 
		林业科学 ›› 2023, Vol. 59 ›› Issue (8): 12-21.doi: 10.11707/j.1001-7488.LYKX20210955
杨晓慧1,吴金卓2,刘浩然1,钟浩1,林文树1,*
收稿日期:2021-12-28
									
				
									
				
									
				
											出版日期:2023-08-25
									
				
											发布日期:2023-10-16
									
			通讯作者:
					林文树
												基金资助:Xiaohui Yang1,Jinzhuo Wu2,Haoran Liu1,Hao Zhong1,Wenshu Lin1,*
Received:2021-12-28
									
				
									
				
									
				
											Online:2023-08-25
									
				
											Published:2023-10-16
									
			Contact:
					Wenshu Lin   
												摘要:
目的: 提取无人机激光雷达(UAV-LiDAR)点云数据特征变量,结合样地实测数据构建林分郁闭度估测模型,为快速准确估测人工林林分郁闭度提供基础数据和技术参考。方法: 以东北林业大学城市林业示范基地为研究区,基于多旋翼无人机激光雷达获取的点云数据进行人工针叶林和阔叶林林分郁闭度反演,根据点云的三维坐标和能量值计算高度、强度、冠层特征变量并采用主成分分析法降维,处理后的变量与利用植物冠层分析仪获取的郁闭度进行逐步回归分析,建立人工针叶林和阔叶林林分郁闭度估测模型,在ArcGIS平台上应用估测模型和反距离权重插值法进行林分郁闭度反演制图。结果: 冠层特征变量对针叶林郁闭度的估测精度影响最显著,强度特征变量对阔叶林郁闭度的估测精度影响最显著。人工阔叶林郁闭度的估测精度(Adj R2=0.725,RMSE=0.005)优于人工针叶林(Adj R2=0.722,RMSE=0.007)。应用估测模型和反距离权重插值法估测整个样地的郁闭度范围在0.81~0.87之间,筛选10个检验点的郁闭度与实测郁闭度显示出较高相关性(r=0.859)。结论: 结合多组LiDAR特征变量估测林分郁闭度能够充分挖掘LiDAR数据包含的冠层结构特性,提升估测精度。
中图分类号:
杨晓慧,吴金卓,刘浩然,钟浩,林文树. 基于UAV-LiDAR的人工林林分郁闭度估测[J]. 林业科学, 2023, 59(8): 12-21.
Xiaohui Yang,Jinzhuo Wu,Haoran Liu,Hao Zhong,Wenshu Lin. Estimation on Canopy Closure for Plantation Forests Based on UAV-LiDAR[J]. Scientia Silvae Sinicae, 2023, 59(8): 12-21.
 
												
												表1
研究样地内5种人工林概况"
| 森林类型 Forest type | 林龄 Age/a | 平均树高 Average height/m | 平均胸径 Average DBH/cm | 林分密度 Stand density/(tree·hm?2) | 蓄积量 Volume/(m3·hm?2) | 
| 白桦Betula platyphylla | 61 | 19.1 | 18.1 | 986 | 82.9 | 
| 蒙古栎Quercus mongolica | 60 | 14.7 | 17.2 | 2 690 | 181.0 | 
| 兴安落叶松Larix gmelinii | 62 | 18.0 | 19.8 | 1 120 | 160.8 | 
| 樟子松Pinus sylvestris var. mongolica | 64 | 17.8 | 22.1 | 1 140 | 195.6 | 
| 黑皮油松Pinus tabuliformis | 69 | 17.6 | 20.6 | 954 | 146.2 | 
 
												
												表2
各样方郁闭度测量值"
| 样方编号 Sample plot No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 
| 针叶林 Coniferous forest | 0.86 | 0.86 | 0.84 | 0.84 | 0.86 | 0.86 | 0.86 | 0.86 | 0.84 | 0.86 | 
| 阔叶林 Broad-leaved forest | 0.84 | 0.84 | 0.86 | 0.84 | 0.84 | 0.85 | 0.85 | 0.85 | 0.84 | 0.84 | 
| 样方编号 Sample plot No. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 
| 针叶林 Coniferous forest | 0.84 | 0.84 | 0.86 | 0.84 | 0.84 | 0.85 | 0.85 | 0.85 | 0.84 | 0.84 | 
| 阔叶林 Broad-leaved forest | 0.83 | 0.83 | 0.83 | 0.84 | 0.84 | 0.82 | 0.81 | 0.83 | 0.84 | 0.84 | 
 
												
												表3
LiDAR 特征变量及其描述①"
| 特征变量 Characteristic variable | 变量描述 Variable description | 
| elev_asd | 归一化点云平均绝对偏差:总差异与给定点之间的总差值 Mean absolute deviation of normalized point cloud:the difference between the total difference and given points | 
| elev_AIH_25th | 归一化点云累计高程百分数的25分位数 The 25th quantile of normalized point cloud cumulative elevation percentage | 
| elev_aihInterDis | 归一化累计高程四分位数间距 Normalized cumulative elevation interquartile spacing | 
| elev_cv | 首次回波归一化点云变异系数 Coefficient of variation of first echo normalized point cloud | 
| elev_interDis | 归一化四分位数间距 Normalized interquartile spacing | 
| elev_mad | 归一化绝对偏差中值 Median value of normalized absolute deviation | 
| elev_mean | 归一化平均值 Normalized mean | 
| elev_median | 归一化中值 Normalized median | 
| elev_std | 归一化标准差 Normalized standard deviation | 
| elev_crr | 归一化冠层起伏比率 Normalized canopy fluctuation ratio | 
| int_asd | 首次回波平均绝对偏差 Mean absolute deviation of first echo | 
| int_cv | 首次回波归一化点云强度的变异系数 Variation coefficient of normalized point cloud intensity of first echo | 
| int_interDis | 首次回波四分位数间距 Interquartile interval of first echo | 
| int_mad | 首次回波绝对偏差中值 Median absolute deviation of first echo | 
| int_mean | 首次回波平均值 Mean of first echo | 
| int_median | 首次回波中值 Median of first echo | 
| int_std | 首次回波标准差 Standard deviation of first echo | 
| int_percentile_25th | 首次回波强度百分数 First echo intensity percentage | 
| int_AII_25th | 首次回波累计强度百分数 Cumulative intensity percentage of first echo | 
| int_Skewness/kurtosis | 首次回波所有激光雷达点强度分布的偏度/峭度 Skewness/kurtosis of intensity distribution of all LiDAR points in the first echo | 
| Open/closed | 在冠层容积模型中无体元区域的上层/下层 In the canopy volume model, the upper/lower layer of the region without voxel of free region | 
| Euphotic/oligophotic | 在冠层容积模型中有体元区域的上65%区域和下35%区域的比值 The ratio of upper 65% and lower 35% of voxel regions in the canopy volume model | 
| elev_density_30th、elev_density_60th | 冠层密度参数 Canopy closure parameters | 
| Hskewness/Hkurtosis | 冠层首次回波的偏度/峭度 Skewness/kurtosis of canopy first echo point | 
| CC2m | 首次回波中高于2 m的激光返回点占所有返回点的比例 The first return points above 2 m accounts for the percentage of all return points | 
| 范伟伟, 刘浩然, 徐永胜, 等. 基于地基激光雷达和手持式移动激光雷达的单木结构参数提取精度对比. 中南林业科技大学学报, 2020, 40 (8): 63- 74. | |
| Fan W W, Liu H R, Xu Y S, et al. Comparison of extraction precision of individual tree structure parameters based on terrestrial laser scanning and hand-held mobile laser scanning. Journal of Central South University of Forestry & Technology, 2020, 40 (8): 63- 74. | |
| 谷金英, 冯仲科, 葛忠强, 等. 基于TM影像数据的林分冠层郁闭度反演技术研究. 山东林业科技, 2014, 44 (1): 9- 12. | |
| Gu J Y, Feng Z K, Ge Z Q, et al. Study on the inversion technology of forest canopy closure based on TM image data. Journal of Shandong Forestry Science and Technology, 2014, 44 (1): 9- 12. | |
| 洪奕丰, 张守攻, 陈 伟, 等. 基于机载激光雷达的落叶松组分生物量反演. 林业科学研究, 2019, 32 (5): 83- 90. | |
| Hong Y F, Zhang S G, Chen W, et al. Inversion of biomass components for Larix olgensis plantation using airborne LiDAR . Forest Research, 2019, 32 (5): 83- 90. | |
| 李 丹. 2012. 基于地基扫描与机载成像激光雷达的森林参数反演研究. 昆明: 西南林业大学. | |
| Li D. 2012. Forest parameters estimation using TLS and airborne imaging LiDAR. Kunming: Southwest Forestry University.[in Chinese] | |
| 李 擎, 王振锡, 王雅佩, 等. 基于GF-2号遥感影像的天山云杉林郁闭度估测研究. 中南林业科技大学学报, 2019, 39 (8): 48- 54. | |
| Li Q, Wang Z X, Wang Y P, et al. Study on canopy density inversion of Picea schrenkianaforest based on GF-2 remote sensing image . Journal of Central South University of Forestry & Technology, 2019, 39 (8): 48- 54. | |
| 刘 浩, 张峥男, 曹 林. 机载激光雷达森林垂直结构剖面参数的沿海平原人工林林分特征反演. 遥感学报, 2018, 22 (5): 872- 888. | |
| Liu H, Zhang Z N, Cao L. Estimating forest stand characteristics in a coastal plain forest plantation based on vertical structure profile parameters derived from ALS data. Journal of Remote Sensing, 2018, 22 (5): 872- 888. | |
| 刘浩然, 范伟伟, 徐永胜, 等. 基于无人机激光雷达点云的单木生物量估测. 中南林业科技大学学报, 2021, 41 (8): 92- 99. | |
| Liu H R, Fan W W, Xu Y S, et al. Single tree biomass estimation based on UAV LiDAR point cloud. Journal of Central South University of Forestry & Technology, 2021, 41 (8): 92- 99. | |
| 穆喜云, 张秋良, 刘清旺, 等. 基于机载LiDAR数据的林分平均高及郁闭度反演. 东北林业大学学报, 2015, 43 (9): 84- 89. doi: 10.3969/j.issn.1000-5382.2015.09.017 | |
| Mu X Y, Zhang Q L, Liu Q W, et al. Inversion of forest height and canopy closure using airborne LiDAR data. Journal of Northeast Forestry University, 2015, 43 (9): 84- 89. doi: 10.3969/j.issn.1000-5382.2015.09.017 | |
| 瞿 帅, 张晓丽, 朱程浩, 等. 机载激光雷达森林资源调查系统的设计与试验. 西北林学院学报, 2018, 33 (4): 175- 182. | |
| Qu S, Zhang X L, Zhu C H, et al. Design and test of airborne LiDAR system for forest resources survey. Journal of Northwest Forestry University, 2018, 33 (4): 175- 182. | |
| 孙 钊, 潘 磊, 孙玉军. 基于无人机影像的高郁闭度杉木纯林树冠参数提取. 北京林业大学学报, 2020, 42 (10): 20- 26. | |
| Sun Z, Pan L, Sun Y J. Extraction of tree crown parameters from high-density pure Chinese fir plantations based on UAV images. Journal of Beijing Forestry University, 2020, 42 (10): 20- 26. | |
| 王 娟, 陈永富, 陈 巧, 等. 基于无人机遥感的森林参数信息提取研究进展. 林业资源管理, 2020, (5): 144- 151. | |
| Wang J, Chen Y F, Chen Q, et al. Research on forest parameter information extraction progress driven by UAV remote sensing technology. Forest Resources Management, 2020, (5): 144- 151. | |
| 汪 霖, 李明阳, 方子涵, 等. 基于无人机数据的人工林森林参数估测. 林业资源管理, 2019, (5): 61- 67. | |
| Wang L, Li M Y, Fang Z H, et al. Plantation forest parameter estimation based on UAV data. Forest Resources Management, 2019, (5): 61- 67. | |
| 吴项乾, 曹 林, 申 鑫, 等. 基于无人机激光雷达的银杏人工林有效叶面积指数估测. 林业科学, 2020, 56 (1): 74- 86. | |
| Wu X Q, Cao L, Shen X, et al. Estimation of effective leaf area index using UAV-based LiDAR in Ginkgo plantations . Scientia Silvae Sinicae, 2020, 56 (1): 74- 86. | |
| 吴项乾. 2018. 基于无人机激光雷达的银杏人工林有效叶面积指数及郁闭度估测研究. 南京: 南京林业大学. | |
| Wu X Q. 2018. The estimation of effective leaf area index and canopy closure using UAV-based LiDAR in ginkgo plantations abstract. Nanjing: Nanjing Forestry University.[in Chinese] | |
| 吴 飏, 张登荣, 张汉奎, 等. 结合图像纹理特征的森林郁闭度遥感估测. 林业科学, 2012, 48 (2): 48- 53. | |
| Wu Y, Zhang D R, Zhang H K, et al. Remote sensing estimation of forest canopy density combined with texture features. Scientia Silvae Sinicae, 2012, 48 (2): 48- 53. | |
| 银彬吾, 刘奇林, 陆滟灵, 等. 2种更新方式4年生尾巨桉人工林碳储量及其分布特征. 广西林业科学, 2019, 48 (4): 466- 471. doi: 10.3969/j.issn.1006-1126.2019.04.008 | |
| Yin B W, Liu Q L, Lu Y L, et al. Carbon storage and distribution of 4-year-old Eucalyptus urophylla × E. grandis plantation in two regeneration modes . Guangxi Forestry Science, 2019, 48 (4): 466- 471. doi: 10.3969/j.issn.1006-1126.2019.04.008 | |
| 尤号田, 戚大伟, 邢艳秋. 基于机载LiDAR数据森林关键结构参数估测研究. 测绘学报, 2020, 49 (12): 1644. | |
| You H T, Qi D W, Xing Y Q. Research on forest key structural parameters estimation based on airborne LiDAR data. Acta Geodaetica et Cartographica Sinica, 2020, 49 (12): 1644. | |
| 艾萨迪拉·玉苏甫, 玉米提·哈力克, 阿不都拉·阿不力孜, 等. 基于地面LiDAR数据的塔里木河下游胡杨林结构参数反演. 生态学报, 2020, 40 (13): 4555- 4565. | |
| Yusup A, Halik Ü, Abliz A, et al. Terrestrial laser scanning for retrieving the structural parameters of Populus euphratica riparian forests in the lower reaches of the Tarim River, China . Acta Ecologica Sinica, 2020, 40 (13): 4555- 4565. | |
| 张瑞英, 庞 勇, 李增元, 等. 结合机载LiDAR和LANDSAT ETM+数据的温带森林郁闭度估测. 植物生态学报, 2016, 40 (2): 102- 115. doi: 10.17521/cjpe.2014.0366 | |
| Zhang R Y, Pang Y, Li Z Y, et al. Canopy closure estimation in a temperate forest using airborne LiDAR and LANDSAT ETM+ data. Chinese Journal of Plant Ecology, 2016, 40 (2): 102- 115. doi: 10.17521/cjpe.2014.0366 | |
| 赵 勋, 岳彩荣, 李春干, 等. 基于机载LiDAR点云数据森林郁闭度估测. 遥感技术与应用, 2020, 35 (5): 1136- 1145. | |
| Zhao X, Yue C R, Li C G, et al. Estimation of forest canopy density based on airborne LiDAR point cloud data. Remote Sensing Technology and Application, 2020, 35 (5): 1136- 1145. | |
| Aicardi I, Dabove P, Lingua A M, et al. Integration between TLS and UAV photogrammetry techniques for forestry applications. iForest - Biogeosciences and Forestry, 2017, 10 (1): 41- 47. doi: 10.3832/ifor1780-009 | |
| Arumäe T, Lang M. Estimation of canopy cover in dense mixed-species forests using airborne lidar data. European Journal of Remote Sensing, 2018, 51 (1): 132- 141. doi: 10.1080/22797254.2017.1411169 | |
| Davies A B, Asner G P. Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends in Ecology & Evolution, 2014, 29 (12): 681- 691. | |
| García M, Popescu S, Riaño D, et al. Characterization of canopy fuels using ICESat/GLAS data. Remote Sensing of Environment, 2012, 123, 81- 89. doi: 10.1016/j.rse.2012.03.018 | |
| Lefsky M A, Cohen W B, Parker G G, et al. Lidar remote sensing for ecosystem studies. BioScience, 2002, 52 (1): 19- 30. doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 | |
| Salamí E, Barrado C, Pastor E. UAV flight experiments applied to the remote sensing of vegetated areas. Remote Sensing, 2014, 6 (11): 11051- 11081. doi: 10.3390/rs61111051 | |
| Vose J M, Clinton B D, Sullivan N H, et al. Vertical leaf area distribution, light transmittance, and application of the Beer-Lambert Law in four mature hardwood stands in the southern Appalachians. Canadian Journal of Forest Research, 1995, 25 (6): 1036- 1043. doi: 10.1139/x95-113 | 
| [1] | 鲁乐乐,王震,张雄清,张建国. 基于贝叶斯模型平均法和逐步回归法构建杉木单木胸径生长模型[J]. 林业科学, 2021, 57(9): 87-97. | 
| [2] | 刘卫平,宋维,高超,赵燕东. 基于活立木茎干含水量的杨树生长状态评估模型构建[J]. 林业科学, 2021, 57(5): 43-52. | 
| [3] | 张雪,钟全林,李宝银,姚湘明,徐朝斌,程栋梁,郑跃芳,余华. 翅荚木同龄林林木叶片性状与胸径生长关系[J]. 林业科学, 2020, 56(5): 168-175. | 
| [4] | 何经纬,张伊莹,田呈明,熊典广,梁英梅. 区域景观格局对杨树锈病为害流行的影响——以北京延庆地区银白杨为例[J]. 林业科学, 2020, 56(4): 99-108. | 
| [5] | 李师宇, 于颖, 范文义. 阳生叶光能利用率与光化学反射植被指数关系[J]. 林业科学, 2018, 54(5): 177-184. | 
| [6] | 林文树, 穆丹, 王丽平, 邵立郡, 吴金卓. 针阔混交林不同演替阶段表层土壤理化性质与优势林木生长的相关性[J]. 林业科学, 2016, 52(5): 17-25. | 
| [7] | 朱玉杰, 董希斌. 大兴安岭地区落叶松用材林不同抚育间伐强度经营效果评价[J]. 林业科学, 2016, 52(12): 29-38. | 
| [8] | 翟辉, 张海, 张超, 周旭. 黄土峁状丘陵区不同类型林分土壤微生物功能多样性[J]. 林业科学, 2016, 52(12): 84-91. | 
| [9] | 曹林, 佘光辉. 基于机载小光斑全波形LiDAR的亚热带林分特征反演[J]. 林业科学, 2015, 51(6): 81-92. | 
| [10] | 李效文, 夏海涛, 魏红旭, 魏馨, 王金旺, 卢翔, 陈秋夏. 甬台温高速公路绿化林带内不同距离多树种枝叶重金属含量分析[J]. 林业科学, 2015, 51(12): 17-25. | 
| [11] | 马姜明, 黄婧, 杨栋林, 梅军林. 桂林喀斯特石山50种常见植物叶片光合色素含量及耐荫性定量评价[J]. 林业科学, 2015, 51(10): 67-74. | 
| [12] | 郭云, 李增元, 陈尔学, 田昕, 凌飞龙. 甘肃黑河流域上游森林地上生物量的多光谱遥感估测[J]. 林业科学, 2015, 51(1): 140-149. | 
| [13] | 宋启亮, 董希斌. 大兴安岭低质阔叶混交林不同改造模式综合评价[J]. 林业科学, 2014, 50(9): 18-25. | 
| [14] | 李文敏, 魏虹, 李昌晓, 陈存根. 基于高光谱参数的枫杨叶绿素含量估算模型优化[J]. 林业科学, 2014, 50(4): 55-59. | 
| [15] | 刘子豪, 汪杭军. 基于PCA+FisherTrees特征融合的木材识别[J]. 林业科学, 2013, 49(6): 122-128. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||