林业科学 ›› 2025, Vol. 61 ›› Issue (4): 9-19.doi: 10.11707/j.1001-7488.LYKX20240485
杨菲菲1(),张王菲1,*(
),赵磊2,赵含1,姬永杰3,王梦金1
收稿日期:
2024-08-13
出版日期:
2025-04-25
发布日期:
2025-04-21
通讯作者:
张王菲
E-mail:Taylor_YG@163.com;mewhff@163.com
基金资助:
Feifei Yang1(),Wangfei Zhang1,*(
),Lei Zhao2,Han Zhao1,Yongjie Ji3,Mengjin Wang1
Received:
2024-08-13
Online:
2025-04-25
Published:
2025-04-21
Contact:
Wangfei Zhang
E-mail:Taylor_YG@163.com;mewhff@163.com
摘要:
目的: 提出二阶段遥感特征选择方法与多机器学习模型结合的思路,探索适用于国产高分一号(GF-1)数据估测森林地上生物量(AGB)的有效模式,为高分系列卫星数据在林业监测中的应用提供参考。方法: 首先,从GF-1数据中提取波段光谱特征、纹理特征、植被指数等44个特征变量;然后,基于二阶段特征优选策略优选特征,第一阶段采用过滤式法(Relief)、嵌入式法(Lasso、RF)进行初步筛选,第二阶段通过包装式法(RFE)进一步优化特征子集,提升模型估测能力;最后,利用以往森林AGB估测研究中表现较好的K最近邻(KNN)、支持向量回归(SVR)、随机森林(RF)、梯度提升回归树(GBRT)和极限梯度提升树(XGBoost)机器学习模型进行森林AGB估测,并评估不同特征选择方法与模型之间的匹配度及其对森林AGB估测精度的影响,探寻最优的基于GF-1数据估测森林AGB的策略。结果: 1) Relief-RFE方法在XGBoost模型森林AGB反演中取得较优效果(R2 = 0.811,RMSE = 8.45 t·hm?2,rRMSE = 23.39%)。2) 绿光波段纹理特征(mea_b2)能够捕捉到森林地表覆盖物的空间分布信息,如森林的冠层密度、树木分布等空间结构变化信息;蓝光波段光谱特征(b1)对叶绿素和叶色素浓度变化反应敏感,可表征植被健康状况和生长阶段信息,在多种方法的二阶段特征选择中上述2种特征均被选为核心特征用于森林AGB估测。3) 特征优选可显著提升模型性能,XGBoost模型的提升效果明显大于KNN、SVR、RF和GBRT模型。结论: 通过对比不同特征选择方法与机器学习模型结合估测森林AGB的效果,验证了二阶段特征优选策略在基于GF-1数据估测森林AGB中的有效性,尤其是将该策略与XGBoost模型结合,能够构建出高精度、高稳健性的森林AGB估测策略。
中图分类号:
杨菲菲,张王菲,赵磊,赵含,姬永杰,王梦金. 基于GF-1数据的二阶段遥感特征优选与森林地上生物量反演模型[J]. 林业科学, 2025, 61(4): 9-19.
Feifei Yang,Wangfei Zhang,Lei Zhao,Han Zhao,Yongjie Ji,Mengjin Wang. Two-Stage Remote Sensing Feature Optimization and GF-1 Data-Supported Forest Above-Ground Biomass Inversion[J]. Scientia Silvae Sinicae, 2025, 61(4): 9-19.
表1
植被指数计算公式①"
植被指数 Vegetation index | 植被指数计算公式 Vegetation index calculation equation | 文献 References |
NDVI | ||
SR | ||
VARI | ||
DVI | ||
PVI | ||
SAVI | ||
EVI | ||
MSAVI |
图1
使用5种模型进行AGB估测时各特征采用Relief、RF、Lasso选中的频次 con_b1、ent_b1、cor_b1为GF-1蓝光波段的对比度、熵、相关性;mea_b2、var_b2、con_b2、dis_b2、ent_b2、cor_b2为GF-1绿光波段的均值、方差、对比度、相异性、熵、相关性;mea_b3、var_b3、hom_b3、con_b3、sec_b3、cor_b3为GF-1红光波段的均值、方差、均匀性、对比度、二阶矩、相关性;mea_b4、var_b4、con_b4、dis_b4、ent_b4、cor_b4为GF-1近红波段的均值、方差、对比度、相异性、熵、相关性。b1、b2、b3、b4为GF-1的蓝、绿、红、近红波段。con_b1, ent_b1, and cor_b1 are the contrast, entropy, and correlation of the GF-1 blue band; mea_b2, var_b2, con_b2, dis_b2, ent_b2, and cor_b2 are the mean, variance, contrast, dissimilarity, entropy, and correlation of the GF-1 green band; mea_b3, var_b3, Hom_b3, con_b3, sec_b3, and cor_b3 are the mean, variance, homogeneity, contrast, second moment, and correlation of the GF-1 red band; mea_b4, var_b4, con_b4, dis_b4, ent_b4, and cor_b4 are the mean, variance, contrast, dissimilarity, entropy, and correlation of the GF-1 near-infrared band. b1, b2, b3, and b4 correspond to the blue, green, red, and near-infrared bands of GF-1."
表2
GF-1的一阶段特征优选参数和估测精度①"
模型 Model | 方法 Method | R2 | RMSE/ (t·hm?2) | rRMSE (%) | 特征 Feature |
KNN | Relief | 0.209 | 14.85 | 41.10 | b3、DVI、b2、b4、b1、PVI、var_b4、var_b3、con_b4、con_b3、var_b2、con_b2、mea_b3、mea_b4、mea_b2、var_b1、con_b1、ent_b1 |
RF | 0.320 | 13.68 | 37.86 | mea_b1、cor_b1、mea_b2、cor_b2、mea_b3、con_b4、NDVI、SR、EVI、b1、b2、b3、b4 | |
Lasso | 0.232 | 15.13 | 41.88 | var_b1、con_b1、ent_b1、Cor_b1、mea_b2、dis_b2、ent_b2、var_b3、con_b3、mea_b4、var_b4、con_b4、dis_b4、ent_b4、Cor_b4、PVI、DVI、EVI、b1、b2、b3、b4 | |
SVR | Relief | 0.262 | 11.87 | 32.85 | b3、DVI、b2、b4、b1、PVI、var_b4、var_b3、con_b4、con_b3、var_b2、con_b2、mea_b3、mea_b4、mea_b2、var_b1、con_b1、ent_b1 |
RF | 0.321 | 10.89 | 30.14 | mea_b1、cor_b1、mea_b2、cor_b2、mea_b3、hom_b4、NDVI、SAVI、SR、 EVI、MSAVI、b1、b2、b3、b4 | |
Lasso | 0.386 | 9.82 | 27.18 | var_b1、con_b1、ent_b1、Cor_b1、mea_b2、dis_b2、ent_b2、var_b3、con_b3、mea_b4、var_b4、con_b4、dis_b4、ent_b4、Cor_b4、PVI、DVI、EVI、b1、b2、b3、b4 | |
RF | Relief | 0.220 | 18.80 | 52.03 | b3、DVI、b2、b4、b1、PVI、var_b4、var_b3、con_b4、con_b3、var_b2、con_b2、mea_b3、mea_b4、mea_b2、var_b1、con_b1、ent_b1 |
RF | 0.404 | 14.07 | 38.94 | b3、DVI、b2、b4、b1、PVI、var_b4、var_b3、con_b4、con_b3、var_b2、con_b2、mea_b3、mea_b4、mea_b2、var_b1、con_b1、ent_b1 | |
Lasso | 0.267 | 15.50 | 42.90 | b3、DVI、b2、b4、b1、PVI、var_b4、var_b3、con_b4、con_b3、var_b2、con_b2、mea_b3、mea_b4、mea_b2、var_b1、con_b1、ent_b1 | |
GBRT | Relief | 0.135 | 15.21 | 42.10 | mea_b1、mea_b2、cor_b2 、mea_b3、sec_b3、con_b4、NDVI、SR、 VARI、EVI、b1、b2、b3、b4 |
RF | 0.119 | 15.60 | 43.18 | mea_b1、cor_b1、mea_b2、cor_b2、mea_b3、mea_b4、con_b4、NDVI、SR、EVI、b1、b2、b3 | |
Lasso | 0.132 | 15.23 | 42.15 | mea_b1、cor_b1、mea_b2、cor_b2、mea_b3、con_b4、SR、VARI、EVI、 MSAVI、b1、b2、b3、b4 | |
XGBoost | Relief | 0.296 | 10.81 | 29.92 | var_b1、con_b1、ent_b1、Cor_b1、mea_b2、dis_b2、ent_b2、var_b3、con_b3、mea_b4、var_b4、con_b4、dis_b4、ent_b4、Cor_b4、PVI、DVI、EVI、b1、b2、b3、b4 |
RF | 0.416 | 9.90 | 27.40 | var_b1、con_b1、ent_b1、Cor_b1、mea_b2、dis_b2、ent_b2、var_b3、con_b3、mea_b4、var_b4、con_b4、dis_b4、ent_b4、Cor_b4、PVI、DVI、EVI、b1、b2、b3、b4 | |
Lasso | 0.444 | 9.90 | 27.40 | var_b1、con_b1、ent_b1、Cor_b1、mea_b2、dis_b2、ent_b2、var_b3、con_b3、mea_b4、var_b4、con_b4、dis_b4、ent_b4、Cor_b4、PVI、DVI、EVI、b1、b2、b3、b4 |
表3
GF-1的二阶段特征优选参数和估测精度"
模型 Model | 一阶段方法 First-stage method | 二阶段方法 Two-stage method | R2 | RMSE/ (t·hm?2) | rRMSE (%) | 特征 Feature |
KNN | Relief | RFE | 0.474 | 11.59 | 32.08 | b3、b2、b4、b1、con_b4、con_b3、mea_b3、mea_b4、mea_b2 |
RF | 0.384 | 10.87 | 30.01 | mea_b2、con_b4、EVI、b1、b3、b4 | ||
Lasso | 0.417 | 10.63 | 29.42 | con_b1、cor_b1、mea_b2、con_b3、mea_b4、con_b4、EVI、 b1、b2、b3、b4 | ||
SVR | Relief | 0.301 | 11.45 | 31.69 | b3、DVI、b2、b4、b1、con_b4、con_b3、mea_b3、mea_b2 | |
RF | 0.473 | 9.10 | 25.19 | mea_b2、mea_b3、hom_b4、NDVI、EVI、b1、b4 | ||
Lasso | 0.493 | 10.84 | 30.00 | con_b1、cor_b1、mea_b2、con_b3、mea_b4、con_b4、 EVI、b1、b2、b3、b4 | ||
RF | Relief | 0.593 | 8.11 | 22.45 | b3、b2、b4、b1、con_b4、con_b3、mea_b3、mea_b2、con_b1 | |
RF | 0.629 | 7.29 | 20.18 | b3、b2、b4、b1、con_b4、con_b3、mea_b3、mea_b4、mea_b2 | ||
Lasso | 0.571 | 7.34 | 20.32 | b3、b2、b4、b1、PVI、con_b4、con_b3、mea_b3、mea_b2 | ||
GBRT | Relief | 0.658 | 11.51 | 31.86 | mea_b2、mea_b3、con_b4、NDVI、EVI、b1、b4 | |
RF | 0.651 | 7.54 | 20.87 | mea_b2、mea_b4、con_b4、SR、EVI、b1 | ||
Lasso | 0.591 | 9.12 | 25.24 | mea_b2、con_b4、EVI、MSAVI、b1、b3、b4 | ||
XGBoost | Relief | 0.811 | 8.45 | 23.39 | mea_b1、cor_b2、var_b3、con_b3、cor_b3、con_b4、 dis_b4、cor_b4、PVI、DVI、b1 | |
RF | 0.708 | 6.21 | 17.19 | con_b1、cor_b1、mea_b2、con_b3、con_b4、dis_b4、 EVI、b1、b2、b3、b4 | ||
Lasso | 0.781 | 6.21 | 17.19 | con_b1、cor_b1、mea_b2、con_b3、con_b4、dis_b4、 EVI、b1、b2、b3、b4 |
丁家祺, 黄文丽, 刘迎春, 等. 基于机器学习和多源数据的湘西北森林地上生物量估测. 林业科学, 2021, 57 (10): 36- 48. | |
Ding J Q, Huang W L, Liu Y C, et al. Estimation of forest aboveground biomass in northwest Hunan Province based on machine learning and multi-source data. Scientia Silvae Sinicae, 2021, 57 (10): 36- 48. | |
黄从德, 张 健, 杨万勤, 等. 四川省及重庆地区森林植被碳储量动态. 生态学报, 2008, 28 (3): 966- 975.
doi: 10.3321/j.issn:1000-0933.2008.03.008 |
|
Huang C D, Zhang J, Yang W Q, et al. Dynamics on forest carbon stock in Sichuan Province and Chongqing City. Acta Ecologica Sinica, 2008, 28 (3): 966- 975.
doi: 10.3321/j.issn:1000-0933.2008.03.008 |
|
黄晓娟. 2018. 面向特征选择的Relief算法研究. 苏州: 苏州大学. | |
Huang X J. 2018. Research on relief algorithm for feature selection. Suzhou: Soochow University. [in Chinese] | |
菅永峰, 韩泽民, 黄光体, 等. 基于高分辨率遥感影像的北亚热带森林生物量反演. 生态学报, 2021, 41 (6): 2161- 2169. | |
Jian Y F, Han Z M, Huang G T, et al. Estimation of forest biomass using high spatial resolution remote sensing imagery in north subtropical forests. Acta Ecologica Sinica, 2021, 41 (6): 2161- 2169. | |
吕梓晴, 段爱国. 不同产区杉木生物量与碳储量模型. 林业科学, 2024, 60 (2): 1- 11.
doi: 10.11707/j.1001-7488.LYKX20220526 |
|
Lü Z Q, Duan A G. Biomass and carbon storage model of Cunninghamia lanceolata in different production areas. Scientia Silvae Sinicae, 2024, 60 (2): 1- 11.
doi: 10.11707/j.1001-7488.LYKX20220526 |
|
蒙诗栎, 庞 勇, 张钟军, 等. WorldView-2纹理的森林地上生物量反演. 遥感学报, 2017, 21 (5): 812- 824. | |
Meng S (L /Y), Pang Y, Zhang Z J, et al. Estimation of aboveground biomass in a temperate forest using texture information from WorldView-2. National Remote Sensing Bulletin, 2017, 21 (5): 812- 824. | |
潘婧靓. 2020. 联合GF: 3 PolSAR数据和Landsat: 8 OLI数据的森林地上生物量估测方法研究. 哈尔滨: 东北林业大学. | |
Pan J L. 2020. Research on forest aboveground biomass estimation methods using combined GF-3 PoISAR data and Landsat-8 OLI data. Harbin: Northeast Forestry University. [in Chinese] | |
武小军, 周文心, 董永新. 一种改进的嵌入式特征选择算法及应用. 同济大学学报(自然科学版), 2022, 50 (2): 153- 159. | |
Wu X J, Zhou W X, Dong Y X. A novel embedded feature selection algorithm and its application. Journal of Tongji University (Natural Science), 2022, 50 (2): 153- 159. | |
于晓辉. 2019. 森林生物量遥感估测模型构建中的特征选择方法对比研究. 杭州: 浙江农林大学. | |
Yu X H. 2019. Comparative study of feature selection methods in the construction of remote sensing models for forest biomass estimation . Hangzhou: Zhejiang A&F University. [in Chinese] | |
张 志, 田 昕, 陈尔学, 等. 森林地上生物量估测方法研究综述. 北京林业大学学报, 2011, 33 (5): 144- 150. | |
Zhang Z, Tian X, Chen E X, et al. Review of methods on estimating forest above ground biomass. Journal of Beijing Forestry University, 2011, 33 (5): 144- 150. | |
周俊宏, 王子芝, 廖声熙, 等. 基于GF-1影像的普达措国家公园森林地上生物量遥感估算. 农业工程学报, 2021, 37 (4): 216- 223. | |
Zhou J H, Wang Z Z, Liao S X, et al. Remote sensing estimation of forest aboveground biomass in Potatso National Park using GF-1 images. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (4): 216- 223. | |
朱教君, 王高峰, 张怀清, 等. 关于“气候智慧林业” 研究的思考. 林业科学, 2024, 60 (7): 1- 7. | |
Zhu J J, Wang G F, Zhang H Q, et al. On the research of climate-smart forestry. Scientia Silvae Sinicae, 2024, 60 (7): 1- 7. | |
Afreixo V, Cabral J, Macedo P. 2023. Comparison of feature selection methods in regression modeling: a simulation study. Computational Science and Its Applications-ICCSA 2023 Workshops, 150−159. | |
Altman N. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 1992, 46, 175- 185.
doi: 10.1080/00031305.1992.10475879 |
|
Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A. Feature selection for high-dimensional data. Progress in Artificial Intelligence, 2016, 5, 65- 75. | |
Breiman L. Random forests. Machine Learning, 2001, 45, 5- 32.
doi: 10.1023/A:1010933404324 |
|
Brovkina O, Novotny J, Cienciala E, et al. Mapping forest aboveground biomass using airborne hyperspectral and LiDAR data in the mountainous conditions of Central Europe. Ecological Engineering, 2017, 100, 219- 230.
doi: 10.1016/j.ecoleng.2016.12.004 |
|
Chen T Q, Guestrin C, Chen T Q, et al. 2016. XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, 785−794. | |
Dong H, Xu X, Wang L, et al. Gaofen-3 PolSAR image classification via XGBoost and polarimetric spatial information. Sensors, 2018, 18 (2): 611.
doi: 10.3390/s18020611 |
|
Dube T, Mutanga O. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101, 36- 46.
doi: 10.1016/j.isprsjprs.2014.11.001 |
|
Fassnacht F E, Hartig F, Latifi H, et al. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sensing of Environment, 2014, 154, 102- 114.
doi: 10.1016/j.rse.2014.07.028 |
|
Freeman E A, Moisen G G, Coulston J W, et al. Random forests and stochastic gradient boosting for predicting tree canopy cover: comparing tuning processes and model performance. Canadian Journal of Forest Research, 2016, 46 (3): 323- 339.
doi: 10.1139/cjfr-2014-0562 |
|
Friedman J H. Greedy function approximation: a gradient boosting machine. Annals of Statistics, 2001, 29 (5): 1189- 1232.
doi: 10.1214/aos/1013203450 |
|
Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 2002, 80 (1): 76- 87. | |
Guyon I, Elisseeff A. An introduction to variable and feature selection. Journal of Machine Learning Research, 2003, 3, 1157- 1182. | |
Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines. Machine Learning, 2002, 46 (1): 389- 422. | |
Huang H J, Wu D S, Fang L M, et al. Comparison of multiple machine learning models for estimating the forest growing stock in large-scale forests using multi-source data. Forests, 2022, 13 (9): 1471.
doi: 10.3390/f13091471 |
|
Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 2002, 83 (1/2): 195- 213. | |
Huete A R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 1988, 25 (3): 295- 309.
doi: 10.1016/0034-4257(88)90106-X |
|
Jin Q W, Fan X T, Liu J, et al. Estimating tropical cyclone intensity in the South China Sea using the XGBoost model and FengYun satellite images. Atmosphere, 2020, 11 (4): 423.
doi: 10.3390/atmos11040423 |
|
Jordan C F. Derivation of leaf-area index from quality of light on the forest floor. Ecology, 1969, 50 (4): 663- 666.
doi: 10.2307/1936256 |
|
Kira K, Rendell L A. 1992. A practical approach to feature selection. Machine Learning Proceedings 1992, Morgan Kaufmann, 249−256. | |
Kohavi R, John G H. Wrappers for feature subset selection. Artificial Intelligence, 1997, 97 (1/2): 273- 324. | |
Konstantinavičienė J, Vitunskienė V. Definition and classification of potential of forest wood biomass in terms of sustainable development: a review. Sustainability, 2023, 15 (12): 9311.
doi: 10.3390/su15129311 |
|
Li X H. Using “random forest” for classification and regression. Chinese Journal of Applied Entomology, 2013, 50 (4): 1190- 1197. | |
Liu H, Setiono R. 1996. A probabilistic approach to feature selection — a filter solution. International Conference on Machine Learning, 1−9. | |
Qi J, Chehbouni A, Huete A R, et al. A modified soil adjusted vegetation index. Remote Sensing of Environment, 1994, 48 (2): 119- 126.
doi: 10.1016/0034-4257(94)90134-1 |
|
Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 1977, 43 (12): 1541- 1552. | |
Rouse J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the great plains with ERTS. NASA Special Publication, 1974, 351 (1): 309. | |
Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2011, 73 (3): 273- 282.
doi: 10.1111/j.1467-9868.2011.00771.x |
|
Vabalas A, Gowen E, Poliakoff E, et al. Machine learning algorithm validation with a limited sample size. PLoS One, 2019, 14 (11): e0224365.
doi: 10.1371/journal.pone.0224365 |
|
Verma R K, Sharma L K, Lele N. AVIRIS-NG hyperspectral data for biomass modeling: from ground plot selection to forest species recognition. Journal of Applied Remote Sensing, 2023, 17 (1): 014522- 014522. | |
Zhang H, Song T Q, Wang K L, et al. Biomass and carbon storage in an age-sequence of Cyclobalanopsis glauca plantations in southwest China. Ecological Engineering, 2014, 73, 184- 191.
doi: 10.1016/j.ecoleng.2014.09.008 |
|
Zhang Y L, Wang N, Wang Y L, et al. A new strategy for improving the accuracy of forest aboveground biomass estimates in an alpine region based on multi-source remote sensing. GIScience & Remote Sensing, 2023, 60 (1): 2163574. | |
Zhu T T. Analysis on the applicability of the random forest. Journal of Physics: Conference Series, 2020, 1607 (1): 012123.
doi: 10.1088/1742-6596/1607/1/012123 |
[1] | 葛晓宁,许新桥,张怀清,张京,杨杰,崔泽宇,傅汝饶,梁金洁,邹添华,王林龙,刘洋. 林木基因型-环境互作算法研究进展与思考[J]. 林业科学, 2025, 61(3): 1-15. |
[2] | 潘丹,罗璐薏,季凯文,孔凡斌. 农村电子商务发展对林区内部收入差距与共同富裕的影响[J]. 林业科学, 2024, 60(5): 35-50. |
[3] | 沈琛琛,肖文发,朱建华,曾立雄,陈吉臻,黄志霖. 基于机器学习算法的华中天然林土壤有机碳特征与关键影响因子[J]. 林业科学, 2024, 60(3): 65-77. |
[4] | 焦强英,韩宗甫,王炜烨,刘迪,潘鹏旭,李博,张念慈,王萍,陶金花,范萌. 基于多源数据和机器学习方法的大兴安岭地区雷击火驱动因子及火险预测模型[J]. 林业科学, 2023, 59(6): 74-87. |
[5] | 杨楠楠,白岩,姜苏译,杨春梅,徐凯宏. 基于AlexNet优化的板材材种识别方法[J]. 林业科学, 2022, 58(3): 149-158. |
[6] | 丁家祺,黄文丽,刘迎春,胡杨. 基于机器学习和多源数据的湘西北森林地上生物量估测[J]. 林业科学, 2021, 57(10): 36-48. |
[7] | 庞勇, 蒙诗栎, 李增元. 机载高分辨率遥感影像的傅氏纹理因子估测温带森林地上生物量[J]. 林业科学, 2017, 53(3): 94-104. |
[8] | 李兰, 陈尔学, 李增元, 任冲, 赵磊, 谷鑫志. 森林地上生物量的多基线InSAR层析估测方法[J]. 林业科学, 2017, 53(11): 85-93. |
[9] | 冯琦, 陈尔学, 李增元, 李兰, 赵磊. 基于机载P-波段全极化SAR数据的复杂地形森林地上生物量估测方法[J]. 林业科学, 2016, 52(3): 10-22. |
[10] | 郭云, 李增元, 陈尔学, 田昕, 凌飞龙. 甘肃黑河流域上游森林地上生物量的多光谱遥感估测[J]. 林业科学, 2015, 51(1): 140-149. |
[11] | 李文梅, 陈尔学, 李增元, 赵磊. 森林地上生物量的极化干涉SAR相干层析估测方法[J]. 林业科学, 2014, 50(2): 70-77. |
[12] | 贺鹏;张会儒;雷相东;徐广;高祥. 基于地统计学的森林地上生物量估计[J]. , 2013, 49(5): 101-109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||