯度提升决策树, 激光雷达数据

Abstract:

Objective: With unmanned aerial vehicle data, an object-oriented method was used to identify individual Caragana korshinskii in Ordos City. RF, SVR, and XGBoost machine learning algorithms were compared to achieve high-precision extraction of individual C. korshinskii and accurate estimation of the biomass, providing a reference for environmental protection and carbon storage research in arid areas. Method: By comprehensively utilizing UAV-borne multispectral and lidar data, and integrating spectral and vertical structure information, an object-oriented method was used to conduct high-precision extraction of individual C. korshinskii. On this basis, three machine learning algorithms of random forest (RF), support vector regression (SVR) and extreme gradient boosting decision tree (XGBoost) were compared to conduct remote sensing accurate estimation of biomass. Result: 1) The ultra-high-resolution image data was obtained by UAV, and the LSMS segmentation algorithm and SVM classifier were able to achieve high-precision identification of individual C. korshinskii. The segmentation accuracy of C. korshinskii in each sample plot was above 86%, the accuracy of the total sample plot was above 90%, the under-segmentation and over-segmentation errors were below 6%, and the overall classification accuracy reached 91.51%. 2) The Recursive Feature Elimination (SVM-RFE) method based on support vector machines identified 17 variables with high contributions to biomass modeling, including 2 planar features and 15 height variables. The cumulative contribution of height variables to biomass was significantly more than that of planar variables (8.7 vs. 1.39). 3) Compared to the RF and SVR models, the XGBoost model provided higher biomass estimation accuracy for C. korshinskii in the study area (R2 = 0.95, RMSE = 259.57 g, MAE = 157.51 g), especially when biomass was below 2 000 g. 4) The multiple vegetation vertical structure information extracted from UAV-LiDAR reflected the diversity and vertical complexity of internal vegetation growth, which was beneficial for improving biomass estimation accuracy. Additionally, integrating multidimensional height variables, such as mean absolute deviation, coefficient of variation, variance, and percentile height, for biomass prediction showed advantages over using a single maximum height variable. Conclusion: The combination of LSMS segmentation and SVM classification for individual shrub extraction offers a technical reference for identifying individual vegetation. The introduction of multi-dimensional point cloud height metrics for biomass estimation compensates for the lack of vertical structure information in C. korshinskii provided by single multispectral data, improving the accuracy of biomass estimation. The XGBoost model provides a new perspective and tool for small-scale shrub biomass estimation in arid regions. Additionally, the high-resolution imagery and point cloud data obtained from UAVs avoid damage to the local ecological environment, which is particularly important in the fragile sandy areas.

Key words: Caragana korshinskii, unmanned aerial vehicle, biomass, XGBoost, LiDAR

中图分类号: